Simulation and Experiment of Fertilizer Discharge Characteristics of Spiral Grooved Wheel with Different Working Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bond Model of DEM
2.2. SGWFD 3D Model
2.3. Construction of Fertilizer Block Model and Parameters Calibration
2.3.1. Model Construction of Fertilizer Block
2.3.2. Calibration of Fertilizer Block Bond Model Parameters
2.4. Simulation Parameter Setting and Analysis Method
2.4.1. Parameter Setting
2.4.2. Analysis Method
2.5. Experiment Scheme
3. Results
3.1. Establishment and Experiment of Regression Model
3.2. Analysis of Model Interaction Items
3.3. Optimization Analysis
4. Experiment Verification
5. Conclusions
- (1)
- The fertilizer block is constructed based on the bond of the DEM model, and the bond parameters of the fertilizer block are obtained through uniaxial compression experiment and simulation calibration. According to the Box–Behnken experiment design principle, a three-factor three-level response surface simulation experiment was carried out with the GW rotation speed, the GW cross-sectional shape, and the spiral lift angle as factors, and the variation coefficient of fertilizer discharge uniformity and the broken rate of fertilizer block bond as indicators. The quadratic regression model between each factor and the research index was analyzed. Affecting the variation coefficient of fertilizer uniformity, from important to secondary, mainly include the rotating speed of the GW, the sectional shape of the GW and the spiral lift angle. Affecting the broken rate of fertilizer block bond, from important to secondary, mainly include the spiral lift angle, the sectional shape of the GW, and the rotational speed of the GW.
- (2)
- Taking the minimum variation coefficient of the fertilizer discharge uniformity and the maximum broken rate of the fertilizer block bond as the objectives, the optimal working parameters of the spiral GW were optimized, the GW speed was 21 r/min, the GW section shape was spoon-shaped, and the spiral rise angle was 70°. The variation coefficient of fertilizer discharge uniformity was 8.56%, and the broken rate of fertilizer block bond was 97.67%.
- (3)
- Build an intelligent fertilizer discharge experiment bench to verify the optimal working parameter combination obtained by simulation. The variation coefficient of fertilizer discharge uniformity was 9.23% and the broken rate of fertilizer block bond was 94.28%. Compared with the simulation results, the relative data errors were 7.3% and 3.6%, respectively, which proves that the experiment data are basically consistent with the simulation data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, X.; Li, M.; Zhang, L.; Ren, W. Design and experiment of horizontal pneumatic screw combination adjustable quantitative fertilizer feeding device for granular fertilizer. Trans. Chin. Soc. Agric. Eng. 2018, 34, 9–18. [Google Scholar]
- Zhang, L.; Zhang, L.; Zheng, W. Fertilizer feeding mechanism and experimental study of a spiral grooved-wheel fertilizer feeder. J. Eng. Sci. Tech. Rev. 2018, 11, 107–115. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021.
- Liu, X.; Ding, Y.; Shu, C.; Wang, K.; Liu, W.; Wang, X. Mechanism analysis and experiment of disturbance and blockage prevention of spiral cone centrifugal fertilizer apparatus. Trans. Chin. Soc. Agric. Mach. 2020, 51, 44–54. [Google Scholar]
- Wang, H.; Chen, H.; Ji, W. Anti-blocking mechanism of type 2BMFJ-3 No-till precision planter for wheat stubble fields. Trans. Chin. Soc. Agric. Mach. 2013, 44, 64–70. [Google Scholar]
- Tola, E.; Kataoka, T.; Burce, M.; Okamoto, H.; Hata, S. Granular fertilizer application rate control system with integrated output volume measurement. Biosyst. Eng. 2008, 101, 411–416. [Google Scholar] [CrossRef]
- Dun, G.; Chen, H.; Feng, Y.; Yang, J.; Li, A.; Cha, S. Parameter optimization and experiment of key parts of fertilizer allocation device based on EDEM software. Trans. Chin. Soc. Agric. Eng. 2016, 32, 36–42. [Google Scholar]
- Song, C.; Zhou, Z.; Wang, G.; Wang, X.; Zang, Y. Optimization of the groove wheel structural parameters of UAV-based fertilizer apparatus. Trans. Chin. Soc. Agric. Eng. 2021, 37, 1–10. [Google Scholar]
- Sugirbay, A.M.; Zhao, J.; Nukeshev, S.O.; Chen, J. Determination of pin—Roller parameters and evaluation of the uniformity of granular fertilizer application metering devices in precision farming. Comput. Electron. Agric. 2020, 179, 105835. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Hu, H.; Huang, J.; Liu, Y. Influence of control sequence of spiral fluted roller fertilizer distributer on fertilization performance. Trans. Chin. Soc. Agric. Mach. 2020, 51 (Suppl. S1), 137–144. [Google Scholar]
- Lv, H.; Yu, J.; Fu, H. Simulation of the operation of a fertilizer spreader based on an outer groove wheel using a discrete element method. Math. Comput. Model. 2013, 58, 842–851. [Google Scholar] [CrossRef]
- Zeng, S.; Tan, Y.; Wang, Y.; Luo, X.; Yao, L.; Huang, D.; Mo, Z. Structural design and parameter determination for fluted-roller fertilizer applicator. Int. J. Agric. Biol. Eng. 2020, 13, 101–110. [Google Scholar] [CrossRef]
- Sun, J.; Chen, H.; Duan, J.; Liu, Z.; Zhu, Q. Mechanical properties of the grooved-wheel drilling particles under multivariate interaction influenced based on 3D printing and EDEM simulation. Comput. Electron. Agric. 2020, 172, 105329. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Rackl, M.; Hanley, K.J. A methodical calibration procedure for discrete element models. Powder Technol. 2017, 307, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Cho, N.; Martin, C.D.; Sego, D.C. A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 2007, 44, 997–1010. [Google Scholar] [CrossRef]
- Yan, Z.; Wilkinson, S.K.; Stitt, E.H.; Marigo, M. Discrete element modelling (DEM) input parameters: Understanding their impact on model predictions using statistical analysis. Comput. Part. Mech. 2015, 2, 283–299. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Liu, Q.; Liu, X.; Zhang, T.; Zhang, X. Simulation of multi-fertilizers blending process and optimization of blending cavity structure in nutrient proportion of variable rate fertilization. Trans. Chin. Soc. Agric. Mach. 2014, 45, 125–132. [Google Scholar]
- Quist, J. Cone Crusher Modelling and Simulation; Chalmers University of Technology: Gothenburg, Sweden, 2012. [Google Scholar]
- Xu, J.; Xie, Z.; Jia, H. Simulation of mesomechanical properties of limestone using particle flow code. Rock Soil Mech. 2010, 31, 390–395. [Google Scholar]
- ASAE S368.4 DEC2000 (R2008); Compression Experiment of Food Materials of Convex Shape. American Society of Agricultural and Biological Engineers: St. Joseph, MO, USA, 2008.
- Zhu, Q.; Wu, G.; Chen, L.; Zhao, C.; Meng, Z. Influences of structure parameters of straight flute wheel on fertilizing performance of fertilizer apparatus. Trans. Chin. Soc. Agric. Eng. 2018, 34, 12–20. [Google Scholar]
- Zheng, K.; He, J.; Li, H.; Dao, P.; Wang, Q.; Zhao, H. Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method. Trans. Chin. Soc. Agric. Mach. 2016, 47, 62–72. [Google Scholar]
- NY/T1003—2006; Technical Specification for Quality Price of Fertilizer Machinery. China Standards Press: Beijing, China, 2015.
- Liu, J.; Tang, Z.; Zheng, X.; Meng, X.; Yang, H.; Zhang, L. Design and experiments of the 2FHF-4.56 type base-fertilizer row-following and layered deep fertilizing machine for wide row spacing crops. Trans. Chin. Soc. Agric. Eng. 2022, 38, 1–11. [Google Scholar]
- Zhu, H.; Qian, C.; Bai, L.; Li, H.; Mou, D.; Li, J. Optimization of discrete element model of corn stalk based on Plackett-Burman design and response surface methodology. J. China Agric. Univ. 2021, 26, 221–231. [Google Scholar]
- Dai, F.; Zhao, W.; Song, X.; Shi, R.; Liu, G.; Wei, B. Parameters optimization and experiment on separating and cleaning machine for flax threshing material. Trans. Chin. Soc. Agric. Mach. 2020, 51, 100–108. [Google Scholar]
- Du, X.; Liu, C.; Jiang, M.; Yuan, H.; Dai, L.; Li, F. Calibration of bonding model parameters for coated fertilizers based on discrete element method. Trans. Chin. Soc. Agric. Mach. 2022, 53, 141–149. [Google Scholar]
- Yi, J.; Zhu, W.; Ma, H.; Wang, Y. Optimization on ultrasonic-assisted extraction technology of oil from Paeonia suffruticosa Andr. seeds with response surface analysis. Trans. Chin. Soc. Agric. Mach. 2009, 40, 103–110. [Google Scholar]
- Yuan, X.; Qi, L.; Wang, H.; Huang, S.; Ji, R.; Zhang, J. Spraying parameters optimization of swing, automatic variables and greenhouse mist sprayer with response surface method. Trans. Chin. Soc. Agric. Mach. 2012, 43, 45–54. [Google Scholar]
- Liu, L.; Ma, C.; Liu, Z. EDEM-based parameter optimization and experiment of full-layer fertilization shovel for strip subsoiling. Trans. Chin. Soc. Agric. Mach. 2021, 52, 74–83. [Google Scholar]
- Wang, X.; Zhang, Q.; Huang, Y.; Ji, J. An efficient method for determining DEM parameters of a loose cohesive soil modelled using hysteretic spring and linear cohesion contact models. Biosyst. Eng. 2022, 215, 283–294. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Normal stiffness per unit area (N/m3) | 3 × 109 |
Shear stiffness per unit area (N/m3) | 2 × 108 |
Critical normal stress/Pa | 1 × 105 |
Critical shear stress/Pa | 8 × 104 |
Bonded disk radius/mm | 2.5 |
Contact Parameters | Fertilizer-Fertilizer | Fertilizer-PLA | Fertilizer-Ground |
---|---|---|---|
Coefficient of restitution | 0.11 | 0.41 | 0.02 |
Coefficient of static friction | 0.37 | 0.32 | 1.25 |
Coefficient of rolling friction | 0.16 | 0.18 | 1.24 |
Coding | Factor | ||
---|---|---|---|
X1/(r/min) GW Speed | X2 GW Section Shape | X3/(°) Spiral Angle | |
−1 | 15 | Circular arc | 60° |
0 | 20 | Spoon shape | 65° |
1 | 25 | Trapezoid | 70° |
Number | X1 | X2 | X3 | Y1/% | Y2/% |
---|---|---|---|---|---|
1 | 1 | −1 | 0 | 9.57 | 96.47 |
2 | −1 | 0 | −1 | 11.14 | 94.48 |
3 | −1 | −1 | 0 | 12.51 | 96.82 |
4 | 0 | 1 | 1 | 9.45 | 96.84 |
5 | −1 | 0 | 1 | 13.11 | 97.54 |
6 | 0 | 0 | 0 | 8.34 | 96.26 |
7 | 0 | 0 | 0 | 8.04 | 96.55 |
8 | −1 | 1 | 0 | 12.90 | 95.64 |
9 | 1 | 0 | −1 | 9.92 | 94.31 |
10 | 1 | 1 | 0 | 10.79 | 95.26 |
11 | 0 | 1 | −1 | 9.39 | 94.24 |
12 | 0 | 0 | 0 | 8.10 | 96.39 |
13 | 0 | 0 | 0 | 7.86 | 96.55 |
14 | 1 | 0 | 1 | 9.8 | 96.46 |
15 | 0 | 0 | 0 | 8.18 | 96.55 |
16 | 0 | −1 | 1 | 9.12 | 97.96 |
17 | 0 | −1 | −1 | 8.58 | 94.64 |
Experiment Index | Sources of Variance | Sum of Squares | Df | Mean Square | F | p-Value |
---|---|---|---|---|---|---|
Variation coefficient of fertilizer discharge uniformity | Model | 47.12 | 9 | 5.24 | 95.97 | <0.0001 ** |
X1 | 11.47 | 1 | 11.47 | 210.31 | <0.0001 ** | |
X2 | 0.95 | 1 | 0.95 | 17.33 | 0.0042 ** | |
X3 | 0.75 | 1 | 0.75 | 13.75 | 0.0076 ** | |
X1X2 | 0.17 | 1 | 0.17 | 3.16 | 0.1188 | |
X1X3 | 1.97 | 1 | 1.09 | 20.02 | 0.0029 ** | |
X2X3 | 0.06 | 1 | 0.06 | 1.06 | 0.3383 | |
X12 | 28.42 | 1 | 28.42 | 520.99 | <0.0001 ** | |
X22 | 2.31 | 1 | 2.31 | 42.33 | 0.0003 ** | |
X32 | 0.36 | 1 | 0.36 | 6.51 | 0.0380 * | |
Residual | 0.38 | 7 | 0.06 | |||
Lack of fit | 0.26 | 3 | 0.09 | 2.74 | 0.1778 | |
Pure error | 0.13 | 4 | 0.03 | |||
Sum total | 47.50 | 16 | ||||
Broken rate of fertilizer bond | Model | 19.63 | 9 | 2.18 | 58.57 | <0.0001 ** |
X1 | 0.49 | 1 | 0.49 | 13.16 | 0.0084 ** | |
X2 | 1.91 | 1 | 1.91 | 51.33 | 0.0002 ** | |
X3 | 15.48 | 1 | 15.48 | 415.89 | <0.0001 ** | |
X1X2 | 0.000225 | 1 | 0.000225 | 0.006043 | 0.9402 | |
X1X3 | 0.21 | 1 | 0.21 | 5.56 | 0.0505 | |
X2X3 | 0.13 | 1 | 0.13 | 3.48 | 0.1043 | |
X12 | 0.42 | 1 | 0.42 | 11.40 | 0.0118 * | |
X22 | 0.04 | 1 | 0.04 | 1.02 | 0.3460 | |
X32 | 0.83 | 1 | 0.83 | 22.39 | 0.0021 ** | |
Residual | 0.26 | 7 | 0.04 | |||
Lack of fit | 0.19 | 3 | 0.06 | 3.69 | 0.1198 | |
Pure error | 0.07 | 4 | 0.02 | |||
Sum total | 19.89 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Dai, F.; Zhang, X.; Gao, W.; Li, X.; Zhang, F.; Zhao, W. Simulation and Experiment of Fertilizer Discharge Characteristics of Spiral Grooved Wheel with Different Working Parameters. Sustainability 2023, 15, 11309. https://doi.org/10.3390/su151411309
Song X, Dai F, Zhang X, Gao W, Li X, Zhang F, Zhao W. Simulation and Experiment of Fertilizer Discharge Characteristics of Spiral Grooved Wheel with Different Working Parameters. Sustainability. 2023; 15(14):11309. https://doi.org/10.3390/su151411309
Chicago/Turabian StyleSong, Xuefeng, Fei Dai, Xuekun Zhang, Wenjie Gao, Xiangzhou Li, Fengwei Zhang, and Wuyun Zhao. 2023. "Simulation and Experiment of Fertilizer Discharge Characteristics of Spiral Grooved Wheel with Different Working Parameters" Sustainability 15, no. 14: 11309. https://doi.org/10.3390/su151411309
APA StyleSong, X., Dai, F., Zhang, X., Gao, W., Li, X., Zhang, F., & Zhao, W. (2023). Simulation and Experiment of Fertilizer Discharge Characteristics of Spiral Grooved Wheel with Different Working Parameters. Sustainability, 15(14), 11309. https://doi.org/10.3390/su151411309