New Sustainable Oil Seed Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids: A Journey from the Ocean to the Field
Abstract
:1. Introduction
2. Development of Oilseed Crops with Fish Oil-like Levels of ω3 LC-PUFA
3. The Challenge of Deregulation
4. Market Demand and Consumer Acceptance for ω3 Canola Oil and Applications
5. Aquaculture
6. Human Nutrition
7. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogus, U.; Smith, C. n-3 Omega fatty acids: A review of current knowledge. Int. J. Food Sci. Technol. 2010, 45, 417–436. [Google Scholar] [CrossRef]
- Ghasemi Fard, S.; Wang, F.; Sinclair, A.J.; Elliott, G.; Turchini, G.M. How does high DHA fish oil affect health? A systematic review of evidence. Crit. Rev. Food Sci. Nutr. 2019, 59, 1684–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, C.; Calder, P.C. Effects of fat and fatty acid intake on inflammatory and immune responses: A critical review. Ann. Nutr. Metab. 2009, 55, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Giles, G.E.; Mahoney, C.R.; Kanarek, R.B. Omega-3 fatty acids influence mood in healthy and depressed individuals. Nutr. Rev. 2013, 71, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.S.; Entin, E.K.; Hoffman, J.P.; Kuratko, C.N.; Nelson, E.B. Role of fatty acids in the neurological development of infants. In Nutrition in Infancy; Watson, R.R., Grimble, G., Preedy, V.R., Zibadi, S., Eds.; Humana Press: Totowa, NJ, USA, 2013; Volume 2, pp. 331–346. [Google Scholar] [CrossRef]
- Simon, E.; Bardet, B.; Gregoire, S.; Acar, N.; Bron, A.M.; Creuzot-Garcher, C.R.; Bretillon, L. Decreasing dietary linoleic acid promotes long chain omega-3 fatty acid incorporation into rat retina and modifies gene expression. Exp. Eye Res. 2011, 93, 628–635. [Google Scholar] [CrossRef]
- Weichselbaum, E.; Coe, S.; Buttriss, J.; Stanner, S. Fish in the diet: A review. Nutr. Bull. 2013, 38, 128–177. [Google Scholar] [CrossRef]
- Drouin, G.; Rioux, V.; Legrand, P. The n-3 docosapentaenoic acid (DPA): A new player in the n-3 long chain polyunsaturated fatty acid family. Biochimie 2019, 159, 36–48. [Google Scholar] [CrossRef]
- Byelashov, O.A.; Sinclair, A.J.; Kaur, G. Dietary sources, current intakes, and nutritional role of omega-3 docosapentaenoic acid. Lipid Technol. 2015, 27, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Guo, X.-F.; Sinclair, A.J. Short update on docosapentaenoic acid: A bioactive long-chain n-3 fatty acid. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 88–91. [Google Scholar] [CrossRef]
- Morin, C.; Rousseau, É.; Fortin, S. Anti-proliferative effects of a new docosapentaenoic acid monoacylglyceride in colorectal carcinoma cells. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Fard, S.; Cameron-Smith, D.; Sinclair, A.J. n–3 Docosapentaenoic acid: The iceberg n–3 fatty acid. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Sissener, N.H.; Torstensen, B.E.; Stubhaug, I.; Rosenlund, G. Long-term feeding of Atlantic salmon in seawater with low dietary long-chain n-3 fatty acids affects tissue status of the brain, retina and erythrocytes. Br. J. Nutr. 2016, 115, 1919–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef] [Green Version]
- Nichols, P.D.; Glencross, B.; Petrie, J.R.; Singh, S.P. Readily available sources of long-chain omega-3 oils: Is farmed Australian seafood a better source of the good oil than wild-caught seafood? Nutrients 2014, 6, 1063–1079. [Google Scholar] [CrossRef] [Green Version]
- Myers, R.A.; Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 2003, 423, 280–283. [Google Scholar] [CrossRef]
- Colombo, S.M.; Rodgers, T.F.M.; Diamond, M.L.; Bazinet, R.P.; Arts, M.T. Projected declines in global DHA availability for human consumption as a result of global warming. Ambio 2020, 49, 865–880. [Google Scholar] [CrossRef] [Green Version]
- Soudant, P.; Ventura, M.; Chauchat, L.; Guerreiro, M.; Mathieu-Resuge, M.; Le Grand, F.; Simon, V.; Collet, S.; Zambonino-Infante, J.-L.; Le Goïc, N.; et al. Evaluation of Aurantiochytrium mangrovei Biomass Grown on Digestate as a Sustainable Feed Ingredient of Sea Bass, Dicentrarchus labrax, Juveniles and Larvae. Sustainability 2022, 14, 14573. [Google Scholar] [CrossRef]
- Napier, J.A.; Olsen, R.-E.; Tocher, D.R. Update on GM canola crops as novel sources of omega-3 fish oils. Plant Biotechnol. J. 2019, 17, 703–705. [Google Scholar] [CrossRef] [Green Version]
- Worldwide Oilseed Production in 2022/2023. Available online: https://www.statista.com/statistics/267271/worldwide-oilseed-production-since-2008/ (accessed on 28 April 2023).
- Qiu, X.; Xie, X.; Meesapyodsuk, D. Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog. Lipid Res. 2020, 79, 101047. [Google Scholar] [CrossRef]
- Metz, J.G.; Roessler, P.; Facciotti, D.; Levering, C.; Dittrich, F.; Lassner, M.; Valentine, R.; Lardizabal, K.; Domergue, F.; Yamada, A.; et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 2001, 293, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Naka, M.; Ikeuchi, K.; Ohtsuka, M.; Kobayashi, K.; Satoh, Y.; Ogasawara, Y.; Maruyama, C.; Hamano, Y.; Ujihara, T.; et al. Control mechanism for carbon-chain length in polyunsaturated fatty-acid synthases. Angew. Chem. Int. Ed. 2019, 58, 6605–6610. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.A.; Bevan, S.A.; Gachotte, D.J.; Larsen, C.M.; Moskal, W.A.; Merlo, P.A.O.; Sidorenko, L.V.; Hampton, R.E.; Stoltz, V.; Pareddy, D.; et al. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid. Nat. Biotechnol. 2016, 34, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Usher, S.; Han, L.; Haslam, R.P.; Michaelson, L.V.; Sturtevant, D.; Aziz, M.; Chapman, K.D.; Sayanova, O.; Napier, J.A. Tailoring seed oil composition in the real world: Optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa. Sci. Rep. 2017, 7, 6570. [Google Scholar] [CrossRef] [Green Version]
- Petrie, J.R.; Zhou, X.-R.; Leonforte, A.; McAllister, J.; Shrestha, P.; Kennedy, Y.; Belide, S.; Buzza, G.; Gororo, N.; Gao, W.; et al. Development of a Brassica napus (canola) crop containing fish oil-like levels of DHA in the seed oil. Front. Plant Sci. 2020, 11, 727. [Google Scholar] [CrossRef] [PubMed]
- Meesapyodsuk, D.; Sun, K.; Zhou, R.; Thoms, K.; Qiu, X. Stepwise metabolic engineering of docosatrienoic acid – an ω3 very long-chain polyunsaturated fatty acid with potential health benefits in Brassica carinata. Plant Biotechnol. J. 2023, 21, 8–10. [Google Scholar] [CrossRef]
- Petrie, J.R.; Shrestha, P.; Belide, S.; Mansour, M.P.; Liu, Q.; Horne, J.; Nichols, P.D.; Singh, S.P. Transgenic production of arachidonic acid in oilseeds. Transgenic Res. 2012, 21, 139–147. [Google Scholar] [CrossRef]
- Qi, B.; Fraser, T.; Mugford, S.; Dobson, G.; Sayanova, O.; Butler, J.; Napier, J.; Stobart, A.; Lazarus, C. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat. Biotechnol. 2004, 22, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Robert, S.S.; Singh, S.P.; Zhou, X.-R.; Petrie, J.R.; Blackburn, S.I.; Mansour, P.M.; Nichols, P.D.; Liu, Q.; Green, A.G. Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct. Plant Biol. 2005, 32, 473–479. [Google Scholar] [CrossRef]
- Wu, G.H.; Truksa, M.; Datla, N.; Vrinten, P.; Bauer, J.; Zank, T.; Cirpus, P.; Heinz, E.; Qiu, X. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat. Biotechnol. 2005, 23, 1013–1017. [Google Scholar] [CrossRef]
- Venegas-Calerón, M.; Sayanova, O.; Napier, J.A. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog. Lipid Res. 2010, 49, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Nichols, P.D.; Petrie, J.; Singh, S. Long-chain omega-3 oils—An update on sustainable sources. Nutrients 2010, 2, 572–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napier, J.A.; Betancor, M.B. Engineering plant-based feedstocks for sustainable aquaculture. Curr. Opin. Plant Biol. 2023, 71, 102323. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lopez, N.; Sayanova, O.; Napier, J.A.; Haslam, R.P. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J. Exp. Bot. 2012, 63, 2397–2410. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.; Buesen, R.; Riffle, B.; Wandelt, C.; Sottosanto, J.B.; Marxfeld, H.; Strauss, V.; van Ravenzwaay, B.; Lipscomb, E.A. Safety assessment of EPA+DHA canola oil by fatty acid profile comparison to various edible oils and fat-containing foods and a 28-day repeated dose toxicity study in rats. Food Chem. Toxicol. 2019, 124, 168–181. [Google Scholar] [CrossRef]
- Petrie, J.R.; Shrestha, P.; Mansour, M.P.; Nichols, P.D.; Liu, Q.; Singh, S.P. Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Δ6-desaturase with omega 3-preference from the marine microalga Micromonas pusilla. Metab. Eng. 2010, 12, 233–240. [Google Scholar] [CrossRef]
- Petrie, J.R.; Liu, Q.; Mackenzie, A.M.; Shrestha, P.; Mansour, M.P.; Robert, S.S.; Frampton, D.F.; Blackburn, S.I.; Nichols, P.D.; Singh, S.P. Isolation and characterisation of a high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production. Mar. Biotechnol. 2010, 12, 430–438. [Google Scholar] [CrossRef]
- Zhou, X.-R.; Robert, S.S.; Petrie, J.R.; Frampton, D.M.F.; Mansour, M.P.; Blackburn, S.I.; Nichols, P.D.; Green, A.G.; Singh, S.P. Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 2007, 68, 785–796. [Google Scholar] [CrossRef]
- Shrestha, P.; Zhou, X.-R.; Vibhakaran Pillai, S.; Petrie, J.; de Feyter, R.; Singh, S. Comparison of the substrate preferences of ω3 fatty acid desaturases for long chain polyunsaturated fatty acids. Int. J. Mol. Sci. 2019, 20, 3058. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, J.L.; Lim, Z.L.; Beganovic, M.; Breazeale, S.; Andre, C.; Stymne, S.; Vrinten, P.; Senger, T. Determination of substrate preferences for desaturases and elongases for production of docosahexaenoic acid from oleic acid in engineered canola. Lipids 2017, 52, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Robert, S.S.; Petrie, J.R.; Zhou, X.-R.; Mansour, M.P.; Blackburn, S.I.; Green, A.G.; Singh, S.P.; Nichols, P.D. Isolation and Characterisation of a Delta 5-fatty Acid Elongase from the Marine Microalga Pavlova salina. Mar. Biotechnol. 2009, 11, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Petrie, J.R.; Shrestha, P.; Zhou, X.-R.; Mansour, M.P.; Liu, Q.; Belide, S.; Nichols, P.D.; Singh, S.P. Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS ONE 2012, 7, e49165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Z.; Sharpe, P.L.; Hong, S.P.; Yadav, N.S.; Xie, D.; Short, D.R.; Damude, H.G.; Rupert, R.A.; Seip, J.E.; Wang, J. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 2013, 31, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lopez, N.; Haslam, R.P.; Napier, J.A.; Sayanova, O. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 2014, 77, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrie, J.R.; Shrestha, P.; Belide, S.; Kennedy, Y.; Lester, G.; Liu, Q.; Divi, U.K.; Mulder, R.J.; Mansour, M.P.; Nichols, P.D.; et al. Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS ONE 2014, 9, e85061. [Google Scholar] [CrossRef] [PubMed]
- Belide, S.; Shrestha, P.; Kennedy, Y.; Leonforte, A.; Devine, M.D.; Petrie, J.R.; Singh, S.P.; Zhou, X.-R. Engineering docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in Brassica Juncea. Plant Biotechnol. J. 2022, 20, 19–21. [Google Scholar] [CrossRef]
- Nichols, P.D.; Virtue, P.; Mooney, B.D.; Elliott, N.G.; Yearsley, G.K. Seafood the Good Food. The Oil Content and Composition of Australian Commercial Fishes, Shellfishes and Crustaceans. FRDC Project 95/122. Guide Prepared for the Fisheries Research and Development Corporation; CSIRO Marine Research: Hobart, Australia, 1998. [Google Scholar]
- Ruiz-Lopez, N.; Haslam, R.P.; Venegas-Caleron, M.; Larson, T.R.; Graham, I.A.; Napier, J.A.; Sayanova, O. The synthesis and accumulation of stearidonic acid in transgenic plants: A novel source of ‘heart-healthy’ omega-3 fatty acids. Plant Biotechnol. J. 2009, 7, 704–716. [Google Scholar] [CrossRef]
- Eckert, H.; LaVallee, B.; Schweiger, B.J.; Kinney, A.J.; Cahoon, E.B.; Clemente, T. Co-expression of the borage Δ6 desaturase and the Arabidopsis Δ15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 2006, 224, 1050–1057. [Google Scholar] [CrossRef]
- Guidance for Industry: Voluntary Labeling Indicating Whether Foods Have or Have Not Been Derived from Genetically Engineered Plants. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-voluntary-labeling-indicating-whether-foods-have-or-have-not-been-derived (accessed on 28 April 2023).
- USDA Rules Bioengineered Standard. Available online: https://www.ams.usda.gov/rules-regulations/be (accessed on 28 April 2023).
- GM Approval Database. Available online: https://www.isaaa.org/gmapprovaldatabase/ (accessed on 28 April 2023).
- Kovalic, D.; Garnaat, C.; Guo, L.; Yan, Y.; Groat, J.; Silvanovich, A.; Ralston, L.; Huang, M.; Tian, Q.; Christian, A.; et al. The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome 2012, 5, 149–163. [Google Scholar] [CrossRef]
- Zastrow-Hayes, G.M.; Lin, H.; Sigmund, A.L.; Hoffman, J.L.; Alarcon, C.M.; Hayes, K.R.; Richmond, T.A.; Jeddeloh, J.A.; May, G.D.; Beatty, M.K. Southern-by-sequencing: A robust screening approach for molecular characterization of genetically modified crops. Plant Genome 2015, 8. [Google Scholar] [CrossRef]
- Wang, X.-J.; Jiao, Y.; Ma, S.; Yang, J.-T.; Wang, Z.-X. Whole-Genome Sequencing: An Effective Strategy for Insertion Information Analysis of Foreign Genes in Transgenic Plants. Front. Plant Sci. 2020, 11, 573871. [Google Scholar] [CrossRef] [PubMed]
- Bushey, D.F.; Bannon, G.A.; Delaney, B.F.; Graser, G.; Hefford, M.; Jiang, X.X.; Lee, T.C.; Madduri, K.M.; Pariza, M.; Privalle, L.S.; et al. Characteristics and safety assessment of intractable proteins in genetically modified crops. Regul. Toxicol. Pharmacol. 2014, 69, 154–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamakubo, T.; Kusano-Arai, O.; Iwanari, H. Generation of antibodies against membrane proteins. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2014, 1844, 1920–1924. [Google Scholar] [CrossRef] [PubMed]
- Colgrave, M.L.; Byrne, K.; Pillai, S.V.; Dong, B.; Leonforte, A.; Caine, J.; Kowalczyk, L.; Scoble, J.A.; Petrie, J.R.; Singh, S.; et al. Quantitation of seven transmembrane proteins from the DHA biosynthesis pathway in genetically engineered canola by targeted mass spectrometry. Food Chem. Toxicol. 2019, 126, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Colgrave, M.L.; Byrne, K.; Caine, J.; Kowalczyk, L.; Vibhakaran Pillai, S.; Dong, B.; Lovrecz, G.; MacIntosh, S.; Scoble, J.A.; Petrie, J.R.; et al. Proteomics reveals the in vitro protein digestibility of seven transmembrane enzymes from the docosahexaenoic acid biosynthesis pathway. Food Chem. Toxicol. 2019, 130, 89–98. [Google Scholar] [CrossRef] [PubMed]
- MacIntosh, S.C.; Shaw, M.; Connelly, M.; Yao, Z.J. Food and feed safety of NS-B5ØØ27-4 omega-3 canola (Brassica napus): A new source of long-chain omega-3 fatty acids. Front. Nutr. 2021, 8, 716659. [Google Scholar] [CrossRef]
- Ruyter, B.; Bou, M.; Berge, G.M.; Mørkøre, T.; Sissener, N.H.; Sanden, M.; Lutfi, E.; Romarheim, O.-H.; Krasnov, A.; Østbye, T.-K.K. A dose-response study with omega-3 rich canola oil as a novel source of docosahexaenoic acid (DHA) in feed for Atlantic salmon (Salmo salar) in seawater; effects on performance, tissue fatty acid composition, and fillet quality. Aquaculture 2022, 561, 738733. [Google Scholar] [CrossRef]
- Ruyter, B.; Sissener, N.H.; Østbye, T.-K.K.; Simon, C.J.; Krasnov, A.; Bou, M.; Sanden, M.; Nichols, P.D.; Lutfi, E.; Berge, G.M. n-3 Canola oil effectively replaces fish oil as a new safe dietary source of DHA in feed for juvenile Atlantic salmon. Br. J. Nutr. 2019, 122, 1329–1345. [Google Scholar] [CrossRef] [Green Version]
- Betancor, M.B.; Sprague, M.; Montero, D.; Usher, S.; Sayanova, O.; Campbell, P.J.; Napier, J.A.; Caballero, M.J.; Izquierdo, M.; Tocher, D.R. Replacement of marine fish oil with de novo Omega-3 oils from transgenic Camelina sativa in feeds for gilthead sea bream (Sparus aurata L.). Lipids 2016, 51, 1171–1191. [Google Scholar] [CrossRef]
- Betancor, M.B.; Li, K.; Sprague, M.; Bardal, T.; Sayanova, O.; Usher, S.; Han, L.; Måsøval, K.; Torrissen, O.; Napier, J.A.; et al. An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry. PLoS ONE 2017, 12, e0175415. [Google Scholar] [CrossRef] [Green Version]
- Betancor, M.B.; Li, K.; Bucerzan, V.S.; Sprague, M.; Sayanova, O.; Usher, S.; Han, L.; Norambuena, F.; Torrissen, O.; Napier, J.A.; et al. Oil from transgenic Camelina sativa containing over 25% n-3 long-chain PUFA as the major lipid source in feed for Atlantic salmon (Salmo salar). Br. J. Nutr. 2018, 119, 1378–1392. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.; Wetterhus, E.-M.; Østbye, T.-K.K.; Haugen, J.-E.; Vogt, G. Rest plant materials with natural antioxidants increase the oxidative stability of omega-3-rich Norwegian cold pressed Camelina sativa oil. ACS Food Sci. Technol. 2021, 1, 529–537. [Google Scholar] [CrossRef]
- Gia Vo, L.L.; Galkanda-Arachchige, H.S.C.; Iassonova, D.R.; Davis, D.A. Efficacy of modified canola oil to replace fish oil in practical diets of Pacific white shrimp Litopenaeus vannamei. Aquac. Res. 2021, 52, 2446–2459. [Google Scholar] [CrossRef]
- Tocher, D.R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 2015, 449, 94–107. [Google Scholar] [CrossRef]
- Cox, D.N.; Bastiaans, K. Understanding Australian consumers’ perceptions of selenium and motivations to consume selenium enriched foods. Food Qual. Prefer. 2007, 18, 66–76. [Google Scholar] [CrossRef]
- Cox, D.N.; Evans, G.; Lease, H.J. Australian consumers’ preferences for conventional and novel sources of long chain omega-3 fatty acids: A conjoint study. Food Qual. Prefer. 2008, 19, 306–314. [Google Scholar] [CrossRef]
- Cox, D.N.; Evans, G.; Lease, H.J. The influence of product attributes, consumer attitudes and characteristics on the acceptance of: (1) Novel bread and milk, and dietary supplements and (2) fish and novel meats as dietary vehicles of long chain omega 3 fatty acids. Food Qual. Prefer. 2011, 22, 205–212. [Google Scholar] [CrossRef]
- The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. Available online: https://www.fao.org/state-of-fisheries-aquaculture/2018/en (accessed on 28 April 2023).
- Ytrestøyl, T.; Aas, T.S.; Åsgård, T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 2015, 448, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Salmon Farming Industry Handbook 2019. Available online: https://corpsite.azureedge.net/corpsite/wp-content/uploads/2019/06/Salmon-Industry-Handbook-2019.pdf (accessed on 28 April 2023).
- MOWi Integrated Annual Report 2021. Available online: https://mowi.com/wp-content/uploads/2022/03/Mowi_Annual_Report_2021.pdf (accessed on 28 April 2023).
- Salmon Farming Industry Handbook 2018. Available online: https://mowi.com/wp-content/uploads/2019/04/2018-salmon-industry-handbook-1.pdf (accessed on 28 April 2023).
- Robert, R.J. Fish Pathology, 4th ed.; Wiley-Blackwell: Chicester, UK, 2012. [Google Scholar]
- Davis, B.A.; Devine, M.D. Evaluation of long-chain omega-3 canola oil on Atlantic salmon growth, performance, and essential fatty acid tissue accretion across the life cycle: A review. Aquac. Int. 2023. [Google Scholar] [CrossRef]
- The EPA+DHA Omega-3 Ingredient Market Report. Available online: https://goedomega3.com/purchase/ingredient-market-report (accessed on 28 April 2023).
- Nutriterra Conducts New Omega-3 Consumer Research. Available online: https://nutriterraomega3.com/2021/09/nutriterra-consumer-research/ (accessed on 28 April 2023).
- Tejera, N.; Vauzour, D.; Betancor, M.B.; Sayanova, O.; Usher, S.; Cochard, M.; Rigby, N.; Ruiz-Lopez, N.; Menoyo, D.; Tocher, D.R.; et al. A transgenic Camelina sativa seed oil effectively replaces fish oil as a dietary source of eicosapentaenoic acid in mice. J. Nutr. 2016, 146, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.; Munhoz, J.; Goruk, S.; Richard, C.; Field, C.J. The programming effect of plant-based DHA, along with equivalent AA, on immune system and oral tolerance development in six-week allergy prone BALB/c pups. J. Nutr. 2023. [Google Scholar] [CrossRef] [PubMed]
- West, A.L.; Miles, E.A.; Lillycrop, K.A.; Han, L.; Sayanova, O.; Napier, J.A.; Calder, P.C.; Burdge, G.C. Postprandial incorporation of EPA and DHA from transgenic Camelina sativa oil into blood lipids is equivalent to that from fish oil in healthy humans. Br. J. Nutr. 2019, 121, 1235–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, A.L.; Miles, E.A.; Lillycrop, K.A.; Napier, J.A.; Calder, P.C.; Burdge, G.C. Genetically modified plants are an alternative to oily fish for providing n-3 polyunsaturated fatty acids in the human diet: A summary of the findings of a Biotechnology and Biological Sciences Research Council funded project. Nutr. Bull. 2020, 46, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Nutriterra Omega3 Whitepaper. Available online: https://nutriterraomega3.com/research/ (accessed on 28 April 2023).
- West, A.L.; Miles, E.A.; Lillycrop, K.A.; Han, L.; Napier, J.A.; Calder, P.C.; Burdge, G.C. Dietary supplementation with seed oil from transgenic Camelina sativa induces similar increments in plasma and erythrocyte DHA and EPA to fish oil in healthy humans. Br. J. Nutr. 2020, 124, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.L.; Baisley, J.; Bier, A.; Vora, D.; Holub, B. Transgenic canola oil improved blood omega-3 profiles: A randomized, placebo-controlled trial in healthy adults. Front. Nutr. 2022, 9, 847114. [Google Scholar] [CrossRef]
- Friend of the Sea Certifies Nutriterra® for Sustainable Plant-Based Omega-3. Available online: https://friendofthesea.org/nutriterra-for-sustainable-plant-based-omega-3/ (accessed on 28 April 2023).
- Zhou, X.-R.; Li, J.; Wan, X.; Hua, W.; Singh, S. Harnessing biotechnology for the development of new seed lipid traits in Brassica. Plant Cell Physiol. 2019, 60, 1197–1204. [Google Scholar] [CrossRef]
- Global Omega EPA DHA Ingredients. Available online: https://www.marketresearch.com/Frost-Sullivan-v383/Global-Omega-EPA-DHA-Ingredients-10581694/ (accessed on 28 April 2023).
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.C.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; et al. Impacts of biodiversity loss on ocean ecosystem services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef] [Green Version]
Enzyme | Conversion | Comment | References |
---|---|---|---|
Micromonas persilla Δ6-desaturase | 18:3ω3 to 18:4ω3 (ALA to SDA) | Use of a marine microalgae Δ6-desaturase with a higher preference for ω3 substrate than ω6 substrate | [38] |
Pyraminomas cordata Δ6-elongase | 18:4ω3 to 20:4ω3 (SDA to ETA) | High conversion efficiency of SDA to ETA via Δ6-elongase | [39] |
Pavlova salina Δ5-desaturase | 20:4ω3 to 20:5ω3 (ETA to EPA) | Demonstrated the acyl-CoA desaturation ability | [39,40] |
Pyraminomas cordata Δ5-elongase | 20:5ω3 to 22:5ω3 (EPA to ω3 DPA) | Highly efficient Δ5-elongase targeted to maximise the elongation from EPA to ω3 DPA | [39] |
Pavlova salina Δ4-desaturase | 22:5ω3 to 22:6ω3 (ω3 DPA to DHA) | Demonstrated the acyl-CoA desaturation ability | [40] |
ω3 desaturases from various sources | conversion of ω6 PUFA and ω6 LC-PUFA to ω3 PUFA and ω3 LC-PUFA | Results in very low amounts of ω6 fatty acids and contributed to the high ω3/ω6 ratio | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.-R.; Yao, Z.J.; Benedicto, K.; Nichols, P.D.; Green, A.; Singh, S. New Sustainable Oil Seed Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids: A Journey from the Ocean to the Field. Sustainability 2023, 15, 11327. https://doi.org/10.3390/su151411327
Zhou X-R, Yao ZJ, Benedicto K, Nichols PD, Green A, Singh S. New Sustainable Oil Seed Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids: A Journey from the Ocean to the Field. Sustainability. 2023; 15(14):11327. https://doi.org/10.3390/su151411327
Chicago/Turabian StyleZhou, Xue-Rong, Zhuyun June Yao, Katrina Benedicto, Peter D. Nichols, Allan Green, and Surinder Singh. 2023. "New Sustainable Oil Seed Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids: A Journey from the Ocean to the Field" Sustainability 15, no. 14: 11327. https://doi.org/10.3390/su151411327
APA StyleZhou, X. -R., Yao, Z. J., Benedicto, K., Nichols, P. D., Green, A., & Singh, S. (2023). New Sustainable Oil Seed Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids: A Journey from the Ocean to the Field. Sustainability, 15(14), 11327. https://doi.org/10.3390/su151411327