Harvested Predator–Prey Models Considering Marine Reserve Areas: Systematic Literature Review
Abstract
:1. Introduction
2. Research Methodology
- Scopus database
- Search within: Title, abstract, and keywords;
- Document type: Article;
- Publication stage: Final;
- Source type: Journal;
- Language: English.
- Science Direct database
- Search by: Title, abstract, or author-specified keywords;
- Article type: Research articles.
- Dimensions database.
- Search in: Title and abstract;
- Publication type: Article.
- Web of Science database.
- Search in: All fields;
- Publication type: Article.
3. Results and Discussion
3.1. Results of Article Collection and Selection
3.2. Overview of Model from Each Article and Potential Model to Develop for Future Research
- ;
- There exists a constant, , which is the carrying capacity of the species in the harvesting area and marine reserve, respectively; hence, and ;
- .
3.3. Overview of the Methods of Each Model for Each Article and Methods That Can Be Used for Future Research
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mcfarlane, I.; Black, K.; Madonia, K.; Jensen, J.; Kollodge, R.; Daldin, J.; Jayaram, T.; Ratcliffe, L.; Trautwein, C.; Baker, D.; et al. UNFPA State of World Population: 8 Billion Lives, INFINITE Possibilities the Case for Rights and Choices; UNPFA: New York, NY, USA, 2023; Available online: https://www.unfpa.org/sites/default/files/swop23/SWOP2023-ENGLISH-230329-web.pdf (accessed on 20 July 2023).
- FAO; IFAD; UNICEF; WFP; WHO. Food Security and Nutrition in the World the State of Building Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2018; ISBN 9789251305713. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022; ISBN 978-92-5-136499-4. [Google Scholar]
- Ghosh, B.; Pal, D.; Kar, T.K.; Valverde, J.C. Biological Conservation through Marine Protected Areas in the Presence of Alternative Stable States. Math. Biosci. 2017, 286, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Kar, T.K.; Ghosh, B. Sustainability and Economic Consequences of Creating Marine Protected Areas in Multispecies Multiactivity Context. J. Theor. Biol. 2013, 318, 81–90. [Google Scholar] [CrossRef] [PubMed]
- FAO. In Brief to the State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136367-6. [Google Scholar]
- Supriatna, A.K.; Possingham, H.P. Optimal Harvesting for a Predator-Prey Metapopulation. Bull. Math. Biol. 1998, 60, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Supriatna, A.K.; Possingham, H.P. Harvesting a Two-Patch Predator-Prey Metapopulation. Nat. Resour. Model. 1999, 12, 481–498. [Google Scholar] [CrossRef]
- Supriatna, A.K.; Tuck, G.N.; Possingham, H. On the Exploitation of a Two-Patch Metapopulation with Delayed Juvenile Recruitment and Predation. J. Indones. Math. Soc. 2003, 8, 139–150. [Google Scholar]
- Ibrahim, M. Optimal Harvesting of a Predator-Prey System with Marine Reserve. Sci. Afr. 2021, 14, e01048. [Google Scholar] [CrossRef]
- Bellier, E.; Sæther, B.E.; Engen, S. Sustainable Strategies for Harvesting Predators and Prey in a Fluctuating Environment. Ecol. Modell. 2021, 440, 109350. [Google Scholar] [CrossRef]
- Křivan, V.; Jana, D. Effects of Animal Dispersal on Harvesting with Protected Areas. J. Theor. Biol. 2015, 364, 131–138. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, B. Harvesting Model for Fishery Resource with Reserve Area and Bird Predator. J. Mar. Biol. 2014, 2014, 218451. [Google Scholar] [CrossRef] [Green Version]
- Louartassi, Y.; El Alami, J.; Elalami, N. Harvesting Model for Fishery Resource with Reserve Area of Bird Predator and Modified Effort Function. Malaya J. Mat. 2017, 5, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Agnihotri, K.; Nayyer, S. Stability Analysis of a Predator (Bird)–Prey (Fish) Harvesting Model in the Reserved and Unreserved Area. Malaya J. Mat. 2018, 6, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Louartassi, Y.; Alla, A.; Hattaf, K.; Nabil, A. Dynamics of a Predator–Prey Model with Harvesting and Reserve Area for Prey in the Presence of Competition and Toxicity. J. Appl. Math. Comput. 2019, 59, 305–321. [Google Scholar] [CrossRef]
- Pei, Y.; Chen, M.; Liang, X.; Li, C. Model-Based on Fishery Management Systems with Selective Harvest Policies. Math. Comput. Simul. 2019, 156, 377–395. [Google Scholar] [CrossRef]
- Huang, L.; Cai, D.; Liu, W. Optimal Tax Policy of a One-Predator–Two-Prey System with a Marine Protected Area. Math. Methods Appl. Sci. 2021, 44, 6876–6895. [Google Scholar] [CrossRef]
- Huo, H.F.; Jiang, H.M.; Meng, X.Y. A Dynamic Model for Fishery Resource with Reserve Area and Taxation. J. Appl. Math. 2012, 2012, 794719. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, J.; Jie, Y.; Yan, X. Optimal Taxation Policy for a Prey-Predator Fishery Model with Reserves. Pac. J. Optim. 2015, 11, 137–155. [Google Scholar]
- Huang, L.; Cai, D.; Liu, W. Optimal Harvesting of an Abstract Population Model with Interval Biological Parameters. Adv. Differ. Equ. 2020, 2020, 285. [Google Scholar] [CrossRef]
- Meng, X.Y.; Wu, Y.Q.; Li, J. Bifurcation Analysis of a Singular Nutrient-Plankton-Fish Model with Taxation, Protected Zone and Multiple Delays. Numer. Algebra Control. Optim. 2020, 10, 391. [Google Scholar] [CrossRef] [Green Version]
- Khamis, S.A.; Tchuenche, J.M.; Lukka, M.; Heiliö, M. Dynamics of Fisheries with Prey Reserve and Harvesting. Int. J. Comput. Math. 2011, 88, 1776–1802. [Google Scholar] [CrossRef]
- Srinivas, M.N.; Srinivas, M.A.S.; Das, K.; Gazi, N.H. Prey Predator Fishery Model with Stage Structure in Two Patchy Marine Aquatic Environment. Appl. Math. 2011, 2, 1405–1416. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, K.; Chakraborty, M.; Kar, T.K. Bifurcation and Control of a Bioeconomic Model of a Prey-Predator System with a Time Delay. Nonlinear Anal. Hybrid Syst. 2011, 5, 613–625. [Google Scholar] [CrossRef]
- Chakraborty, K.; Kar, T.K. Economic Perspective of Marine Reserves in Fisheries: A Bioeconomic Model. Math. Biosci. 2012, 240, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, K.; Jana, S.; Kar, T.K. Effort Dynamics of a Delay-Induced Prey-Predator System with Reserve. Nonlinear Dyn. 2012, 70, 1805–1829. [Google Scholar] [CrossRef]
- Chakraborty, K.; Das, K.; Kar, T.K. An Ecological Perspective on Marine Reserves in Prey-Predator Dynamics. J. Biol. Phys. 2013, 39, 749–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Yuan, R.; Pei, Y. A Prey-Predator Model with Harvesting for Fishery Resource with Reserve Area. Appl. Math. Model. 2013, 37, 3048–3062. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Berardo, C.; Geritz, S.; Gyllenberg, M.; Raoul, G. Interactions between Different Predator–Prey States: A Method for the Derivation of the Functional and Numerical Response. J. Math. Biol. 2020, 80, 2431–2468. [Google Scholar] [CrossRef]
- Huo, H.F.; Wang, X.; Castillo-Chavez, C. Dynamics of a Stage-Structured Leslie-Gower Predator-Prey Model. Math. Probl. Eng. 2011, 2011, 149341. [Google Scholar] [CrossRef] [Green Version]
- Idels, L.V.; Wang, M. Harvesting Fisheries Management Strategies with Modified Effort Function. Int. J. Model. Identif. Control 2008, 3, 83. [Google Scholar] [CrossRef] [Green Version]
- Pauly, D.; Christensen, V.; Dalsgaard, J.; Froese, R.; Torres, F. Fishing down Marine Food Webs. Science 1998, 279, 860–863. [Google Scholar] [CrossRef]
- Kar, T.K.; Matsuda, H. A Bioeconomic Model of a Single-Species Fishery with a Marine Reserve. J. Environ. Manag. 2008, 86, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Zhang, C. Neimark–Sacker Bifurcation of a Discrete-Time Predator–Prey Model with Prey Refuge Effect. Mathematics 2023, 11, 1399. [Google Scholar] [CrossRef]
- Khaliq, A.; Ibrahim, T.F.; Alotaibi, A.M.; Shoaib, M.; El-moneam, M.A. Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka—Volterra Model. Mathematics 2022, 10, 4015. [Google Scholar] [CrossRef]
- Du, X.; Han, X.; Lei, C. Behavior Analysis of a Class of Discrete-Time Dynamical System with Capture Rate. Mathematics 2022, 10, 2410. [Google Scholar] [CrossRef]
- Saadeh, R.; Abbes, A.; Al-Husban, A.; Ouannas, A.; Grassi, G. The Fractional Discrete Predator–Prey Model: Chaos, Control and Synchronization. Fractal Fract. 2023, 7, 120. [Google Scholar] [CrossRef]
- Elsadany, A.A.; Matouk, A.E. Dynamical Behaviors of Fractional-Order Lotka–Volterra Predator–Prey Model and Its Discretization. J. Appl. Math. Comput. 2015, 49, 269–283. [Google Scholar] [CrossRef]
- Areshi, M.; Seadawy, A.R.; Ali, A.; Alharbi, A.F.; Aljohani, A.F. Analytical Solutions of the Predator–Prey Model with Fractional Derivative Order via Applications of Three Modified Mathematical Methods. Fractal Fract. 2023, 7, 128. [Google Scholar] [CrossRef]
- Bentout, S.; Djilali, S.; Kumar, S. Mathematical Analysis of the Influence of Prey Escaping from Prey Herd on Three Species Fractional Predator-Prey Interaction Model. Phys. A Stat. Mech. Its Appl. 2021, 572, 125840. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, J.; Yang, R. Stability Analysis and Hopf Bifurcation of a Delayed Diffusive Predator–Prey Model with a Strong Allee Effect on the Prey and the Effect of Fear on the Predator. Mathematics 2023, 11, 1996. [Google Scholar] [CrossRef]
- Wang, M. Diffusion-Induced Instability of the Periodic Solutions in a Reaction-Diffusion Predator-Prey Model with Dormancy of Predators. Mathematics 2023, 11, 1875. [Google Scholar] [CrossRef]
- Jin, D.; Yang, R. Hopf Bifurcation in a Predator-Prey Model with Memory Effect and Intra-Species Competition in Predator. J. Appl. Anal. Comput. 2023, 13, 1321–1335. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, B.; Djilali, S. Mathematical Analysis of a Fractional-Order Predator-Prey Model with Prey Social Behavior and Infection Developed in Predator Population. Chaos Solitons Fractals 2020, 138, 109960. [Google Scholar] [CrossRef]
- Shao, Y.; Kong, W. A Predator–Prey Model with Beddington–DeAngelis Functional Response and Multiple Delays in Deterministic and Stochastic Environments. Mathematics 2022, 10, 3378. [Google Scholar] [CrossRef]
- Beay, L.K.; Suryanto, A.; Darti, I. Trisilowati Hopf Bifurcation and Stability Analysis of the Rosenzweig-MacArthur Predator-Prey Model with Stage-Structure in Prey. Math. Biosci. Eng. 2020, 17, 4080–4097. [Google Scholar] [CrossRef]
- Ackleh, A.S.; Hossain, M.I.; Veprauskas, A.; Zhang, A. Persistence and Stability Analysis of Discrete-Time Predator–Prey Models: A Study of Population and Evolutionary Dynamics. J. Differ. Equ. Appl. 2019, 25, 1568–1603. [Google Scholar] [CrossRef]
- dos Reis, C.A.; Florentino, H.d.O.; Cólon, D.; Rosa, S.R.F.; Cantane, D.R. An Approach of the Exact Linearization Techniques to Analysis of Population Dynamics of the Mosquito Aedes Aegypti. Math. Biosci. 2018, 299, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Stabilization of Prey Predator Model via Feedback Control. In Applied Analysis in Biological and Physical Sciences; Springer: New Delhi, India, 2016; Volume 186. [Google Scholar]
- Krener, A.J. Approximate Linearization by State Feedback and Coordinate Change. Syst. Control Lett. 1984, 5, 181–185. [Google Scholar] [CrossRef]
- Krener, A.J. Feedback Linearization. In Mathematical Control Theory; Springer: New York, NY, USA, 1999; pp. 66–98. [Google Scholar]
- Cardoso, G.S.; Schnitman, L. Analysis of Exact Linearization and Aproximate Feedback Linearization Techniques. Math. Probl. Eng. 2011, 2011, 205939. [Google Scholar] [CrossRef]
- Singh, A.; Gakkhar, S. Stabilization of Modified Leslie-Gower Prey-Predator Model. Differ. Equ. Dyn. Syst. 2014, 22, 239–249. [Google Scholar] [CrossRef]
- Biswas, M.H.A.; Haque, M.M.; Mallick, U.K. Optimal Control Strategy for the Immunotherapeutic Treatment of HIV Infection with State Constraint. Optim. Control Appl. Methods 2019, 40, 807–818. [Google Scholar] [CrossRef]
- Supriatna, A.K. Maximum Sustainable Yield for Marine Metapopulation Governed by Coupled Generalised Logistic Equations. J. Sustain. Sci. Manag. 2012, 7, 201–206. [Google Scholar]
- Husniah, H.; Anggriani, N.; Supriatna, A.K. System Dynamics Approach in Managing Complex Biological Resources. ARPN J. Eng. Appl. Sci. 2015, 10, 1685–1690. [Google Scholar]
- Supriatna, A.K.; Husniah, H. Sustainable Harvesting Strategy for Natural Resources Having a Coupled Gompertz Production Function. In Proceedings of the 3rd International Congress on Interdisciplinary Behavior and Social Sciences, ICIBSoS, Bali, Indonesia, 1–2 November 2014; CRC Press: London, UK, 2015. [Google Scholar]
- Husniah, H.; Supriatna, A.K. Marine Biological Metapopulation with Coupled Logistic Growth Functions: The MSY and Quasi MSY. AIP Conf. Proc. 2014, 1587, 51–56. [Google Scholar]
- Husniah, H.; Supriatna, A.K. Optimal Number of Fishing Fleet for a Sustainable Fishery Industry. In Proceedings of the 2015 International Conference on Technology, Informatics, Management, Engineering and Environment, TIME-E 2015, Samosir Island, Indonesia, 7–9 September 2015; pp. 18–24. [Google Scholar]
Keywords | The Amount of Data from (Articles) | Total | |||
---|---|---|---|---|---|
Scopus | Science Direct | Dimensions | Web of Science | ||
(“harvest” OR “harvesting”) AND (“predator” OR “prey”) AND (“model” OR “system”) | 106 | 318 | 1248 | 1171 | 2843 |
Parameter(s) | Description |
---|---|
The rate of washout for nutrients. | |
The rate of constant input. | |
and | The rate of predation of phytoplankton on nutrients and zooplankton on phytoplankton. |
The decomposition rate of phytoplankton () and zooplankton () mortality. | |
The rate of natural mortality of phytoplankton ), zooplankton (), fish in the harvesting area and fish in the marine reserve (). | |
and | The conversion rate of predation on nutrients and phytoplankton, respectively. |
and | The predation rate of zooplankton by fish in the harvesting and marine reserve area, respectively. |
and | The conversion rate of fish predation within the harvesting and marine reserve area on zooplankton, respectively. |
and | The rate of fish migration from the marine reserve to the harvesting area and vice versa, respectively. |
The level of interspecific competition of phytoplankton. | |
The catchability of fish in the harvesting area. | |
The constant harvesting effort of the species within the harvesting area. |
(Authors, Year, Citation Number) | Implicit/ Explicit Marine Reserve Area | Compartments | Leslie–Gower (LG)/Lotka–Volterra (LV) | Algebraic Equation | Stage Structure | Time Delay | Harvesting Function | Functional Response | |
---|---|---|---|---|---|---|---|---|---|
Prey | Predator | ||||||||
(Khamis et al., 2011, [23]) | Explicit | LV | × | × | × | × | HT 1 I | ||
(Srinivas et al., 2011, [24]) | Explicit | LV | × | √ | × | HT I | |||
(Chakraborty et al., 2011, [25]) | Explicit | LV | √ | × | √ | × | HT II | ||
(Chakraborty and Kar, 2012, [26]) | Explicit | LG | × | × | × | × | HT II | ||
(Chakraborty et al., 2012, [27]) | Explicit | LV | × | × | √ | × | HT II | ||
(Huo et al., 2012, [19]) | Explicit | LV | × | × | × | × | × | ||
(Chakraborty et al., 2013, [28]) | Explicit | LG | × | × | × | × | HT II | ||
(Kar and Ghosh, 2013, [5]) | Explicit | LG | × | × | × | × | HT I | ||
(Lv et al., 2013, [29]) | Explicit | LV | × | × | × | HT II | |||
(Sharma and Gupta, 2014, [13]) | Explicit | LV | × | × | × | HT I | |||
(Křivan and Jana, 2015, [12]) | Explicit | LV | × | × | × | × | × | ||
(Zhang et al., 2015, [20]) | Explicit | LG | × | × | × | × | HT I | ||
(Louartassi et al., 2017, [14]) | Explicit | LV | × | × | × | HT I | |||
(Agnihotri and Nayyer, 2018, [15]) | Explicit | LV | × | × | × | HT I | |||
(Louartassi et al., 2019, [16]) | Explicit | LV | × | × | × | HT II | |||
(Pei et al., 2019, [17]) | Explicit | LV | × | × | × | HT II | |||
(Huang et al., 2020, [21]) | Explicit | LV | × | × | × | × | × | ||
(Meng et al., 2020, [22]) | Explicit | LV | × | × | √ | × | HT I | ||
(Huang et al., 2021, [18]) | Explicit | LV | × | × | × | × | HT II | ||
(Ibrahim, 2021, [10]) | Implicit | LV | × | × | × | × | × |
Parameter(s) | Description |
---|---|
Prey species in the harvesting area. | |
Prey species in the marine reserve area. | |
Predator species in the harvesting area. | |
Predator species in the marine reserve area. | |
Immature predator. | |
Mature predator. | |
Nutrients. | |
Phytoplankton. | |
Zooplankton. | |
Fish in the marine reserve area. | |
Fish in the harvesting area. | |
The catchability coefficients are , , , and , respectively. | |
Effort harvesting on , , , and , respectively. | |
Fraction of implicit marine reserve. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasibuan, A.; Supriatna, A.K.; Rusyaman, E.; Biswas, M.H.A. Harvested Predator–Prey Models Considering Marine Reserve Areas: Systematic Literature Review. Sustainability 2023, 15, 12291. https://doi.org/10.3390/su151612291
Hasibuan A, Supriatna AK, Rusyaman E, Biswas MHA. Harvested Predator–Prey Models Considering Marine Reserve Areas: Systematic Literature Review. Sustainability. 2023; 15(16):12291. https://doi.org/10.3390/su151612291
Chicago/Turabian StyleHasibuan, Arjun, Asep Kuswandi Supriatna, Endang Rusyaman, and Md. Haider Ali Biswas. 2023. "Harvested Predator–Prey Models Considering Marine Reserve Areas: Systematic Literature Review" Sustainability 15, no. 16: 12291. https://doi.org/10.3390/su151612291
APA StyleHasibuan, A., Supriatna, A. K., Rusyaman, E., & Biswas, M. H. A. (2023). Harvested Predator–Prey Models Considering Marine Reserve Areas: Systematic Literature Review. Sustainability, 15(16), 12291. https://doi.org/10.3390/su151612291