Consumer’s Awareness and Willingness to Pay for Aflatoxin-Free Sunflower Oil from Four Selected Regions in Tanzania
Abstract
:1. Introduction
1.1. Consumer Preference and WTP for Food Safety
1.2. Factors Influencing WTP
2. Methodology
2.1. Theoretical Framework
2.2. Research Design and Sampling Procedure
2.3. Demographic Factors
2.4. Introduction to Multiple Price List and Experimental Design
2.5. WTP and Factors Influencing WTP
3. Results and Discussion
3.1. Social Economic Characteristics
3.2. Consumers’ Awareness of Aflatoxin
3.3. Consumer’s Willingness to Pay
3.4. Factors Influencing Willingness to Pay
3.5. Conclusion and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wild, C.P.; Gong, Y.Y. Mycotoxins and human diseases: A largely ignored global health problem. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngoma, S.J. The Influence of Awareness, Knowledge and Practices of Communities on Childhood Dietary Exposure to Aflatoxins in Central Regions of Tanzania. Doctoral Dissertation, Sokoine University of Agriculture, Morogoro, Tanzania, 2019. [Google Scholar]
- Turner, P.C.; Loffredo, C.; Kafrawy, S.E.; Ezzat, S.; Eissa, S.A.; Daly, M.E.; Nada, O.; Abdel-Hamid, M. Pilot survey of aflatoxin–albumin adducts in sera from Egypt. Food Addit. Contam. 2008, 25, 583–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamm, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Duan, N.; Zhu, C.; Ma, X.; Wang, M.; Wang, Z. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using up conversion nanoparticles as multicolor labels. Biosens. Bioelectron. 2011, 30, 35–42. [Google Scholar] [CrossRef]
- Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Rogers, H.S.; Kieszak, S.; Njapau, H. Case-control study of an outbreak of acute aflatoxicosis in Kenya. Environ. Health Perspect. 2005, 113, 1779–1783. [Google Scholar] [CrossRef]
- CDC (Center for Disease Control and Prevention). Aflatoxin Poisoning Outbreak in Eastern and Central Provinces, Kenya, January–June 2004. MMWR Morb Mortal Wkly Rep. 2004, 53, 790–793. [Google Scholar]
- Strosnider, H.; Azziz-Baumgartner, E.; Banziger, M.; Bhat, R.V.; Breiman, R.; Brune, M.N.; DeCock, K.; Dilley, A.; Groopman, J.; Hell, K.; et al. Workgroup report: Public health strategies for reducing aflatoxin exposure in developing countries. Environ. Health Perspect. 2006, 114, 1898–1903. [Google Scholar] [CrossRef] [Green Version]
- Cotty, P.J.; Probst, C.; Jaime-Garcia, R. Etiology and management of aflatoxin contamination. In Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade; Leslie, J.F., Bandyopadhyay, R., Visconti, A., Eds.; CAB International: Oxfordshire, UK, 2008; pp. 287–299. [Google Scholar]
- Ncube, E.; Flett, B.C.; Waalwijk, C.; Viljoen, A. Presence of aflatoxins and aflatoxin—Producing Aspergillus spp. Associated with groundnut production in subsistence farming systems in South Africa. South Afr. J. Plants Soils 2010, 27, 74–89. [Google Scholar]
- Lanyasunya, T.P.; Wamae, L.W.; Musa, H.H.; Olowofeso, O.; Lokwaleput, I.K. The risk of mycotoxins contamination of dairy feed and milk on smallholder dairy farms in Kenya. Pak. J. Nutr. 2005, 4, 162–169. [Google Scholar]
- Hell, K.; Cardwell, K.F.; Poehling, H.M. Distribution of fungal species and aflatoxin contamination in stored maize in four climatic zones of Benin, WestAfrica. J. Phytopathol. 2003, 151, 690–698. [Google Scholar] [CrossRef]
- Hell, K.; Fandohan, P.; Bandyopadhyay, R.; Kiewnick, S.; Sikora, R.; Cotty, P.J. Pre-and post-harvest management of aflatoxin in maize: An African perspective. In Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade; CAB International: Oxfordshire, UK, 2008; pp. 219–229. [Google Scholar]
- Kaaya, A.N.; Warren, H.L.; Kyamanywa, S.; Kyamuhan, W. The effect of delayed harvest on moisture content, insect damage, moulds and aflatoxin contamination of maize in Mayuge district of Uganda. J. Sci. Food Agric. 2005, 85, 2595–2599. [Google Scholar] [CrossRef]
- Ngoma, S.; Tiisekwa, B.; Mwaseba, D.; Kimanya, M. Awareness of Aflatoxin Health Risks among Parents with Children Aged Between 6–23 Months in Central Tanzania. Int. J. Nutr. Food Sci. 2016, 5, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Sauer, C.M.; Reardon, T.; Tschirley, D.; Liverpool-Tasie, S.; Awokuse, T.; Alphonce, R.; Ndyetabula, D.; Waized, B. Consumption of processed food & food away from home in big cities, small towns, and rural areas of Tanzania. Agric. Econ. 2021, 52, 749–770. [Google Scholar]
- Thomas, M.; Haynes, P.; Archila-Godínez, J.C.; Nguyen, M.; Xu, W.; Feng, Y. Exploring Food Security Messaging in the Age of COVID-19: YouTube Video Content Analysis. Food Prot. J. 2021, 84, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Adyasha, M.; Kunlin, C.; Joseph, H.; Yulin, H.; Michael, M.; Valentina, S.; Miki, V.; Cynthia, V.; Derry, W.; Elaine, O. Report on the Detection of Unsafe Foods in Consumer Product Advisories, Oxford Academics. JAMIE Open 2019, 2, 330–338. [Google Scholar]
- The United Republic of Tanzania (URT), Ministry of Finance and Planning, Tanzania National Bureau of Statistics and President’s Office - Finance and Planning, Office of the Chief Government Statistician, Zanzibar. The 2022 Population and Housing Census: Administrative Units Population Distribution Report; Tanzania, December 2022. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.nbs.go.tz/nbs/takwimu/Census2022/Administrative_units_Population_Distribution_Report_Tanzania_volume1a.pdf (accessed on 1 June 2023).
- Lusk, J.L.; Briggeman, B.C. Food values. Am. J. Agric. Econ. 2009, 91, 184–196. [Google Scholar] [CrossRef]
- Grunert, K.G.; Ramus, K. Consumers’ willingness to buy food through the internet: A review of the literature and a model for future research. Br. Food J. 2005, 107, 381–403. [Google Scholar] [CrossRef]
- Owusu, V.; Anifori, M.O. Consumer willingness to pay a premium for organic fruit and vegetable in Ghana. Int. Food Agribus. Manag. Assoc. 2013, 16, 67–86. [Google Scholar] [CrossRef]
- Alphonce, R.; Alfnes, F. Eliciting consumer WTP for food characteristics in a developing context: Application of four valuation methods in an African market. J. Agric. Econ. 2017, 68, 123–142. [Google Scholar] [CrossRef]
- Wanyama, R.; Gödecke, T.; Jager, M.; Qaim, M. Poor consumers’ preferences for nutritionally enhanced foods. Br. Food J. 2019, 121, 755–770. [Google Scholar] [CrossRef]
- Narine, L.K.; Ganpat, W.; Seepersad, G. Demand for organic produce. Trinidadian consumers’ willingness to pay for organic tomatoes. J. Agribus. Dev. Emerg. Econ. 2015, 5, 76–91. [Google Scholar] [CrossRef]
- Ortega, D.L.; Tschirley, D.L. Demand for food safety in emerging and developing countries: A research agenda for Asia and Sub-Saharan Africa. J. Agribus. Dev. Emerg. Econ. 2017, 7, 21–34. [Google Scholar] [CrossRef]
- Falola, A.; Mukaila, R.; Oyeyinka, O.O. Consumers’ willingness to pay for organic beans in southwest Nigeria: Towards food safety. Mediterr. Agric. Sci. 2023, 36, 29–35. [Google Scholar] [CrossRef]
- Alphonce, R.; Alfnes, F.; Sharma, A. Consumer vs Citizens’ Willingness to Pay for Restaurant Food Safety. Food Policy Elsevier 2014, 49, 160–166. [Google Scholar] [CrossRef]
- Lagerkvist, C.J.; Okello, J.; Karanja, N. Consumers’ evaluation of volition, control, anticipated regret, and perceived food health risk. Evidence from a field experiment in a traditional vegetable market in Kenya. Food Control 2015, 47, 359–368. [Google Scholar] [CrossRef]
- Walker, T.S.; Alwang, J.; Alene, A.; Ndjuenga, J.; Labarta, R.; Yigezu, Y.; Diagne, A.; Andrade, R.; Andriatsitohaina, R.M.; de Groote, H.; et al. Varietal adoption, outcomes and impact. In Crop Improvement, Adoption, and Impact of Improved Varieties in Food Crops in Sub-Saharan Africa; Walker, T.S., Alwang, J., Eds.; CABI: Wallingford, UL, 2015; pp. 388–405. Available online: http://www.cabi.org/cabebooks/ebook/20153367555 (accessed on 14 September 2022).
- Kanter, C.; Messer, K.D.; Kaiser, H.M. Does production labeling stigmatize conventional milk? Am. J. Agric. Econ. 2009, 91, 1097–1109. [Google Scholar] [CrossRef]
- Alphonce, R.; Alfnes, F. Consumer Willingness to Pay for Food Safety in Tanzania: An Incentive-Aligned Conjoint Analysis. Int. J. Consum. Stud. 2012, 26, 394–400. [Google Scholar] [CrossRef]
- Walker, S.; Davies, B. Afaltoxins: Finding Solutions for Improved Food Safety. In Farmers Perceptions of Aflatoxins: Implications for Intervention in Kenya; International Food Policy Research Institute: Washington, DC, USA, 2013. [Google Scholar]
- De Groote, H.; Narrod, C.; Kimenju, S.C.; Bett, C.; Scott, R.P.; Tiongco, M.M.; Gitonga, Z.M. Measuring rural consumers’ willingness to pay for quality labels using experimental auctions: The case of aflatoxin-free maize in Kenya. Agric. Econ. 2016, 47, 33–45. [Google Scholar] [CrossRef]
- James, B.; Adda, C.; Cardwell, K.; Annang, D.M.; Hell, K.; Korie, S.; Edorh, M.; Gbeassor, F.; Nagatey, K.; Houenou, G. Public information campaign on aflatoxin contamination of maize kernels in market stores in Benin, Ghana and Togo. Taylor and Francis, London. Int. J. Food Contam. 2004, 24, 1283–1291. [Google Scholar] [CrossRef]
- Marechera, G.; Ndwiga, J. Estimation of potential adoption of Aflasafe among smallholder maize farmers in Southeast Kenya. Afr. J. Agric. Resour. Econ. 2014, 10, 72–85. [Google Scholar]
- Beheshti, H.R.; Asadi, M. Aflatoxins in sunflower and safflower seeds from Iran. Food Addit. Contam. 2013, 6, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Mmongoyo, J.A.; Wu, F.; Linz, J.E.; Nair, M.G.; Mugula, J.K.; Tempelman, R.J. Aflatoxin levels in sunflower seeds and meals collected from micro- and small-scale sunflower oil processors in Tanzania. PLoS ONE 2017, 12, e0175801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayo, E.M.; Matemu, A.; Laswai, G.H.; Kimanya, M.E. Socioeconomic characteristics influencing level of awareness of aflatoxin contamination of feeds among livestock farmers in Meru district of Tanzania. Scientifica 2018, 2018, 3485967. [Google Scholar] [CrossRef]
- Boni, S.B.; Beed, F.; Kimanya, M.E.; Koyano, E.; Mponda, O.; Mamiro, D.; Mahuku, G. Aflatoxin contamination in Tanzania: Quantification of the problem in maize and groundnut from rural households. World J. Mycotoxins 2021, 14, 553–564. [Google Scholar] [CrossRef]
- Kamala, A.; Shirima, C.; Jani, B.; Sillo, H.; Rusibamayila, N.; Saeger, S.; Kimanya, M.G.; Yun, Y.; Simba, A. 2016 Tanzania acute aflatoxicosis outbreak. World Mycotoxin J. 2018, 11, 311–320. [Google Scholar] [CrossRef]
- Kimario, M. Drying Efficiency and Aflatoxin Contamination of Domestic Agricultural Products Stored in Chamwino, Dodoma. A Thesis for Awarding the Masters Degree in Food Quality and Safety Assurance. Master’s Thesis, The Sokoine University of Agriculture, Morogoro, Tanzania, 2021; 98p. [Google Scholar]
- Kimanya, M.E.; Routledge, M.N.; Mpolya, E.; Ezekiel, C.N.; Shirima, C.P.; Gong, Y.Y. Estimating the risk of aflatoxin-induced liver cancer in Tanzania based on biomarker data. PLoS ONE 2021, 16, e0247281. [Google Scholar] [CrossRef] [PubMed]
- Massomo, S. Aspergillus flavus and aflatoxin contamination in the maize value chain and what needs to be done in Tanzania. Afr. Sci. 2020, 10, e00606. [Google Scholar] [CrossRef]
- Mabruki, F.; Makundi, I.; Temba, B. Occurence of Aspergillus flavus and Aspergillus parasiticus in Stored Maize in Morogoro Municipality and Makambako District, Tanzania. Arch. Ecotoxicol. 2022, 4, 59–66. [Google Scholar] [CrossRef]
- Nyangi, C.J.; Sasamalo, M.M.; Runyogote, J. Quantitative risk assessment for aflatoxin and fumonisin from maize consumption in Northern Tanzania. Int. J. Innov. Res. Dev. 2018, 7, 1128540. [Google Scholar]
- Sasamalo, M.M.; Authority, P.; Mugula, J.K. Aflatoxins contamination of maize at harvest and during storage in Dodoma, Tanzania. Int. J. Innov. Res. Dev. 2018, 7, 6. [Google Scholar]
- Eom, S.; Kim, E. A survey of decision support system applications (1995–2001). J. Oper. Res. Soc. 2006, 57, 1264–1278. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, K.J. A new approach to consumer theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- De Groote, H.; Christine, K.C.; Keith, T.; Nilupa, S.G. Combination of experimental auction with a modified home use test to assess rural consumer acceptance of quality protein maize, a biofortified crop. Food Qual. Prefer. 2014, 38, 1–3, 40p. [Google Scholar] [CrossRef] [Green Version]
- Katengesya, T.P. Aflatoxin and Fumonisin Contamination in Homemade and Commercial Cereal Based Complementary Foods with Formula in Morogoro Municipality, Tanzania. Doctoral Dissertation, Sokoine University of Agriculture, Morogoro, Tanzania, 2018. [Google Scholar]
- Kahneman, D.; Knetsch, J.L.; Thaler, R.H. Experimental tests of the endowment effect and the Coase theorem. J. Political Econ. 1990, 98, 1325–1348. [Google Scholar] [CrossRef] [Green Version]
- Alfnes, F.; Rickertsen, K. Non-market valuation: Experimental methods. Oxf. Handb. Econ. Food Consum. Policy 2011, 215, 242. [Google Scholar]
- Greene, W.H. The econometric approach to efficiency analysis. Meas. Product. Effic. Product. Growth 2008, 1, 92–250. [Google Scholar]
- Darko, F.A.; Quagrainie, K.K.; Chenyambuga, S. Consumer preferences for farmed tilapia in Tanzania: A choice experiment analysis. J. Appl. Aquac. 2016, 28, 131–143. [Google Scholar] [CrossRef]
- National Bureau of Statistics (NBS). Population and Housing Census, Basic National Demographic and Socio-Economic Profile, Dar es Salaam, Tanzania. 2017. Available online: https://www.nbs.go.tz/index.php/en/ (accessed on 8 December 2022).
- IITA. Tackling Killer Aflatoxins in African Food Crops; Wren Media: Ibadan, Nigeria, 2012; 6p. [Google Scholar]
- Kajuna, F.F.; Mwang’onde, B.J.; Holst, C.; Ngowi, B.; Sukums, F.; Noll, J.; Winkler, A.S.; Ngowi, H.A. Porcine Cysticercosis Seroprevalence and Potential Transmission Risk Factors in Iringa District Council, Tanzania. Res. Sq. 2021. Reprint. [Google Scholar]
- Gong, Y.Y.; Cardwell, K.; Hounsa, A.; Egal, S.; Turner, P.C.; Hall, A.J.; Wild, C.P. Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: Cross sectional study. BMJ 2002, 325, 20–21. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Fathelrahman, E.; Ullah, R.U. Factors affecting consumers’ willingness to pay for certified organic food products in United Arab Emirates. J. Food Distrib. Res. 2015, 46, 37–45. [Google Scholar]
- Bernard, A.B.; Jensen, J.B.; Redding, S.J.; Schott, P.K. The empirics of firm heterogeneity and international trade. Annu. Rev. Econ. 2012, 4, 283–313. [Google Scholar] [CrossRef] [Green Version]
- Jolly, P.; Jiang, Y.; Ellis, W.; Awuah, R.; Nnedu, O.; Phillips, T. Determinants of aflatoxin levels in Ghanaians: Sociodemographic factors, knowledge of aflatoxin and food handling and consumption practices. Int. J. Hyg. Environ. Health 2006, 209, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Rozan, A.; Stenger, A.; Willinger, M. Willingness to pay for food safety: An experimental survey of quality certification on bidding behavior. Eur. J. Agric. Econ. 2004, 31, 409–425. [Google Scholar] [CrossRef]
- Nkamleu, G.B. Modeling Farmer Decisions in GIFS in Sub-Saharan Africa: A Multinomial Logit Analysis in Cameroon. In Advances in ISFM in Sub-Saharan Africa: Challenges and Opportunitie; Batiano, A., Waswa, J., Kihara, J., Kimetu, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 887–904. [Google Scholar]
POOLED | DODOMA | MOROGORO | IRINGA | DAR ES SALAM | |
---|---|---|---|---|---|
Gender | Frequency (%) | Frequency (%) | Frequency (%) | Frequency (%) | Frequency (%) |
Female | 275 (57.3) | 72 (60) | 73 (60.8) | 74 (59.2) | 67 (56) |
Male | 205 (42.7) | 48 (40) | 47 (38.2) | 51 (40.8) | 53 (44) |
Education | |||||
0–7 | 157 (32.7) | 47 (39.2) | 28 (23.3) | 48 (38.4) | 38 (31.9) |
8–11 | 119 (24.8) | 38 (31.7) | 27 (22.5) | 27 (21.6) | 32 (26.1) |
12–15 | 85 (17.7) | 18 (15.6) | 55 (45.8) | 25 (20) | 25 (21) |
16 and above | 119 (24.7) | 17 (14.2) | 10 (8.3) | 25 (20) | 25 (21) |
Age | |||||
20–30 | 214 (44.6) | 67 (55.8) | 58 (48.3) | 36 (28.8) | 49 (41.2) |
31–40 | 139 (28.9) | 40 (33.3) | 52 (43.3) | 41 (32.8) | 32 (26.9) |
41–50 | 74 (15.4) | 8 (6.7) | 10 (8.3) | 20 (16) | 27 (22.7) |
51 and above | 53 (11.1) | 5 (4.2) | 9 (7.1) | 27 (21) | 12 (9.3) |
Household size | |||||
1–3 | 230 (47.9) | 55 (45.8) | 56 (46.6) | 71 (56.8) | 53 (44.5) |
4–6 | 214 (44.7) | 60 (50) | 51 (42.5) | 50 (40) | 56 (44.) |
7 years and above | 35 (7.4) | 5 (4.2) | 13 (10.9) | 4 (3.2) | 11 (9.5) |
Monthly income | |||||
15,000–100,000 | 13 (2.7) | 0 (0) | 3 (2.5) | 8 (6.4) | 3 (1.8) |
110,000–500,000 | 240 (50) | 74 (61.7) | 39 (32.5) | 68 (54.4) | 67 (57.2) |
510,000 and more | 225 (46.9) | 46 (38.3) | 78 (65) | 49 (39.2) | 48 (40) |
Variable (n = 480) | Frequency | Percent |
---|---|---|
Awareness (grouped) | Pooled (n = 480) | |
Not aware | 268 | 55.83 |
Aware | 212 | 44.17 |
Dodoma (n = 120) | ||
Aware | 34 | 28.33 |
Not aware | 86 | 71.67 |
Morogoro (n = 120) | ||
Aware | 66 | 55 |
Not aware | 54 | 45 |
Iringa (n = 120) | ||
Aware | 69 | 57.50 |
Not aware | 51 | 43.50 |
Dar es Salaam (n = 120) | ||
Aware | 44 | 36.67 |
Not aware | 76 | 63.33 |
Region | Product | WTP | SD | Minimum | Maximum |
---|---|---|---|---|---|
Pooled | Aflatoxin-free | 5831.10 | 661.02 | 3000 | 8000 |
Status quo | 5411.66 | 664.59 | 2800 | 7400 | |
Morogoro | Aflatoxin-free | 6027.12 | 668.16 | 4000 | 8000 |
Status quo | 5255.93 | 632.39 | 4000 | 7400 | |
Dodoma | Aflatoxin-free | 5790.76 | 492.14 | 4100 | 7000 |
Status quo | 5450 | 539.69 | 4000 | 6000 | |
Iringa | Aflatoxin-free | 5583.05 | 679.78 | 4000 | 6600 |
Status quo | 5374.58 | 903.29 | 3600 | 10000 | |
Dar es Salaam | Aflatoxin-free | 5862.71 | 508.19 | 4000 | 7000 |
Status quo | 5374.58 | 903.29 | 3600 | 10,000 |
Variables | Pooled | Dodoma | Iringa | Morogoro | Dar es Salaam |
---|---|---|---|---|---|
Coefficient (S.e) | Coefficient (S.e) | Coefficient (S.e) | Coefficient (S.e) | Coefficient (S.e) | |
1 = aflatoxin-free; 0 = otherwise | 266.23 ** (107.44) | 828.77 *** (222.30) | 357.35 ** (164.65) | 1043.16 *** (277.13) | 846.15 *** (198.36) |
Constant | 6.88 *** (0.03) | 6.96 *** (0.07) | 6.73 ** (0.07) | 6.82 *** (0.08) | 7.02 *** (0.09) |
Variable | Observation | Mean | Standard Error | Standard Deviation | |
---|---|---|---|---|---|
Pooled | Status quo | 308 | 5500 | 34.45 | 604.54 |
Aflatoxin-free | 308 | 5881.169 | 35.19 | 617.68 | |
Combines | 616 | 5690.584 | 25.78 | 639.75 | |
Diff | −381.17 | 49.25 | 49.25 | ||
Morogoro | Status quo | 120 | 5574.79 | 51.72 | 564.22 |
Aflatoxin-free | 120 | 6021.85 | 48.38 | 527.73 | |
Combines | 240 | 5798.32 | 38.20 | 589.35 | |
Diff | −447.05 | 56.82 | 619.84 | ||
Dodoma | Status quo | 120 | 5106.67 | 55.90 | 612.44 |
Aflatoxin-free | 120 | 5426.67 | 56.11 | 614.63 | |
Combines | 240 | 5266.67 | 40.85 | 632.89 | |
Diff | −447 | 70.82 | |||
Iringa | Status quo | 120 | 5419.36 | 92.91 | 517.31 |
Aflatoxin-free | 120 | 5825.80 | 94.01 | 523.42 | |
Combines | 240 | 5622.58 | 70.53 | 555.27 | |
Diff | −406.45 | 132.17 | |||
Dar es Salaam | Status quo | 120 | 5217.14 | 90.77 | 630.12 |
Variables | Pooled | Morogoro | Dodoma | Iringa | Dar es Salaam |
---|---|---|---|---|---|
Coefficient (S.e) | Coefficient (S.e) | Coefficient (S.e) | Coefficient (S.e) | Coefficient (S.e) | |
Education (number of years) | 164.25 *** (8.99) | 224.37 *** (16.60) | 147.13 *** (16.75) | 195.57 *** (19.11) | 148.72 *** (28.65) |
Age (Years) | 60.49 *** (3.81) | 67.60 *** (9.69) | 97.86 *** (9.62) | 54.02 *** (5.13) | 97.77 *** (11.34) |
Hhsz (Number of people) | 47.09 (27.15) | 34.84 (53.82) | 108.77 (58.83) | 150.13 (55.62) | −87.97 (72.59) |
Income (TZS) | 27.02 ** (0.018) | 19.01 *** (0.0084) | 8.41 ** (0.0403) | 6.48 *** (0.0023) | 8.48 *** (0.029) |
Gender (1 = female 0 = otherwise) | 592.44 *** (101.54) | 298.48 (213.42) | 341.21 ** (162.12) | 686.83 *** (194.66) | 1024.19 *** (239.15) |
Awareness (1 = yes 0 = otherwise) | 270.66 *** (107.00) | 614.64 *** (229.98) | 1068.54 *** (173.51) | 740.16 *** (223.62) | 1025.53 *** (254.23) |
Food status 1 = aflatoxin-free 0 = otherwise | 266.23 ** (107.44) | 828.77 *** (222.30) | 357.35 ** (164.65) | 1043.16 *** (277.13) | 846.15 *** (198.36) |
Constant | 6.88 *** (0.03) | 6.96 *** (0.07) | 6.73 ** (0.07) | 6.82 *** (0.08) | 7.02 *** (0.09) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhenga, A.S.; Alphonce, R. Consumer’s Awareness and Willingness to Pay for Aflatoxin-Free Sunflower Oil from Four Selected Regions in Tanzania. Sustainability 2023, 15, 12309. https://doi.org/10.3390/su151612309
Muhenga AS, Alphonce R. Consumer’s Awareness and Willingness to Pay for Aflatoxin-Free Sunflower Oil from Four Selected Regions in Tanzania. Sustainability. 2023; 15(16):12309. https://doi.org/10.3390/su151612309
Chicago/Turabian StyleMuhenga, Ashura Sadick, and Roselyne Alphonce. 2023. "Consumer’s Awareness and Willingness to Pay for Aflatoxin-Free Sunflower Oil from Four Selected Regions in Tanzania" Sustainability 15, no. 16: 12309. https://doi.org/10.3390/su151612309
APA StyleMuhenga, A. S., & Alphonce, R. (2023). Consumer’s Awareness and Willingness to Pay for Aflatoxin-Free Sunflower Oil from Four Selected Regions in Tanzania. Sustainability, 15(16), 12309. https://doi.org/10.3390/su151612309