The Impact of the Digital Economy on Industrial Eco-Efficiency in the Yangtze River Delta (YRD) Urban Agglomeration
Abstract
:1. Introduction
2. Literature Review
2.1. The Connotation and Evaluation of the Digital Economy
2.2. The Impact of the Digital Economy on Economic Development
2.3. Research on Industrial Eco-Efficiency
2.4. The Impact of the Digital Economy on Industrial Production
3. Theoretical Analysis and Hypotheses
4. Data and Methodology
4.1. Methodology
4.1.1. Spatio-Temporal Grey Incidence Model
4.1.2. Panel Tobit Model
4.2. Data Sources
5. Analysis of Results
5.1. The Spatio-Temporal Incidence Pattern between IEE, PTE, SE, and DE
5.2. The Direct Impact of DE on IEE
5.3. The Indirect Impact of DE on IEE
5.4. Robustness Test
5.5. Spatial Heterogeneity Analysis
5.6. Endogeneity Test
6. Conclusions and Discussion
6.1. Conclusions
6.2. Discussion
7. Suggestions and Limitations
7.1. Suggestions
7.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.P.; Fang, C.L.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Zhao, X.; Shang, Y.; Song, M. Industrial structure distortion and urban ecological efficiency from the perspective of green entrepreneurial ecosystems. Socio-Econ. Plan. Sci. 2020, 72, 100757. [Google Scholar] [CrossRef]
- Yu, Y.; Hou, J.; Jahanger, A.; Cao, X.; Balsalobre-Lorente, D.; Radulescu, M.; Jiang, T. Decomposition analysis of China’s chemical sector energy-related CO2 emissions: From an extended SDA approach perspective. Energy Environ. 2023, 0958305X231151682. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, M.; Yuan, Q.; Fan, X.; Teng, Y.; Fu, J.; Ma, Q.; Wang, Q.; Zuo, J. Transitioning China to a circular economy through remanufacturing: A comprehensive review of the management institutions and policy system. Resour. Conserv. Recycl. 2020, 161, 104920. [Google Scholar] [CrossRef]
- Liu, K.; Qiao, Y.R.; Zhou, Q. Analysis of China’s industrial green development efficiency and driving factors: Research based on MGWR. Int. J. Environ. Res. Public Health 2021, 18, 3960. [Google Scholar] [CrossRef]
- Zhou, L.L.; Li, W.Q. The impact of green M&A listed companies’ size on the rural ecological environment—Digitalization as moderating effect. Sustainability 2023, 15, 6068. [Google Scholar]
- Liu, J.; Liu, L.; Qian, Y. The effect of artificial intelligence on carbon intensity: Evidence from China’s industrial sector. Socio-Econ. Plan. Sci. 2022, 83, 11002. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J. Research on the Measurement of China’s Digital Economy Development and the Characteristics. J. Quant. Technol. 2021, 38, 26–42. [Google Scholar]
- Guo, B.N.; Wang, Y.; Zhang, H. Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities. Econ. Model. 2023, 120, 106194. [Google Scholar] [CrossRef]
- Hao, X.; Li, Y.; Ren, S. The role of digitalization on green economic growth: Does industrial structure optimization and green innovation matter? J. Environ. Manag. 2023, 325, 116504. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Rao, J.; Wan, L.Y. The digital economy, enterprise digital transformation, and enterprise innovation. Manag. Decis. Econ. 2022, 43, 2875–2886. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, J. Input Digitization of Manufacturing Industry and Upgrading in GVC: Reexamination based on the Difference of Input Source. J. Financ. Econ. 2021, 47, 93–107. [Google Scholar]
- Miao, Z.L. Digital economy value chain: Concept, model structure, and mechanism. Appl. Econ. 2021, 53, 4342–4357. [Google Scholar] [CrossRef]
- Bukht, R.; Heeks, R. Defining, conceptualizing and measuring the digital economy. Dev. Inform. 2017, 69. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.R.; Xie, T.; Wang, Z.W. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Wang, W.; Jia, J.J.; Liu, Y.S. Profound Changes Unseen in Centuries: An Overview of China; Beijing Normal University Press (Group) Co., LTD: Beijing, China, 2022. [Google Scholar]
- Moulton, B.R. GDP and the Digital Economy: Keeping Up with the Changes. Understanding the Digital Economy Data; MIT Press: Cambridge, MA, USA, 2000; pp. 35–48. [Google Scholar]
- Li, K.; Kim, D.J.; Lang, K.R. How should we understand the digital economy in Asia? Critical assessment and research agenda. Electron. Commer. Res. Appl. 2020, 44, 101004. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and energy: How does internet development affect China′s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital Economy, Entrepreneurship, and High-quality Economic Development: Empirical Evidence from Urban China. Front. Econ. China 2022, 17, 393–426. [Google Scholar]
- Wang, L.H.; Shao, J. Digital economy, entrepreneurship and energy efficiency. Energy 2023, 269, 126801. [Google Scholar] [CrossRef]
- Dong, F.; Hu, M.Y.; Gao, Y.J. How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef]
- Krotov, V. The Internet of Things and new business opportunities. Bus. Horiz. 2017, 60, 831–841. [Google Scholar] [CrossRef]
- Zaki, M. Digital transformation: Harnessing digital technologies for the next generation of services. J. Serv. Mark. 2019, 33, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Pan, Y.; Magazzino, C. The fourth industrial revolution and environmental efficiency: The role of fintech industry. J. Clean. Prod. 2022, 381, 135196. [Google Scholar] [CrossRef]
- Liu, K.; Feng, Z.R.; Zhang, Q.H. Examining the role of digitalization and gig economy in achieving a low carbon society: An empirical study across nations. Front. Environ. Sci. 2023, 11, 1197708. [Google Scholar] [CrossRef]
- Noussan, M.; Tagliapietra, S. The effect of digitalization in the energy consumption of passenger transport: An analysis of future scenarios for Europe. J. Clean. Prod. 2022, 258, 120926. [Google Scholar] [CrossRef]
- Sui, D.Z.; Rejeski, D.W. Environmental impacts of the emerging digital economy: The E-for-environment E-commerce? Environ. Manag. 2002, 29, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Babu, B.R.; Parande, A.K.; Basha, C.A. Electrical and electronic waste: A global environmental problem. Waste Manag. Res. 2007, 25, 307–318. [Google Scholar]
- Kuosmanen, T. Measurement and analysis of eco-efficiency: An economist’s perspective. J. Ind. Ecol. 2005, 9, 15–18. [Google Scholar] [CrossRef]
- Dahlstrom, K.; Ekins, P. Eco-efficiency trends in the UK steel and aluminum industries: Differences between resource efficiency and resource productivity. J. Ind. Ecol. 2005, 9, 171–188. [Google Scholar] [CrossRef]
- Toma, P.; Miglietta, P.P.; Zurlini, G.; Valente, D.; Petrosillo, I.A. Non-parametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecol. Indic. 2017, 83, 132–143. [Google Scholar] [CrossRef]
- Lee, T.; Yeo, G.T.; Thai, V.V. Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach. Transp. Policy 2014, 33, 82–88. [Google Scholar] [CrossRef]
- Zhou, C.S.; Shi, C.Y.; Wang, S.J. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Indic. 2017, 86, 67–80. [Google Scholar] [CrossRef]
- Yu, Y.T.; Huang, J.H.; Zhang, N. Industrial eco-efficiency, regional disparity, and spatial convergence of China’s regions. J. Clean. Prod. 2018, 204, 872–887. [Google Scholar] [CrossRef]
- Ren, Y.F.; Fang, C.L.; Li, G.D. Spatiotemporal characteristics and influential factors of eco-efficiency in Chinese prefecture-level cities: A spatial panel econometric analysis. J. Clean. Prod. 2020, 260, 120787. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Li, B.; Zhang, W. Dynamics, differences, influencing factors of eco-efficiency in China: A spatiotemporal perspective analysis. J. Environ. Manag. 2020, 264, 110442. [Google Scholar] [CrossRef]
- Ranta, V.; Aarikka-Stenroos, L.; Visnen, J.M. Digital technologies catalyzing business model innovation for circular economy—Multiple case study. Resour. Conserv. Recycl. 2021, 164, 105155. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, S.Q.; Wan, X.Y.; Yao, Y. Study on the effect of digital economy on high-quality economic development in China. PLoS ONE 2021, 16, e0257365. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Liu, Y.B.; Chen, P.F. Assessing the impact of digital economy on green development efficiency in the Yangtze River Economic Belt. Energy Econ. 2022, 112, 106127. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.H.; Huang, Z.Y. How big data drives green economic development: Evidence from China. Front. Environ. Sci. 2022, 10, 1055162. [Google Scholar] [CrossRef]
- Che, S.; Wang, J. Digital economy development and haze pollution: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 73210–73226. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Wang, Z.; Wang, Z. Has industrial upgrading improved air pollution? —Evidence from China’s digital economy. Sustainability 2022, 14, 8967. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L. Resource dependence and air pollution in China: Do the digital economy, income inequality, and industrial upgrading matter? Environ. Dev. Sustain. 2022, 1–14. [Google Scholar] [CrossRef]
- Lei, X.Y.; Ma, Y.F.; Ke, J.K. The non-linear impact of the digital economy on carbon emissions based on a mediated effects model. Sustainability 2023, 15, 7438. [Google Scholar] [CrossRef]
- Li, Z.G.; Wang, J. The dynamic impact of digital economy on carbon emission reduction: Evidence city-level empirical data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, H.; Chen, J. An empirical analysis of the impact of digital economy on manufacturing green and low-carbon transformation under the dual-carbon background in China. Int. J. Environ. Res. Public Health 2022, 19, 13192. [Google Scholar] [CrossRef]
- Wu, L.; Wan, X.W.; Jahanger, A. Does the digital economy reduce air pollution in China? A perspective from industrial agglomeration. Energy Rep. 2023, 9, 3625–3641. [Google Scholar] [CrossRef]
- Wan, Q.; Shi, D. Smarter and cleaner: The digital economy and environmental pollution. China World Econ. 2022, 30, 59–85. [Google Scholar] [CrossRef]
- Dong, R.; Zhou, X. Analysis of the nonlinear and spatial spillover effects of the digital economy on carbon emissions in the Yellow River Basin. Sustainability 2023, 15, 5253. [Google Scholar] [CrossRef]
- Shen, G.B.; Yuan, Z.Y. The Effect of Enterprise Internetization on the Innovation and Export of Chinese enterprises. Econ. Res. J. 2020, 55, 33–48. [Google Scholar]
- Wei, L.I.; Hou, Y.Q. Research on the Impact of China’s Digital Economic on Urban Green Development. J. Quant. Technol. 2022, 39, 60–79. [Google Scholar]
- Luo, J. The Spatial Effect of Urban Digital Economy on the Green Development of Manufacturing Industry. Econ. Geogr. 2022, 42, 13–22. [Google Scholar]
- Chang, X. Digital Economy, Industrial Structure Upgrade and Common Prosperity. J. Tech. Econ. Manag. 2022, 12, 10–16. [Google Scholar]
- Pil, S.H.; Duk, H.L. Evolution of the linkage structure of ICT industry and its role in the economic system: The case of Korea. Inf. Technol. Dev. 2019, 25, 424–454. [Google Scholar]
- Guo, M.C. Research on the Relationship between ICT Industry and the Optimization and Upgrading of Industrial Structure- Analysis based on gray correlation entropy modeling. Inq. Into Econ. Issues 2019, 4, 131–140. [Google Scholar]
- Zuo, P.F.; Jiang, Q.P. Internet Development, Urbanization and the Upgrading of China’s Industrial Structure. J. Quant. Technol. 2020, 37, 71–91. [Google Scholar]
- Sun, J.; Dang, Y.G.; Zhu, X.Y. A grey spatiotemporal incidence model with application to factors causing air pollution. Sci. Total Environ. 2021, 759, 143576. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Zheng, X.; Sun, D.Q. The influencing effects of industrial eco-efficiency on carbon emissions in the Yangtze River Delta. Energies 2021, 14, 8169. [Google Scholar] [CrossRef]
- Li, Z.J.; Zhang, W.J.; Sarwar, S. The spatio-temporal interactive effects between ecological urbanization and industrial ecologization in the Yangtze River Delta region. Sustain. Dev. 2023, 1–18. [Google Scholar] [CrossRef]
- Zha, J.P.; Dai, J.Q.; Xu, H. Assessing efficiency and determinants of tourist attractions based on a two-subprocess perspective: A case of Chengdu, southwestern China. J. Destin. Mark. Manag. 2021, 19, 100542. [Google Scholar]
- Luigi, A.; Mohsen, B.; Concetto, P.V. Knowledge spillovers and technical efficiency for cleaner production: An economic analysis from agriculture innovation. J. Clean. Prod. 2021, 320, 128830. [Google Scholar]
- Luo, R.; Zhou, N.X. Dynamic evolution, spatial differences, and driving factors of China’s provincial digital economy. Sustainability 2022, 14, 9376. [Google Scholar] [CrossRef]
- Zhao, D.F.; Li, C.B.; Wang, Q. Comprehensive evaluation of national electric power development based on cloud model and entropy method and TOPSIS: A case study in 11 countries. J. Clean. Prod. 2020, 277, 123190. [Google Scholar] [CrossRef]
- Ye, C.; Zhu, J.; Li, S.; Yang, S. Assessment and analysis of regional economic collaborative development within an urban agglomeration: Yangtze River Delta as a case study. Habitat Int. 2019, 83, 20–29. [Google Scholar] [CrossRef]
Primary Index | Second Index | Specific Indicator | Weight |
---|---|---|---|
Digital economy development index | Digital economic infrastructure | Internet broadband users per 10,000 people | 0.0505 |
Mobile phone users per 10,000 people | 0.0384 | ||
Digital economic industrial development | The proportion of employees in the information transmission, computer services, and software industry to the total number of employees | 0.1473 | |
Per capita telcom revenue | 0.4100 | ||
Digital economic innovation | Number of patent applications for seven key digital economy industries | 0.0366 | |
Digital inclusive finance | Digital inclusive finance index | 0.3172 |
Variable | LLC Test | IPS Test | ADF-Fisher | |||
---|---|---|---|---|---|---|
Z Value | p Value | Z Value | p Value | Z Value | p Value | |
IEE | −11.922 | 0.000 | −6.646 | 0.000 | −6.695 | 0.000 |
DE | −11.065 | 0.000 | −3.802 | 0.000 | −27.204 | 0.000 |
URB | −5.850 | 0.000 | −44.022 | 0.000 | −3.618 | 0.000 |
PGDP | −4.280 | 0.000 | −19.694 | 0.000 | −4.038 | 0.000 |
PD | −13.276 | 0.000 | −8.386 | 0.000 | −12.773 | 0.000 |
FDI | −14.604 | 0.000 | −13.713 | 0.000 | −8.372 | 0.000 |
Panel Model | Panel Model | Tobit Model | |
---|---|---|---|
DE | 1.390 *** | 0.663 *** | 0.271 * |
(6.58) | (4.23) | (1.95) | |
URB | −0.425 *** | −0.199 * | |
(−4.07) | (−1.87) | ||
PD | 0.069 *** | 0.037 | |
(3.11) | (1.58) | ||
PGDP | 0.228 *** | 0.122 *** | |
(5.86) | (3.17) | ||
FDI | 0.062 *** | 0.080 *** | |
(6.36) | (8.29) | ||
N | 410 | 410 | 410 |
R2 | 0.2382 | 0.420 |
GI | IEE | UIS | IEE | |
---|---|---|---|---|
DE | 1.496 *** | 0.413 ** | 0.379 *** | 0.571 * |
(5.76) | (2.53) | (6.28) | (1.75) | |
GI | 0.511 *** | |||
(7.63) | ||||
UIS | 1.864 *** | |||
(2.59) | ||||
Control variables | Yes | Yes | Yes | Yes |
N | 410 | 410 | 410 | 410 |
R2 | 0.6882 | 0.4428 | 0.6892 | 0.4354 |
Exclude Municipalities and Provincial Capitals | PTE | SE | |
---|---|---|---|
DE | 0.885 ** | 0.311 * | 0.552 ** |
(2.24) | (1.77) | (2.00) | |
Control variables | Yes | Yes | Yes |
N | 370 | 410 | 410 |
R2 | 0.377 | 0.217 | 0.757 |
Variables | Core Cities | Non-Core Cities |
---|---|---|
DE | 0.881 *** | −0.896 |
(4.45) | (−1.35) | |
Control variables | Yes | Yes |
N | 270 | 140 |
R2 | 0.372 | 0.141 |
First Stage DE | Second Stage IEE | GMM | |
---|---|---|---|
DE | 2.486 *** | 0.210 *** | |
(4.93) | (3.26) | ||
Control variables | Yes | Yes | Yes |
Instrumental variable | 0.256 *** | ||
(7.43) | |||
F value | 57.55 | ||
AR1 | 0.001 | ||
AR2 | 0.857 | ||
Hansen test | 0.947 | ||
N | 410 | 410 | 369 |
R2 | 0.659 | 0.243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Sun, B.; Li, Z.; Sarwar, S. The Impact of the Digital Economy on Industrial Eco-Efficiency in the Yangtze River Delta (YRD) Urban Agglomeration. Sustainability 2023, 15, 12328. https://doi.org/10.3390/su151612328
Zhang W, Sun B, Li Z, Sarwar S. The Impact of the Digital Economy on Industrial Eco-Efficiency in the Yangtze River Delta (YRD) Urban Agglomeration. Sustainability. 2023; 15(16):12328. https://doi.org/10.3390/su151612328
Chicago/Turabian StyleZhang, Wenjing, Bin Sun, Zaijun Li, and Suleman Sarwar. 2023. "The Impact of the Digital Economy on Industrial Eco-Efficiency in the Yangtze River Delta (YRD) Urban Agglomeration" Sustainability 15, no. 16: 12328. https://doi.org/10.3390/su151612328
APA StyleZhang, W., Sun, B., Li, Z., & Sarwar, S. (2023). The Impact of the Digital Economy on Industrial Eco-Efficiency in the Yangtze River Delta (YRD) Urban Agglomeration. Sustainability, 15(16), 12328. https://doi.org/10.3390/su151612328