Development of Computational Thinking through STEM Activities for the Promotion of Gender Equality
Abstract
:1. Introduction
2. Literature Review
2.1. Benefits of Computational Thinking
2.2. Computational Thinking in Higher Education
2.3. STEM Activities and Gender
2.4. Computational Thinking and Gender
2.5. Evaluation of Computational Thinking
3. Methodology
4. Results
4.1. Distribution of Students in STEM Careers
4.2. Execution of STEM Activities
4.3. Strengthening Computational Thinking Skills
4.3.1. Abstraction
4.3.2. Decomposition
4.3.3. Generalization
4.3.4. Algorithmic Thinking
4.3.5. Evaluation
4.4. Assessment of Computational Thinking Skills by Gender
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNESCO. Descifrar el Código: La Educación de las Niñas y las Mujeres en Ciencias, Tecnología, Ingeniería y Matemáticas (STEM); UNESCO: Paris, France, 2019. [Google Scholar]
- Burbaitė, R.; Drąsutė, V.; Štuikys, V. Integración of Computational Thinking Skills in STEM-Driven Computer Science Education. In Proceedings of the 2018 IEEE Global Engineering Education Conference (EDUCON), Santa Cruz de Tenerife, Spain, 17–20 April 2018; pp. 1824–1832. [Google Scholar] [CrossRef]
- Contreras, K. Mujeres STEM; Documentos de trabajo, nº especial (2ª época); Fundación Carolina: Madrid, Spain, 2023; Volume 2023. [Google Scholar]
- UNICEF Perú. 200 Adolescentes Mujeres de Lima Norte Reciben Laptops para Convertirse en Programadoras Web. 2021. Available online: https://www.unicef.org/peru/comunicados-prensa/200-adolescentes-mujeres-lima-norte-laptops-programadora-web-stem-ciencia-tecnologia-tic (accessed on 16 May 2022).
- Programa Nacional de Becas y Crédito Educativo. Memoria Institucional 2012–2015 Programa Nacional de Becas y Crédito Educativo Ministerio de Educación, Lima. 2016. Available online: https://cdn.www.gob.pe/ (accessed on 16 May 2020).
- Ministerio de Educación. Resultados de la Evaluación Censal de Estudiantes—ECE 2018; Ministerio de Educación: Lima, Peru, 2018. [Google Scholar]
- Torres-Torres, Y.-D.; Roman-Gonzalez, M.; Perez-Gonzalez, J.-C. Unplugged Teaching Activities to Promote Computational Thinking Skills in Primary and Adults from a Gender Perspective. Rev. Iberoam. Tecnol. Aprendiz. 2020, 15, 225–232. [Google Scholar] [CrossRef]
- Juškevičienė, A.; Stupurienė, G.; Jevsikova, T. Computational thinking development through physical computing activities in STEAM education. Comput. Appl. Eng. Educ. 2021, 29, 175–190. [Google Scholar] [CrossRef]
- Paucar-Curasma, R.; Villalba-Condori, K.O.; Mamani-Calcina, J.; Rondon, D.; Berrios-Espezúa, M.G.; Acra-Despradel, C. Use of Technological Resources for the Development of Computational Thinking Following the Steps of Solving Problems in Engineering Students Recently Entering College. Educ. Sci. 2023, 13, 279. [Google Scholar] [CrossRef]
- Dong, Y.; Catete, V.; Jocius, R.; Lytle, N.; Barnes, T.; Albert, J.; Joshi, D.; Robinson, R.; Andrews, A. Prada: A practical model for integrating computational thinking in K-12 education. In Proceedings of the SIGCSE 2019—50th ACM Technical Symposium on Computer Science Education, Minneapolis, MN, USA, 27 February–2 March 2019; pp. 906–912. [Google Scholar] [CrossRef]
- Trilles, S.; Granell, C. Advancing preuniversity students’ computational thinking skills through an educational project based on tangible elements and virtual block-based programming. Comput. Appl. Eng. Educ. 2020, 28, 1490–1502. [Google Scholar] [CrossRef]
- Abichandani, P.; Sivakumar, V.; Lobo, D.; Iaboni, C.; Shekhar, P. Internet-of-Things Curriculum, Pedagogy, and Assessment for STEM Education: A Review of Literature. IEEE Access 2022, 10, 38351–38369. [Google Scholar] [CrossRef]
- Beng, J.T.; Dewi, F.I.R.; Amanto, A.F.; Fiscarina, C.; Chandra, D.; Lusiana, F.; Wangi, V.H.; Tiatri, S. STEM Learning Model Design Using IoT for Primary School Students. In Proceedings of the 3rd Tarumanagara International Conference on the Applications of Social Sciences and Humanities (TICASH 2021), Online, 25 August 2021; Volume 655, pp. 1117–1122. [Google Scholar] [CrossRef]
- Gul, S.; Asif, M.; Ahmad, S.; Yasir, M.; Majid, M.; Malik, M.S.A.; Arshad, S. A Survey on role of Internet of Things in education. IJCSNS Int. J. Comput. Sci. Netw. Secur. 2017, 17, 159–165. [Google Scholar]
- Oppenheimer, A. ¡Crear o Morir!: La Esperanza de Latinoamerica y las Cinco Claves de la Innovaction, 1st ed.; Penguin Random House: Santiago, Chile, 2014. [Google Scholar]
- Yadav, A.; Hong, H.; Stephenson, C. Computational Thinking for All: Pedagogical Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms. TechTrends 2016, 60, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Bocconi, S.; Chioccariello, A.; Dettori, G.; Ferrari, A.; Engelhardt, K.; Kampylis, P.; Punie, Y. Developing Computational Thinking: Approaches and Orientations in K-12 Education; Association for the Advancement of Computing in Education (AACE): Waynesville, NC, USA, 2016. [Google Scholar]
- Vegas, E.; Fowler, B. What Do We Know about the Expansion of K-12 Computer Science Education? Brookings Institution: Washington, DC, USA, 2020; Available online: https://www.brookings.edu/research/what-do-we-know-about-the-expansion-of-k-12-computer-science-education/?fbclid=IwAR2uLNpVqVNbMXySZSbhTKa3JxRW1XTNOp64H3oXNiRhDdA0X855FJ0son4 (accessed on 7 November 2021).
- Puhlmann, C. Desenvolvimento do Pensamento Computacional Através de Atividades Desplugadas na Educação Básica. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2017. [Google Scholar]
- Rojas, A. Escenarios de Aprendizaje Personalizados a Partir de la Evaluación del Pensamiento Computacional para el Aprendizaje de Competencias de Programación Mediante un Entorno b-Learning y Gamificación. 2019. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=255914 (accessed on 11 May 2022).
- Marais, C.; Bradshaw, K. Problem-solving ability of first year CS students: A case study and intervention. In Proceedings of the 44th Conference of the Southern African Computers Lecturers’ Association, Johannesburg, South Africa, 1–3 July 2015; pp. 154–160. [Google Scholar]
- Terreni, L. Enseñanza del pensamiento computacional en la educación superior mediada por tecnología. Docentes Conectados 2021, 4, 19–26. [Google Scholar]
- Bolívar, M.I.S. Lenguajes y Entornos de Programación para Fortalecer El Desarrollo de Competencias Concernientes al Pensamiento Computacional. Hamut’Ay 2020, 7, 86. [Google Scholar] [CrossRef]
- Laura-Ochoa, L. Teaching the introduction to programming using playful tools [Enseñanza de la Introducción a la Programación utilizando Herramientas Lúdicas]. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, Lima, Peru, 18–20 July 2018; pp. 19–21. [Google Scholar]
- Urquizo, G.; Vidal, E.; Castro, E. Incorporación de Pensamiento Computacional en Ingenierías como soporte a la competencia de Desarrollo de Problemas: Jugando con Lightbot. Rev. Ibérica Sist. Tecnol. Informação, E42 2021, 2, 199–208. [Google Scholar]
- Bordignon, F.R.A.; Iglesias, A.A. Introducción al Pensamiento Computacional; Universidad Pedagógica Nacional y Educar S. E.: Buenos Aires, Argentina, 2018. [Google Scholar]
- Rojas-López, A.; García-Peñalvo, F.J. Increase of confidence for the solution of problems in pre-university students through computational thinking, 2018. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 24–26 October 2018; pp. 31–35. [Google Scholar] [CrossRef]
- Selby, C.C. Relationships: Computational thinking, Pedagogy of programming, and bloom’s taxonomy. In Proceedings of the Workshop in Primary and Secondary Computing Education, London, UK, 9–11 November 2015; pp. 80–87. [Google Scholar] [CrossRef] [Green Version]
- Deming, D.J.; Noray, K.L. STEM Careers and Technological Change; NBER Working Paper Series; National Bureau of Economic Research: Cambridge, MA, USA, September 2018; Volume 25065. [Google Scholar]
- Cadaret, M.C.; Hartung, P.J.; Subich, L.M.; Weigold, I.K. Stereotype threat as a barrier to women entering engineering careers. J. Vocat. Behav. 2017, 99, 40–51. [Google Scholar] [CrossRef]
- Wang, M.-T.; Degol, J.L. Gender Gap in Science, Technology, Engineering, and Mathematics (STEM): Current Knowledge, Implications for Practice, Policy, and Future Directions. Educ. Psychol. Rev. 2017, 29, 119–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, M.; Cimpian, A.; Leslie, S.-J. Women are underrepresented in fields where success is believed to require brilliance. Front. Psychol. 2015, 6, 235. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Gates, A.J.; Sinatra, R.; Barabási, A.-L. Historical comparison of gender inequality in scientific careers across countries and disciplines, Proc. Natl. Acad. Sci. USA. 2020, 117, 4609–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eccles, J.S.; Wang, M.-T. What motivates females and males to pursue careers in mathematics and science? Int. J. Behav. Dev. 2016, 40, 100–106. [Google Scholar] [CrossRef]
- Ortiz-Martínez, G.; Vázquez-Villegas, P.; Ruiz-Cantisani, M.I.; Delgado-Fabián, M.; Conejo-Márquez, D.A.; Membrillo-Hernández, J. Analysis of the retention of women in higher education STEM programs. Humanit. Soc. Sci. Commun. 2023, 10, 101. [Google Scholar] [CrossRef]
- Witteman, H.O.; Hendricks, M.; Straus, S.; Tannenbaum, C. Are gender gaps due to evaluations of the applicant or the science? A natural experiment at a national funding agency. Lancet 2019, 393, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Casey, E.; Jocz, J.; Peterson, K.A.; Pfeif, D.; Soden, C. Motivating youth to learn STEM through a gender inclusive digital forensic science program. Smart Learn. Environ. 2023, 10, 2. [Google Scholar] [CrossRef]
- Master, A.; Cheryan, S.; Moscatelli, A.; Meltzoff, A.N. Programming experience promotes higher STEM motivation among first-grade girls. J. Exp. Child Psychol. 2017, 160, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Makarova, E.; Aeschlimann, B.; Herzog, W. The Gender Gap in STEM Fields: The Impact of the Gender Stereotype of Math and Science on Secondary Students’ Career Aspirations. Front. Educ. 2019, 4, 60. [Google Scholar] [CrossRef]
- Demİr-Kaymak, Z.; Duman, İ.; Randler, C.; Horzum, M.B. The Effect of Gender, Grade, Time and Chronotype on Computational Thinking: Longitudinal Study. Inform. Educ. 2022, 21, 465–478. [Google Scholar] [CrossRef]
- Master, A.; Meltzoff, A.N.; Cheryan, S. Gender stereotypes about interests start early and cause gender disparities in computer science and engineering. Proc. Natl. Acad. Sci. USA. 2021, 118, e2100030118. [Google Scholar] [CrossRef] [PubMed]
- Angeli, C.; Valanides, N. Developing young children’s computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Comput. Hum. Behav. 2020, 105, 105954. [Google Scholar] [CrossRef]
- Román-González, M.; Pérez-González, J.-C.; Moreno-León, J.; Robles, G. Extending the nomological network of computational thinking with non-cognitive factors. Comput. Hum. Behav. 2018, 80, 441–459. [Google Scholar] [CrossRef]
- Niousha, R.; Saito, D.; Washizaki, H.; Fukazawa, Y. Gender Characteristics and Computational Thinking in Scratch. In Proceedings of the SIGCSE 2023—54th ACM Technical Symposium on Computer Science Education, Toronto, ON, Canada, 15–18 March 2023; Volume 2, p. 1344. [Google Scholar] [CrossRef]
- Papavlasopoulou, S.; Sharma, K.; Giannakos, M.N. Giannakos, Coding activities for children: Coupling eye-tracking with qualitative data to investigate gender differences. Comput. Hum. Behav. 2020, 105, 105939. [Google Scholar] [CrossRef]
- Anistyasari, Y.; Nurlaela, L.; Sumbawati, M.S. Analysis of computational thinking skill predictors on information technology education students. In International Conference on Education, Science and Technology; Redwhite Press: West Sumatra, Indonesia, 2019; Volume 2, pp. 109–114. [Google Scholar]
- Hsu, T.-C.; Chang, C.; Wong, L.-H.; Aw, G.P. Learning Performance of Different Genders’ Computational Thinking. Sustainability 2022, 14, 16514. [Google Scholar] [CrossRef]
- GArdito, G.; Czerkawski, B.; Scollins, L. Learning Computational Thinking Together: Effects of Gender Differences in Collaborative Middle School Robotics Program. TechTrends 2020, 64, 373–387. [Google Scholar] [CrossRef]
- Buffum, P.S.; Frankosky, M.; Boyer, K.E.; Wiebe, E.N.; Mott, B.W.; Lester, J.C. Collaboration and gender equity in game-based learning for middle school computer science. Comput. Sci. Eng. 2016, 18, 18–28. [Google Scholar] [CrossRef]
- Jiang, S.; Wong, G.K.W. Exploring age and gender differences of computational thinkers in primary school: A developmental perspective. J. Comput. Assist. Learn. 2022, 38, 60–75. [Google Scholar] [CrossRef]
- Román-Gonzalez, M. Test de Pensamiento Computacional: Principios de Diseño, Validación de Contenido y Análisis de Ítems, n.o September. 2015, pp. 1–19. Available online: https://www.researchgate.net/publication/288341872%0ATest (accessed on 10 April 2022).
- Zhong, B.; Wang, Q.; Chen, J.; Li, Y. An exploration of three-dimensional integrated assessment for computational thinking. J. Educ. Comput. Res. 2016, 53, 562–590. [Google Scholar] [CrossRef] [Green Version]
- Brennan, K.; Resnick, M. New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association, Vancouver, BC, Canada, 13–17 April 2012; pp. 1–25. [Google Scholar]
- Sáez-López, J.-M.; Román-González, M.; Vázquez-Cano, E. Visual programming languages integrated across the curriculum in elementary school: A two year case study using “scratch” in five schools. Comput. Educ. 2016, 97, 129–141. [Google Scholar] [CrossRef]
- Moreno-León, J.; Robles, G. Dr. Scratch: A web tool to automatically evaluate Scratch projects. In Proceedings of the Workshop in Primary and Secondary Computing Education, London, UK, 9–11 November 2015; pp. 132–133. [Google Scholar] [CrossRef]
- Gutierrez, F.J.; Simmonds, J.; Hitschfeld, N.; Casanova, C.; Sotomayor, C.; Peña-Araya, V. Assessing software development skills among K-6 learners in a project-based workshop with scratch. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering Education and Training, Gothenburg, Sweden, 27 May 2018–3 June 2018; pp. 98–107. [Google Scholar] [CrossRef]
- Von Wangenheim, C.G.; Alves, N.C.; Rodrigues, P.E.; Hauck, J.C. Teaching Computing in a Multidisciplinary Way in Social Studies Classes in School – A Case Study. Int. J. Comput. Sci. Educ. Sch. 2017, 1, 3. [Google Scholar] [CrossRef]
- Román-González, M.; Pérez-González, J.-C.; Jiménez-Fernández, C. Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Comput. Hum. Behav. 2017, 72, 678–691. [Google Scholar] [CrossRef]
- Román-González, M.; Pérez-González, J.-C.; Moreno-León, J.; Robles, G. Can computational talent be detected? Predictive validity of the Computational Thinking Test. Int. J. Child-Comput. Interact. 2018, 18, 47–58. [Google Scholar] [CrossRef]
- Viale, P.; Deco, C. Introduciendo conocimientos sobre el Pensamiento Computacional en los primeros años de las carreras de ciencia, tecnología, ingeniería y matemáticas. Energeia 2019, 16, 73–78. [Google Scholar]
- Villalba-Condori, K.O.; Cuba-Sayco, S.E.C.; Chávez, E.P.G.; Deco, C.; Bender, C. Approaches of learning and computational thinking in students that get into the computer sciences career. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 24–26 October 2018; pp. 36–40. [Google Scholar] [CrossRef] [Green Version]
- Román-González, M. Pensamiento computacional: Un constructo que llega a la madurez. Blog Aula Magna 2.0 2022, 1–12. Available online: https://cuedespyd.hypotheses.org/11109 (accessed on 11 May 2022).
- Zapata-Caceres, M.; Martin-Barroso, E.; Roman-Gonzalez, M. Computational thinking test for beginners: Design and content validation. In Proceedings of the 2020 IEEE Global Engineering Education Conference (EDUCON), Porto, Portugal, 27–30 April 2020; pp. 1905–1914. [Google Scholar] [CrossRef]
- Martínez, M.L.; Lévêque, O.; Benítez, I.; Hardebolle, C.; Zufferey, J.D. Assessing Computational Thinking: Development and Validation of the Algorithmic Thinking Test for Adults. J. Educ. Comput. Res. 2022, 60, 1436–1463. [Google Scholar] [CrossRef]
- Sondakh, D.E.; Osman, K.; Zainudin, S. Holistic assessment of computational thinking for undergraduate: Reliability and convergent validity. In Proceedings of the 11th International Conference on Education Technology and Computers, Amsterdam, The Netherlands, 28–31 October 2019; pp. 241–245. [Google Scholar] [CrossRef]
- Sondakh, D.E.; Osman, K.; Zainudin, S. A Pilot Study of an Instrument to Assess Undergraduates’ Computational thinking Proficiency. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 263–273. [Google Scholar] [CrossRef]
- Sondakh, S.D.E.; Pungus, S.R.; Putra, E.Y. Indonesian Undergraduate Students’ Perception of Their Computational Thinking Ability. CogITo Smart J. 2022, 8, 68–80. [Google Scholar] [CrossRef]
- Lugo-Armenta, J.; Pino-Fan, L. Inferential Reasoning Levels for t-Student Statistical. Bolema—Math. Educ. Bull. 2021, 35, 1776–1802. [Google Scholar] [CrossRef]
- Rodríguez-Abitia, G.; Ramírez-Montoya, M.S.; López-Caudana, E.O.; Romero-Rodriguez, J.M. Factores para el desarrollo del pensamiento computacional en estudiantes de pregrado. Campus Virtuales 2021, 10, 153–164. Available online: http://uajournals.com/ojs/index.php/campusvirtuales/article/view/893 (accessed on 25 February 2022).
- Rodríguez-Abitia, G.; Ramírez-Montoya, M.S.; López-Caudana, E.O.; Romero-Rodríguez, J.M. Promoción del Pensamiento Computacional en estudiantes pre-universitarios: ¿cómo se emocionan? Actas Las Jorn. Sobre Enseñanza Univ. La Informática 2021, 6, 219–226. [Google Scholar]
- Ching, Y.-H.; Hsu, Y.-C.; Baldwin, S. Developing Computational Thinking with Educational Technologies for Young Learners. TechTrends 2018, 62, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Kafai, Y.B.; Burke, Q. Connected Code: Why Children Need to Learn Programming; MIT Press: Cambridge, UK, 2014. [Google Scholar]
- Sáinz, M.; Meneses, J. Brecha y sesgos de género en la elección de estudios y profesiones en la educación secundaria. Panor. Soc. 2018, 27, 23–31. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=6501311 (accessed on 18 March 2022).
- Espino, E.; González, C. Estudio sobre Pensamiento Computacional y Género. Int. J. Soc. Sci. Humanit. SOCIOTAM 2016, XXIII, 1–229. [Google Scholar]
Population/Sample | Men | Women | Total |
---|---|---|---|
Industrial Engineering 2020 | 21 | 15 | 36 |
Industrial Engineering 2021 | 24 | 13 | 37 |
Systems Engineering 2022 | 40 | 09 | 49 |
TOTAL | 85 | 37 | 122 |
Computational Thinking Skills | Number of Items | Marcos Román-González Test Items |
---|---|---|
Abstraction | 16 | 1–3, 7, 11–15, 21–23, 25–28 |
Decomposition | 16 | 4–7, 10–13, 15, 21–23, 25–28 |
Generalization | 19 | 4–6, 8–12, 14, 15, 17, 18, 20, 22, 23, 25–28 |
Algorithmic design | 28 | 1–28 |
Evaluation | 14 | 3, 7, 10, 11, 15, 16, 19, 20, 23–28 |
Professional Careers | Percentage of Students Enrolled | |
---|---|---|
Men | Women | |
Industrial engineering: 2020 | 58% | 42% |
Industrial engineering: 2021 | 65% | 35% |
System engineering: 2022 | 82% | 18% |
Computational Thinking Skills | Sample Mean | F-Test p Value Variance | t-Student | p Value Mean | |
---|---|---|---|---|---|
Men | Women | ||||
Abstraction | 8.7143 | 8.8667 | 0.2121 | 0.018 | 0.9861 |
Decomposition | 8.4762 | 8.9333 | 0.2407 | −0.468 | 0.6430 |
Generalization | 9.9048 | 10.1333 | 0.3736 | −0.185 | 0.8546 |
Algorithmic design | 15.6190 | 15.7333 | 0.1282 | 0.160 | 0.8741 |
Evaluation | 7.1905 | 7.4000 | 0.2170 | −0.220 | 0.8275 |
Computational Thinking Skills | Sample Mean | F-Test p Value Variance | t-Student | p Value Mean | |
---|---|---|---|---|---|
Men | Women | ||||
Abstraction | 8.4583 | 8.0000 | 0.6518 | −0.425 | 0.6738 |
Decomposition | 8.0000 | 7.8462 | 0.5434 | −0.139 | 0.8903 |
Generalization | 9.7500 | 9.2308 | 0.6303 | −0.389 | 0.6994 |
Algorithmic design | 14.5000 | 14.3077 | 0.6935 | −0.105 | 0.9172 * |
Evaluation | 6.5833 | 7.0000 | 0.5486 | 0.428 | 0.6713 |
Computational Thinking Skills | Sample Mean | F-Test p Value Variance | t-Student | p Value Mean | |
---|---|---|---|---|---|
Men | Women | ||||
Abstraction | 9.6000 | 11.0000 | 0.1342 | 1.311 | 0.1961 |
Decomposition | 9.5500 | 10.5556 | 0.0738 | 0.996 | 0.3245 |
Generalization | 12.0000 | 12.5556 | 0.0289 * | 0.346 | 0.7375 |
Algorithmic design | 18.5250 | 19.3333 | 0.0516 | 0.462 | 0.6460 |
Evaluation | 8.7250 | 9.4444 | 0.5606 | 0.762 | 0.4501 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paucar-Curasma, R.; Cerna-Ruiz, L.P.; Acra-Despradel, C.; Villalba-Condori, K.O.; Massa-Palacios, L.A.; Olivera-Chura, A.; Esteban-Robladillo, I. Development of Computational Thinking through STEM Activities for the Promotion of Gender Equality. Sustainability 2023, 15, 12335. https://doi.org/10.3390/su151612335
Paucar-Curasma R, Cerna-Ruiz LP, Acra-Despradel C, Villalba-Condori KO, Massa-Palacios LA, Olivera-Chura A, Esteban-Robladillo I. Development of Computational Thinking through STEM Activities for the Promotion of Gender Equality. Sustainability. 2023; 15(16):12335. https://doi.org/10.3390/su151612335
Chicago/Turabian StylePaucar-Curasma, Ronald, Liszeth Paola Cerna-Ruiz, Claudia Acra-Despradel, Klinge Orlando Villalba-Condori, Luis Alberto Massa-Palacios, Andrés Olivera-Chura, and Isabel Esteban-Robladillo. 2023. "Development of Computational Thinking through STEM Activities for the Promotion of Gender Equality" Sustainability 15, no. 16: 12335. https://doi.org/10.3390/su151612335
APA StylePaucar-Curasma, R., Cerna-Ruiz, L. P., Acra-Despradel, C., Villalba-Condori, K. O., Massa-Palacios, L. A., Olivera-Chura, A., & Esteban-Robladillo, I. (2023). Development of Computational Thinking through STEM Activities for the Promotion of Gender Equality. Sustainability, 15(16), 12335. https://doi.org/10.3390/su151612335