Digital Ability and Livelihood Diversification in Rural China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
2.3. Descriptive Statistics
3. Results and Discussion
3.1. Results of Livelihood Diversification
3.2. Results of Digital Ability
3.3. Effect of Digital Ability on Livelihood Diversification
3.4. Further Discussion
3.4.1. Robustness Check
3.4.2. Relationship between Digital Ability, Livelihood Diversification, and Income
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellis, F. Household strategies and rural livelihood diversification. J. Dev. Stud. 1998, 35, 1–38. [Google Scholar] [CrossRef]
- Shah, A.A.; Gong, Z.; Khan, N.A.; Khan, I.; Ali, M.; Naqvi, S.A.A. Livelihood diversification in managing catastrophic risks: Evidence from flood-disaster regions of Khyber Pakhtunkhwa Province of Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 40844–40857. [Google Scholar] [CrossRef]
- Mohammed, K.; Batung, E.; Kansanga, M.; Nyantakyi-Frimpong, H.; Luginaah, I. Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana. Clim. Chang. 2021, 164, 53. [Google Scholar] [CrossRef]
- Adzawla, W.; Baumüller, H. Effects of livelihood diversification on gendered climate vulnerability in Northern Ghana. Environ. Dev. Sustain. 2021, 23, 923–946. [Google Scholar] [CrossRef]
- Manlosa, A.O.; Hanspach, J.; Schultner, J.; Dorresteijn, I.; Fischer, J. Livelihood strategies, capital assets, and food security in rural Southwest Ethiopia. Food Secur. 2019, 11, 167–181. [Google Scholar] [CrossRef]
- Kassegn, A.; Endris, E. Review on livelihood diversification and food security situations in Ethiopia. Cogent. Food Agric. 2021, 7, 1882135. [Google Scholar] [CrossRef]
- Martin, S.M.; Lorenzen, K. Livelihood diversification in rural Laos. World Dev. 2016, 83, 231–243. [Google Scholar] [CrossRef]
- Piras, S.; Botnarenco, S.; Masotti, M.; Vittuari, M. Post-Soviet smallholders between entrepreneurial farming and diversification. Livelihood pathways in rural Moldova. J. Rural Stud. 2021, 82, 315–327. [Google Scholar] [CrossRef]
- Asfaw, S.; Scognamillo, A.; Caprera, G.D.; Sitko, N.; Ignaciuk, A. Heterogeneous impact of livelihood diversification on household welfare: Cross-country evidence from Sub-Saharan Africa. World Dev. 2019, 117, 278–295. [Google Scholar] [CrossRef]
- Paudel Khatiwada, S.; Deng, W.; Paudel, B.; Khatiwada, J.R.; Zhang, J.; Su, Y. Household livelihood strategies and implication for poverty reduction in rural areas of central Nepal. Sustainability 2017, 9, 612. [Google Scholar] [CrossRef]
- Kimkong, H.; Promphakping, B.; Hudson, H.; Day, S.C.J.; Long, L.V. Income diversification and household wellbeing: Case study of the rural framing communities of Tang Krasang and Trapang Trabek in Stung Chreybak, Kampong Chhnang, Cambodia. Sustainability 2023, 15, 11106. [Google Scholar] [CrossRef]
- Habib, N.; Rankin, P.; Alauddin, M.; Cramb, R. Determinants of livelihood diversification in rural rain-fed region of Pakistan: Evidence from fractional multinomial logit (FMLOGIT) estimation. Environ. Sci. Pollut. Res. 2023, 30, 13185–13196. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Nguyen, L.T.; Nguyen, H.H.; Van Ta, H.; Van Nguyen, H.; Pham, T.A.; Nguyen, B.T.; Pham, T.T.; Tang, N.T.T.; Hens, L. Rural livelihood diversification of Dzao farmers in response to unpredictable risks associated with agriculture in Vietnamese Northern Mountains today. Environ. Dev. Sustain. 2020, 22, 5387–5407. [Google Scholar] [CrossRef]
- Musumba, M.; Palm, C.A.; Komarek, A.M.; Mutuo, P.K.; Kaya, B. Household livelihood diversification in rural Africa. Agric. Econ-Blackwell 2022, 53, 246–256. [Google Scholar] [CrossRef]
- Fisher, E.; Attah, R.; Barca, V.; O’Brien, C.; Brook, S.; Holland, J.; Kardan, A.; Pavanello, S.; Pozarny, P. The livelihood impacts of cash transfers in sub-Saharan Africa: Beneficiary perspectives from six countries. World Dev. 2017, 99, 299–319. [Google Scholar] [CrossRef]
- Qiu, H.; Su, L.; Tang, J. Effects of environmental regulation on rural livelihood diversification: Evidence from pastoral China. J. Rural Stud. 2022, 95, 26–39. [Google Scholar] [CrossRef]
- Bires, Z.; Raj, S. Tourism as a pathway to livelihood diversification: Evidence from biosphere reserves, Ethiopia. Tourism. Manag. 2020, 81, 104159. [Google Scholar] [CrossRef]
- Baird, T.D.; Hartter, J. Livelihood diversification, mobile phones and information diversity in Northern Tanzania. Land Use Policy 2017, 67, 460–471. [Google Scholar] [CrossRef]
- Salifu, G.A. The Political economy dynamics of rural household income diversification: A review of the international literature. Res. World Econ. 2019, 10, 273–290. [Google Scholar] [CrossRef]
- Leng, C.X.; Ma, W.L.; Tang, J.J.; Zhu, Z.K. ICT adoption and income diversification among rural households in China. Appl. Econ. 2020, 52, 3614–3628. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will digital technologies transform agriculture in developing countries? Agric. Econ-Blackwell 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Park, S.; Kim, G. Same access, different uses, and the persistent digital divide between urban and rural users. In Proceedings of the 43rd Research Conference on Communication, Information and Internet Policy, Washington, DC, USA, 25–27 September 2015. [Google Scholar]
- Salemink, K.; Strijker, D.; Bosworth, G. Rural development in the digital age: A systematic literature review on unequal ICT availability, adoption, and use in rural areas. J. Rural Stud. 2017, 54, 360–371. [Google Scholar] [CrossRef]
- Park, S. Digital inequalities in rural Australia: A double jeopardy of remoteness and social exclusion. J. Rural Stud. 2017, 54, 399–407. [Google Scholar] [CrossRef]
- Li, D.; Kojima, D.; Wu, L.; Ando, M. Impact of the COVID-19 on labour employment in rural China: Can information literacy mitigate the shock? Appl. Econ. Lett. 2023, 1–6. [Google Scholar] [CrossRef]
- Reddy, P.; Sharma, B.; Chaudhary, K. Digital literacy: A review of literature. Int. J. Technoethics 2020, 11, 65–94. [Google Scholar] [CrossRef]
- Alobo Loison, S. Rural livelihood diversification in sub-Saharan Africa: A literature review. J. Dev. Stud. 2015, 51, 1125–1138. [Google Scholar] [CrossRef]
- Abdul-Salam, Y.; Phimister, E. Efficiency effects of access to information on small-scale agriculture: Empirical evidence from Uganda using stochastic frontier and IRT models. J. Agric. Econ. 2017, 68, 494–517. [Google Scholar] [CrossRef]
- Li, D.; Kojima, D.; Wu, L.; Ando, M. Impact of rural households’ digital ability on their production efficiency in China. Agribus 2023, 1–22. [Google Scholar] [CrossRef]
- Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores; Addison-Wesley: Boston, MA, USA, 1968; pp. 397–479. [Google Scholar]
- Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef]
- Newey, W.K. Efficient estimation of limited dependent variable models with endogenous explanatory variables. J. Econ. 1987, 36, 231–250. [Google Scholar] [CrossRef]
- Robins, R.W.; Fraley, R.C.; Krueger, R.F. Handbook of Research Methods in Personality Psychology; Guilford Press: New York, NY, USA, 2010. [Google Scholar]
- Lu, Y.; Chen, M.; Weng, Z. Drivers of the peasant households’ part-time farming behavior in China. J. Rural Stud. 2022, 93, 112–121. [Google Scholar] [CrossRef]
- StataCorp. Item Response Theory Reference Manual; Stata Press: College Station, TX, USA, 2023. [Google Scholar]
- Denzer, M.; Schank, T.; Upward, R. Does the internet increase the job finding rate? Evidence from a period of expansion in internet use. Inf. Econ. Policy 2021, 55, 100900. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, W.; Huang, Y.; Yang, J. The effect of fast Internet on employment: Evidence from a Large Broadband Expansion Program in China. China World Econ. 2022, 30, 100–134. [Google Scholar] [CrossRef]
- Barnett, W.A.; Hu, M.; Wang, X. Does the utilization of information communication technology promote entrepreneurship: Evidence from rural China. Technol. Forecast. Soc. 2019, 141, 12–21. [Google Scholar] [CrossRef]
- Démurger, S.; Fournier, M.; Yang, W. Rural households’ decisions towards income diversification: Evidence from a township in northern China. China Econ. Rev. 2010, 21, S32–S44. [Google Scholar] [CrossRef]
- Dettling, L.J. Broadband in the labor market: The impact of residential high speed internet on married women’s labor force participation. ILR Rev. 2017, 70, 451–482. [Google Scholar] [CrossRef]
Variable | Definition | Mean | Std. Dev. |
---|---|---|---|
LD1 | Livelihood diversification (work type, measured by Simpson index) | 0.21 | 0.21 |
LD2 | Livelihood diversification (work industry, measured by Simpson index) | 0.32 | 0.25 |
Core explanatory variables | |||
Abil | Digital ability (measured by item response theory) | 0.00 | 0.80 |
Instrumental variable | |||
VIS | Village internet stability (very unstable = 1, unstable = 2, average = 3, stable = 4, very stable = 5) | 3.87 | 0.83 |
Control variables | |||
Gen | Gender of household head (male = 1, female = 0) | 0.83 | 0.38 |
Age | Age of household head (years) | 49.62 | 11.56 |
Sage | Age squared of household head | 2596.04 | 1159.88 |
Edu | School years of household head (years) | 8.81 | 3.53 |
Risk | Risk attitude of household head (degree of agreement with the expression “when new things, new policies come out, I’d love to try them”, strongly disagree = 1, slightly disagree = 2, normal = 3, slightly agree = 4, strongly agree = 5) | 3.44 | 1.09 |
Popu | Number of family members (pcs) | 4.02 | 1.53 |
Child | Number of children under 16 in the family (pcs) | 0.71 | 0.88 |
Elder | Number of elderly people over 65 in the family (pcs) | 0.47 | 0.76 |
Soci | Social networks (family annual gift money expenditure, USD) | 957.11 | 1128.17 |
Land | Planting land area (ha) | 0.37 | 2.33 |
Asset | Family assets (cash, deposits, and financial products, 10,000 USD) | 1.91 | 3.61 |
N | Number of observations | 1914 |
Variables | Low-Ability Households | High-Ability Households | Difference in Means |
---|---|---|---|
LD1 | 0.19 | 0.24 | −0.05 *** |
LD2 | 0.29 | 0.36 | −0.06 *** |
Abil | −0.59 | 0.79 | −1.38 *** |
VIS | 3.64 | 4.18 | −0.54 *** |
Gen | 0.84 | 0.80 | 0.04 ** |
Age | 52.15 | 46.27 | 5.87 *** |
Edu | 7.77 | 10.19 | −2.42 *** |
Risk | 3.26 | 3.69 | −0.43 *** |
Popu | 3.76 | 4.35 | −0.58 *** |
Child | 0.63 | 0.82 | −0.19 *** |
Elder | 0.49 | 0.43 | 0.06 * |
Soci | 791.68 | 176.87 | −385.19 *** |
Land | 0.24 | 0.55 | −0.32 *** |
Asset | 1.40 | 2.59 | −1.19 *** |
N | 1092 | 822 |
Number of Industries | Low-Ability Households | High-Ability Households | ||
---|---|---|---|---|
Frequency | Percent (%) | Frequency | Percent (%) | |
1 | 369 | 33.8 | 198 | 24.1 |
2 | 472 | 43.2 | 332 | 40.4 |
3 | 202 | 18.5 | 223 | 27.1 |
≥4 | 49 | 4.5 | 69 | 8.4 |
Total | 1092 | 100.0 | 822 | 100.0 |
Industry | Low-Ability Households | High-Ability Households | ||
---|---|---|---|---|
Frequency | Percent (%) | Frequency | Percent (%) | |
Primary and Secondary | 254 | 35.6 | 84 | 13.6 |
Secondary | 16 | 2.2 | 10 | 1.6 |
Tertiary | 34 | 4.8 | 64 | 10.4 |
Primary and Tertiary | 176 | 24.6 | 233 | 37.8 |
Secondary and Tertiary | 99 | 13.9 | 96 | 15.6 |
Primary, Secondary, and Tertiary | 135 | 18.9 | 129 | 20.9 |
Total | 714 | 100.0 | 616 | 100.0 |
Channel | Discrimination | Difficulty | ||
---|---|---|---|---|
1.934 *** | (0.162) | 0.149 *** | (0.038) | |
Short video platforms | 1.469 *** | (0.115) | 0.810 *** | (0.058) |
Web pages | 2.391 *** | (0.222) | 0.950 *** | (0.050) |
Professional applications | 1.464 *** | (0.118) | 1.119 *** | (0.071) |
Internet forums | 2.674 *** | (0.390) | 2.311 *** | (0.138) |
Government platforms | 1.688 *** | (0.137) | 1.159 *** | (0.067) |
Channel | Score | Channel | Score |
---|---|---|---|
None | −0.838 | Internet forums only | 0.154 |
Professional applications only | −0.224 | Two channels | 0.226–0.747 |
Short video platforms only | −0.223 | Three channels | 0.646–1.175 |
Government platforms only | −0.148 | Four channels | 1.077–1.501 |
WeChat only | −0.067 | Five channels | 1.612–1.903 |
Web pages only | 0.073 | Six channels | 2.293 |
Variable | LD1 (Work Type) | LD2 (Work Industry) | ||
---|---|---|---|---|
Tobit | IV-Tobit | Tobit | IV-Tobit | |
Abil | 0.003 | 0.174 *** | 0.013 | 0.244 *** |
(0.011) | (0.063) | (0.010) | (0.064) | |
Gen | −0.040 ** | −0.023 | −0.046 ** | −0.024 |
(0.020) | (0.022) | (0.019) | (0.023) | |
Age | 0.011 ** | 0.012 ** | 0.012 ** | 0.013 ** |
(0.006) | (0.006) | (0.005) | (0.006) | |
Sage | −0.000 * | −0.000 | −0.000 ** | −0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | |
Edu | 0.005 * | −0.005 | 0.006 ** | −0.007 |
(0.003) | (0.004) | (0.003) | (0.004) | |
Risk | 0.002 | −0.012 | −0.004 | −0.021 ** |
(0.007) | (0.009) | (0.007) | (0.009) | |
Popu | 0.068 *** | 0.054 *** | 0.105 *** | 0.086 *** |
(0.008) | (0.010) | (0.007) | (0.010) | |
Child | −0.029 ** | −0.008 | −0.069 *** | −0.042 *** |
(0.012) | (0.015) | (0.012) | (0.015) | |
Elder | −0.043 *** | −0.042 *** | −0.099 *** | −0.097 *** |
(0.013) | (0.013) | (0.012) | (0.013) | |
Soci | 0.020 *** | 0.010 | 0.034 *** | 0.020 *** |
(0.007) | (0.007) | (0.007) | (0.008) | |
Land | 0.188 *** | 0.170 *** | 0.031 | 0.007 |
(0.037) | (0.026) | (0.030) | (0.027) | |
Asset | 0.039 *** | 0.009 | 0.022 * | −0.018 |
(0.012) | (0.017) | (0.012) | (0.017) | |
Cons | −0.699 *** | −0.501 *** | −0.635 *** | −0.367 ** |
(0.150) | (0.165) | (0.138) | (0.168) | |
Region | control | control | control | control |
Wald test of exogeneity | – | 8.56 *** | – | 16.56 *** |
F test in the first stage | – | 47.46 | – | 47.46 |
VIS to Abil in the first stage | – | 0.166 *** | – | 0.166 *** |
(0.020) | (0.020) | |||
N | 1914 | 1914 | 1914 | 1914 |
Variable | Multiple Livelihoods | Maximization Index | ||
---|---|---|---|---|
Type | Industry | Type | Industry | |
Abil | 0.486 * | 1.088 *** | −0.147 *** | −0.209 *** |
(0.248) | (0.288) | (0.053) | (0.057) | |
Control variables | control | control | control | control |
Region | control | control | control | control |
Wald test of exogeneity | 4.50 ** | 16.66 *** | 8.70 *** | 15.44 *** |
F test in the first stage | 47.46 | 47.46 | 47.46 | 47.46 |
VIS to Abil in the first stage | 0.166 *** | 0.166 *** | 0.166 *** | 0.166 *** |
(0.020) | (0.020) | (0.020) | (0.020) | |
N | 1914 | 1914 | 1914 | 1914 |
Variable | Type | Industry | ||||
---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | |
Abil | 0.331 ** | 0.217 * | 0.184 ** | 0.407 ** | 0.246 * | 0.193 ** |
(0.165) | (0.130) | (0.088) | (0.174) | (0.130) | (0.085) | |
Control variables | control | control | control | control | control | control |
Region | control | control | control | control | control | control |
Wald test of exogeneity | 4.49 ** | 4.19 ** | 4.85 ** | 6.07 ** | 6.20 ** | 6.14 ** |
F test in the first stage | 14.66 | 11.22 | 12.18 | 14.66 | 11.22 | 12.18 |
VIS to Abil in the first stage | 0.126 *** | 0.135 *** | 0.216 *** | 0.126 *** | 0.135 *** | 0.216 *** |
(0.027) | (0.034) | (0.044) | (0.027) | (0.034) | (0.044) | |
N | 638 | 638 | 638 | 638 | 638 | 638 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Kojima, D.; Wu, L.; Ando, M. Digital Ability and Livelihood Diversification in Rural China. Sustainability 2023, 15, 12443. https://doi.org/10.3390/su151612443
Li D, Kojima D, Wu L, Ando M. Digital Ability and Livelihood Diversification in Rural China. Sustainability. 2023; 15(16):12443. https://doi.org/10.3390/su151612443
Chicago/Turabian StyleLi, Danyang, Daizo Kojima, Laping Wu, and Mitsuyoshi Ando. 2023. "Digital Ability and Livelihood Diversification in Rural China" Sustainability 15, no. 16: 12443. https://doi.org/10.3390/su151612443
APA StyleLi, D., Kojima, D., Wu, L., & Ando, M. (2023). Digital Ability and Livelihood Diversification in Rural China. Sustainability, 15(16), 12443. https://doi.org/10.3390/su151612443