Digital Transformation and Green Development Research: Microscopic Evidence from China’s Listed Construction Companies
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. Digital Transformation and Green Development of Construction Companies
2.2. Digital Transformation, Green Innovation, and the Green Development of Construction Companies
2.3. Digital Transformation, Human Capital Structure, and the Green Development of Companies
2.4. Digital Transformation, Environmental Regulation, and the Green Development of Companies
2.5. Digital Transformation, Human Capital Structure, and the Green Development of Companies
3. Research Design
3.1. Research Model
3.2. Sample and Data Sources
3.2.1. Independent Variable: Company Digitalization
3.2.2. Dependent Variable: Green Development
- Measurement Method
- 2.
- Data Description
- 3.
- Analysis of Measurement Results and Situation at Present
3.2.3. Mediator Variable
3.2.4. Moderating Variable
3.2.5. Control Variables
4. Empirical Results and Analysis
4.1. Descriptive Statistical Analysis
4.2. Correlation Analysis
4.3. Benchmark Regression
4.4. Endogenous Problems
4.4.1. Instrumental Variables Method
4.4.2. Propensity Score-Matching (PSM) Method
4.5. Robustness Tests
- Variable replacement.
- 2.
- Model test method replacement.
- 3.
- Lag regression.
4.6. Heterogeneity Analysis
4.6.1. Heterogeneity Test Based on Micro-Characteristics of Firms
4.6.2. Heterogeneity Test Based on the External Macro Environment
4.7. Test of Mediation Effect
4.8. Moderating Effect
4.9. Threshold Effect
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Zhang, Y.; Zheng, M.; Li, X.; Cui, G.; Li, H. Research on Green Governance of Chinese Listed Companies and Its Evaluation. J. Manag. World 2019, 5, 126–133. [Google Scholar]
- Chen, S.; Li, X. The Mechanism of Digital Economy Driving the Green Development of Manufacturing Industry. Enterp. Econ. 2022, 12, 140–150. [Google Scholar]
- Guo, J.; Wang, H. Study on Carbon Emission Reduction Effect of Institutional Openness in China. Sci. Rep. 2023, 13, 254. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L. Global Value Chain Embedding and Green Growth of China’s Manufacturing Industry. Stud. Sci. Sci. 2021, 39, 822–832. [Google Scholar]
- Levermore, G. A review of the IPCC Assessment Report Four, Part 1: The IPCC Process and Greenhouse Gas Emission Trends from Buildings Worldwide. Build. Serv. Eng. Res. Technol. 2008, 29, 349–361. [Google Scholar] [CrossRef]
- Wu, Y.; Chau, K.; Lu, W.; Shen, L.; Shuai, C.; Chen, J. Decoupling Relationship between Economic Output and Carbon Emission in the Chinese Construction Industry. Environ. Impact Assess. Rev. 2018, 71, 60–69. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Ge, W.; Shi, C. Carbon Neutral Transformative Technologies for Industrial Process. Bull. Chin. Acad. Sci. 2022, 37, 511–521. [Google Scholar]
- Ma, D.; Zhu, Q. Innovation in Emerging Economies: Research on the Digital Economy Driving High-quality Green Development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Luo, K.; Liu, Y.; Chen, P.; Zeng, M. Assessing the Impact of Digital Economy on Green Development Efficiency in the Yangtze River Economic Belt. Energy Econ. 2022, 112, 106127. [Google Scholar] [CrossRef]
- Chen, C.; Ye, F.; Xiao, H.; Xie, W.; Liu, B.; Wang, L. The Digital Economy, Spatial Spillovers and Forestry Green Total Factor Productivity. J. Clean. Prod. 2023, 405, 136890. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Huo, L. Digital Economy, Spatial Spillover, and Industrial Green Innovation Efficiency: Empirical Evidence from China. Heliyon 2023, 9, e12875. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Du, B.; Wen, X. Mission Embeddedness and Pattern Selection of Digital Strategic Transformation of SOEs: A Case Study Based on the Typical Practice of Digitalization in Three Central Enterprises. J. Manag. World 2021, 37, 137–158+10. [Google Scholar]
- Wu, C.; Meng, X. Research on the Impact of Digital Transformation on the Green Development of Manufacturing Industry in the Yangtze River Economic Belt. J. Nantong Univ. Soc. Sci. Ed. 2022, 38, 37–47. [Google Scholar]
- Frederik, V.; Per, D.; Jan, R. Digital Technologies as External Enablers of New Venture Creation in the IT Hardware Sector. Entrep. Theory Pract. 2018, 42, 47–69. [Google Scholar]
- Yang, Y.; Zhang, Z.; Ma, Y.; Sun, X. Digital Transformation Path Analysis of Construction Industry Based on the Perspective of Technical Logic. Sci. Technol. Manag. Res. 2022, 42, 137–142. [Google Scholar]
- Long, J.; Zhang, X. Digital Construction Promotes Green Development of the Construction Industry—A Brief Discussion on the Whole Process of Green Consultation Based on BIM. Constr. Sci. Technol. 2019, 390, 31–36. [Google Scholar]
- Wu, C.; Yang, S.; Tang, P.; Wu, T.; Fu, S. Construction of the Efficiency Promotion Model of Green Innovation in China’s Heavy Polluted Industries. China Popul. Resour. Environ. 2018, 28, 40–48. [Google Scholar]
- Barney, J.; Wright, M.; Ketchen, D. The Resource-based View of the Firm: Ten Years after 1991. J. Manag. 2001, 27, 625–641. [Google Scholar] [CrossRef]
- Song, D.; Zhu, W.; Ding, H. Can Firm Digitalization Promote Green Technological Innovation? An Examination Based on Listed Companies in Heavy Pollution Industries. J. Financ. Econ. 2022, 48, 34–48. [Google Scholar]
- Liu, C.; Pan, H.; Li, P.; Feng, Y. Impact and Mechanism of Digital Transformation on the Green Inovation Efficiency of Manufacturing Enterprises in China. China Soft Sci. 2023, 4, 121–129. [Google Scholar]
- Doloreux, D.; Porto, G. A Review of (Almost) 20 Years of Regional Innovation Systems Research. Eur. Plan. Stud. 2016, 25, 3871–3877. [Google Scholar]
- Xie, X.; Zhu, Q. How can Green Innovation Solve the Dilemmas of ‘Harmonious Coexistence’? J. Manag. World 2021, 37, 128–149. [Google Scholar]
- Stojkoski, V.; Koch, P.; Hidalgo, C. Multidimensional Economic Complexity and Inclusive Green Growth. Commun. Earth Environ. 2023, 4, 130. [Google Scholar] [CrossRef]
- Xie, X.; Han, Y. How can Local Manufacturing Enterprises Achieve Luxuriant Transformation in Green Innovation? A Multi-case Study Based on Attention-based View. J. Manag. World 2022, 38, 76–106. [Google Scholar]
- Chi, M.; Wang, J.; Wang, W. Research on the Influencing Mechanism of Firm’s Innovation Performance in the Context of Digital Transformation: A Mixed Method Study. Stud. Sci. Sci. 2022, 40, 319–331. [Google Scholar]
- Meng, M.; Tan, J.; Wang, Y.; Li, X.; Lei, J. How does Enterprise Digital Transformation Affect Green Innovation Performance? J. Technol. Econ. 2023, 42, 42–52. [Google Scholar]
- Li, X.; Huang, Y.; Li, X.; Liu, X.; Li, J.; He, J.; Dai, J. How does the Belt and Road Policy Affect the Level of Green Development? A Quasi-natural Experimental Study Considering the CO2 Emission Intensity of Construction Enterprises. Humanit. Soc. Sci. Commun. 2022, 9, 280. [Google Scholar] [CrossRef]
- Shen, M.; Tan, W. Digitalization and Green Innovation Performance of Enterprises: Identification of Double Effects Based on Increment and Quality Improvement. South China J. Econ. 2022, 396, 118–138. [Google Scholar]
- Wu, F.; Hu, H.; Lin, H.; Ren, X. Enterprise Digital Transformation and Capital Market Performance: Empirical Evidence from Stock Liquidity. J. Manag. World 2021, 37, 130–144+10. [Google Scholar]
- Xiao, J.; Zeng, P. Does Digitalization Improve the Quality and Quantity of Enterprise Green Innovation?—Based on Resource Perspective. Stud. Sci. Sci. 2023, 41, 925–935+960. [Google Scholar]
- Xiao, T.; Sun, R.; Yuan, C.; Sun, J. Digital Transformation, Human Structure Adjustment and Labor Income Share. J. Manag. World 2022, 38, 220–237. [Google Scholar]
- Ye, Y.; Li, X.; Liu, G. Digital Transformation and Corporate Human Capital Upgrade. J. Financ. Res. 2022, 12, 74–92. [Google Scholar]
- Chen, H.; Zhang, M.; Wang, W.; Hu, Y. Can Digital Transformation Promote Human Capital Structure Adjustment? J. Stat. Inf. 2022, 37, 35–47. [Google Scholar]
- Daron, A.; Pascual, R. Low-Skill and High-Skill Automation. J. Hum. Cap. 2018, 12, 204–232. [Google Scholar]
- Liu, B.; Zhao, F. Empirical Study of Human Resource Promotion Impact on Corporate Green Development—Based on the Chinese College Enrollment Expansion in 1999. J. Hubei Univ. Philos. Soc. Sci. 2023, 50, 152–161+175. [Google Scholar]
- Qi, H.; Liu, S. The Impact of Enterprise Digital Development on Green Innovation and its Mechanism. Mod. Econ. Sci. 2023, 45, 72–83. [Google Scholar]
- Zhang, C.; Lu, Y.; Guo, L.; Yu, T. The Intensity of Environmental Regulation and Technology Progress of Production. Econ. Res. J. 2011, 46, 113–124. [Google Scholar]
- Li, B.; Peng, X.; Ouyang, M. Environmental Regulation, Green Total Factor Productivity and the Transformation of China’s Industrial Development Mode—Analysis Based on Data of China’s 36 Industries. China Ind. Econ. 2013, 4, 56–68. [Google Scholar]
- Ji, L.; Su, M. The Motivation of the Environmental Costs Internalization: Is It for Policy Compliance or for Profits?—Empirical Evidence from Chinese Listed Companies in Heavy Polluting Industries. Account. Res. 2016, 11, 69–75. [Google Scholar]
- Jaffe, A.; Palmer, K. Environmental Regulation and Innovation: A Panel Data Study. Rev. Econ. Stat. 1997, 79, 610–619. [Google Scholar] [CrossRef]
- Tu, X.; Yan, X. Digital Transformation, Knowledge Spillover, and Enterprise Total Factor Productivity: Empirical Evidence from Listed Manufacturing Companies. Ind. Econ. Res. 2022, 117, 43–56. [Google Scholar]
- Ren, B.; Guo, M. Research on Digital Level and Operation Performance Based on Text Mining. J. Stat. Inf. 2021, 36, 51–61. [Google Scholar]
- Tone, K. A Slacks-based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Jahanshahloo, G.; Lotfi, F.; Shoga, N.; Tohidi, G.; Razavyan, S. Undesirable Inputs and Outputs in DEA Models. Appl. Math. Comput. 2005, 169, 917–925. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiao, J. Carbon Emission Efficiency Analysis of Road Transportation Based on Super-efficiency SBM Model. Environ. Sci. Technol. 2023, 46, 216–222. [Google Scholar]
- Oh, D.; Heshmati, A. A Sequential Malmquist-Luenberger Productivity Index: Environmentally Sensitive Productivity Growth Considering the Progressive Nature of Technology. Energy Econ. 2010, 32, 1345–1355. [Google Scholar] [CrossRef]
- Xiao, J.; Zeng, P.; Zhang, L. Regional Digital Level, Green Technology Innovation, and Green Transformation of Manufacturing Industry. East China Econ. Manag. 2023, 37, 1–12. [Google Scholar]
- Liu, Y.; Zhao, X. Carbon Performance, Green Technology Innovation and Financial Performance—An Analysis Based on Moderating and Threshold Effects. Chin. Certif. Public Account. 2022, 279, 37–44. [Google Scholar]
- Wang, F.; Wu, L.; Yang, C. Driving Factors for Growth of Carbon Dioxide Emission During Economic Development in China. Econ. Res. J. 2010, 45, 123–136. [Google Scholar]
- Wurlod, J.; Noailly, J. The Impact of Green Innovation on Energy Intensity: An Empirical Analysis for 14 Industrial Sectors in OECD Countries. Energy Econ. 2018, 71, 47–61. [Google Scholar] [CrossRef]
- Acemoglu, D. Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality. Q. J. Econ. 1998, 113, 1055–1089. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, W.; Li, X. How Does Digital Transformation Affect the Total Factor Productivity of Enterprises? Financ. Trade Econ. 2021, 42, 114–129. [Google Scholar]
- Huang, X.; Hou, B.; Ye, S.; Li, Y. Research on the Relationship between Digital Transformation and Total Factor Productivity of Enterprises—Inspection Based on the Perspective of Resource Allocation. Price Theory Pract. 2022, 461, 107–111. [Google Scholar]
- Xie, X.; Shen, Y.; Zhang, H. Can Digital Finance Promote Entrepreneurship?—Evidence from China. China Econ. Q. 2018, 17, 1557–1580. [Google Scholar]
- Zhang, J.; Chen, S. Financial Development, Environmental Regulations and Green Economic Transition. J. Financ. Econ. 2021, 47, 78–93. [Google Scholar]
- Wang, X.; Wang, Y. Research on the Green Innovation Promoted by Green Credit Policies. J. Manag. World 2021, 37, 173–188. [Google Scholar]
- Wen, Z.; Zhang, L.; Hou, J.; Liu, H. Testing and Application of the Mediating Effects. Acta Psychol. Sin. 2004, 5, 614–620. [Google Scholar]
- Xiao, R.; Wang, R.; Qian, L. The Non-linear Impact of Digitalization Level on Corporate Carbon Performance: The Mediating Effect of Green Technology Innovation. Sci. Technol. Prog. Policy 2023, 40, 96–106. [Google Scholar]
- Cao, Y.; Li, X.; Hu, H.; Wan, G.; Wang, S. How Does Digitalization Drive the Green Transformation in Manufacturing Companies? An Exploratory Case Study from the Perspective of Resource Orchestration Theory. J. Manag. World 2023, 39, 96–112+126+113. [Google Scholar]
- Wang, F.; He, Z.; Zhang, D. Environmental Protection, Green Technology Innovation and High-quality Economic Development —Empirical Analysis Based on the Data of the Yangtze River Economic Belt from 2005 to 2019. Econ. Res. Yangtze River Basin 2022, 1, 91–111. [Google Scholar]
- Wang, H.; Li, B. Environmental Regulations, Capacity Utilization, and High-quality Development of Manufacturing: An Analysis Based on Chinese Provincial Panel Data. Sci. Rep. 2021, 11, 19566. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Wang, S.; Xue, Z. Has the Development of the Digital Economy Improved Green Total Factor Productivity in China?—A Study based on Data at the Provincial Level in China. Front. Environ. Sci. 2023, 11, 1073997. [Google Scholar] [CrossRef]
- Gao, D.; Li, G.; Yu, J. Does Digitization Improve Green Total Factor Energy Efficiency? Evidence from Chinese 213 Cities. Energy 2022, 247, 123395. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Ran, Q.; Irfan, M.; Ren, S.; Yang, X.; Wu, H.; Ahmad, M. Analysis of the mechanism of the impact of internet development on green economic growth: Evidence from 269 prefecture cities in China. Environ. Sci. Pollut. Res. 2022, 29, 9990–10004. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Y.; Ramsey, T.; Hewings, G. Will Researching Digital Technology Really Empower Green Development? Technol. Soc. 2021, 66, 101638. [Google Scholar] [CrossRef]
- Karaboga, T.; Gurol, Y.; Binici, C.; Sarp, P. Sustainable Digital Talent Ecosystem in the New Era: Impacts on Businesses, Governments and Universities. Istanb. Bus. Res. 2020, 49, 360–379. [Google Scholar] [CrossRef]
- He, Q.; Samuel, R.; Dolores, B. A Matter of Motivation: The Impact of Enterprise Digital Transformation on Green Innovation. Rev. Manag. Sci. 2023, 1–30. [Google Scholar] [CrossRef]
- Rao, S.; He, J.; Shangguan, X. Digital Finance and Corporate Green Innovation: Quantity or Quality? Environ. Sci. Pollut. Res. 2022, 29, 56772–56791. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, K.; Zhang, J. Environmental Benefits of Enterprise Digitalization in China. Resour. Conserv. Recycl. 2023, 197, 107082. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Q. Digital Economy, Environmental Regulation and Green Eco-efficiency—Empirical Evidence from 285 Cities in China. Front. Environ. Sci. 2023, 11, 1113293. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, W.; Wu, H. How does Digital Transformation Drive Green Total Factor Productivity? Evidence from Chinese Listed Enterprises. J. Clean. Prod. 2023, 406, 136954. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, N.; Li, C.; Cui, X.; Zhang, H.; Chen, W. Impact of Digital Input on Enterprise Green Productivity: Micro Evidence from the Chinese Manufacturing Industry. J. Clean. Prod. 2023, 414, 137272. [Google Scholar] [CrossRef]
Type of Indicator | Indicator Name | Indicator Meaning | Measurement Method |
---|---|---|---|
Input Indicators | Capital input | Net fixed assets of construction companies | Direct statistics |
Labor input | Number of employees in construction companies | Direct statistics | |
Energy input | Energy input of construction companies | (An company main business cost/construction industry main business cost) × construction industry all kinds of energy end consumption of physical amount converted into “standard coal” summary into total energy consumption | |
Expected output | Total revenue | Total revenue of construction companies | Direct statistics |
Non-expected output | Carbon dioxide emission | CO2 emissions from construction companies | (An company main business cost/construction industry main business cost) × Estimated amount of CO2 emissions |
Energy Source | Average Calorific Values per Unit (MJ/kg) | Carbon Emission Coefficients (kgc/MJ) | Carbon Oxidation Factor | Conversion Factor (kg Standard Coal) | Carbon Emission Factor (Ton Carbon/Ton Standard Coal) |
---|---|---|---|---|---|
Coal | 20.934 | 0.02637 | 1 | 0.7143 | 0.7559 |
Coking coal | 28.470 | 0.0295 | 1 | 0.9714 | 0.8550 |
Crude Oil | 41.868 | 0.0201 | 1 | 1.4286 | 0.5857 |
Gasoline | 43.124 | 0.0189 | 1 | 1.4571 | 0.5538 |
Diesel | 42.705 | 0.0202 | 1 | 1.4571 | 0.5921 |
Fuel Oil | 41.868 | 0.0211 | 1 | 1.4286 | 0.6185 |
Natural Gas | 38.979 | 0.0153 | 1 | 1.33 | 0.4483 |
Kerosene | 43.124 | 0.0196 | 1 | 1.4714 | 0.5714 |
Variable Type | Variables | Variable Symbols | Variable Description |
---|---|---|---|
Dependent variable | Green development | GD | Super-efficient SBM model and GML index method |
Independent variable | Company Digitalization | DCG | The frequency of digital transformation keywords in the year of companies/the total frequency of digital transformation keywords in the year of construction industry |
Mediator variables | Green innovation | GTI | The number of green patent applications of the enterprise in the year plus 1 to take the logarithm |
Human capital structure | LaborStruct | Percentage of personnel with bachelor’s degree or above in companies | |
Control variables | Company age | Age | Current year—year of launch + 1 |
Nature of shareholding | SOE | Dummy variables, state-owned companies take the value of 1, non-state-owned companies take the value of 0 | |
Liquidity Ratio | CR | Total current assets/total current liabilities | |
Equity concentration | Cocen | Shareholdings of top 10 shareholders | |
Total asset turnover | ATO | Operating income/average total assets | |
Net asset yield | Roe | Net income/average net assets |
Variable Name | Abbreviations | Observation | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Green development | GD | 379 | 1.033 | 0.051 | 0.829 | 1.244 |
Company Digitalization | DCG | 379 | 0.018 | 0.030 | 0 | 0.235 |
Green innovation | GTI | 379 | 0.845 | 1.122 | 0 | 5.288 |
Human capital structure | Laborstrcut | 379 | 0.452 | 0.155 | 0.101 | 0.834 |
Company age | AGE | 379 | 22 | 5.961 | 7 | 38 |
Nature of shareholding | SOE | 379 | 0.544 | 0.499 | 0 | 1 |
Liquidity Ratio | CR | 379 | 1.322 | 0.424 | 0.477 | 5.300 |
Equity concentration | Cocen | 379 | 0.583 | 0.162 | 0.216 | 1 |
Total asset turnover | ATO | 379 | 0.620 | 0.316 | 0.023 | 2.977 |
Net asset yield | ROE | 379 | 0.016 | 0.059 | −0.484 | 0.211 |
Variable Name | GD | DCG | GTI | Laborstruct | AGE | SOE | CR | Cocen | ATO | Roe | VIF |
---|---|---|---|---|---|---|---|---|---|---|---|
GD | 1.000 | ||||||||||
DCG | 0.209 *** | 1.000 | 1.23 | ||||||||
GTI | 0.220 *** | 0.348 *** | 1.000 | 1.22 | |||||||
Laborstrcut | 0.145 *** | 0.102 ** | 0.180 *** | 1.000 | 1.10 | ||||||
AGE | 0.119 ** | −0.104 ** | −0.104 ** | −0.191 *** | 1.000 | 1.29 | |||||
SOE | 0.045 | −0.228 *** | −0.120 ** | 0.116 ** | −0.280 *** | 1.000 | 1.21 | ||||
CR | −0.029 | 0.040 | −0.025 | −0.053 | 0.123 ** | −0.139 *** | 1.000 | 1.07 | |||
Cocen | 0.030 | 0.080 | 0.179 *** | 0.088 * | −0.341 *** | 0.088 * | −0.179 *** | 1.000 | 1.21 | ||
ATO | −0.091 * | −0.011 | −0.070 | 0.075 | −0.039 | 0.044 | 0.079 | 0.097 * | 1.000 | 1.04 | |
ROE | −0.076 | −0.113 ** | −0.062 | 0.115 ** | −0.106 ** | 0.011 | −0.049 | −0.019 | 0.057 | 1.000 | 1.06 |
Variable Name | GD | GD |
---|---|---|
1 | 2 | |
DCG | 0.878 *** (6.62) | 0.775 *** (5.89) |
AGE | −0.077 *** (−2.92) | |
SOE | 0.0003 (0.02) | |
CR | 0.021 ** (2.44) | |
Cocen | 0.147 *** (3.69) | |
ATO | −0.013 * (−1.65) | |
ROE | −0.026 (−0.61) | |
_cons | 1.028 *** (57.39) | 2.652 *** (4.51) |
Time FE | YES | YES |
Firm FE | YES | YES |
Obs | 379 | 379 |
0.2628 | 0.3172 |
Variable Name | Frist Stage | Second Stage |
---|---|---|
DCG | GD | |
1 | 2 | |
DCG | 0.6405 ** (2.53) | |
L.DCG | 0.5492 *** (3.90) | |
_cons | 0.4944 *** (3.85) | 3.6250 *** (3.87) |
Controls | YES | YES |
Time FE | YES | YES |
Firm FE | YES | YES |
Obs | 323 | 323 |
0.7302 | 0.4120 |
Variable Name | Instrumental Variables | PSM | |
---|---|---|---|
Stage 1 | Stage 2 | ||
DCG | GD | GD | |
1 | 2 | 3 | |
DCG | 2.51 ** (2.20) | 0.8154 *** (5.73) | |
Port | 0.0074 ** (2.38) | ||
_cons | −0.01510 (−0.06) | 1.7689 ** (2.19) | 0.7306 *** (14.90) |
Controls | YES | YES | YES |
Time FE | YES | YES | YES |
Firm FE | YES | YES | YES |
Obs | 379 | 379 | 369 |
0.6869 | 0.1049 | 0.3056 |
Variable Name | Variable Replacement | Model Test Method Replacement | Lag Regression |
---|---|---|---|
GD | GD | GD | |
1 | 2 | 3 | |
DCG | 0.448 *** (5.05) | ||
lnDig | 0.032 *** (8.00) | ||
L. DCG | 0.352 ** (2.05) | ||
_cons | 1.637 *** (2.78) | 0.976 *** (48.25) | 3.366 *** (4.44) |
Firm FE | YES | NO | YES |
Year FE | YES | NO | YES |
Obs | 379 | 379 | 379 |
0.3705 | — | 0.1893 |
Variable Name | State-Owned Enterprises | Non-State-Owned Enterprises | Large Companies | Small and Medium-Sized Enterprises | High Development Level of Digital Economy | Low Development Level of Digital Economy |
---|---|---|---|---|---|---|
GD | GD | GD | GD | GD | GD | |
1 | 2 | 3 | 4 | 5 | 6 | |
DCG | 1.00 *** (5.20) | 0.824 *** (4.20) | 1.7672 *** (5.36) | 0.6203 *** (4.10) | 0.632 *** (3.48) | 0.911 *** (4.57) |
_cons | 0.768 *** (11.81) | 0.557 *** (6.68) | 0.8237 *** (14.25) | 0.6150 *** (9.37) | 0.7311 *** (9.55) | 0.651 *** (9.42) |
Controls | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES | YES | YES |
Obs | 201 | 178 | 159 | 220 | 189 | 190 |
0.3812 | 0.3314 | 0.3638 | 0.3882 | 0.2974 | 0.3880 |
Variable Name | Mediation Effect | Moderating Effect | ||||
---|---|---|---|---|---|---|
GD | GTI | GD | Laborstruct | GD | GD | |
1 | 2 | 3 | 4 | 5 | 6 | |
DCG | 0.4482 *** (4.99) | 11.7793 *** (6.20) | 0.8332 *** (6.28) | 0.6484 ** (2.35) | 0.4155 *** (4.64) | 0.8332 *** (6.28) |
GTI | 0.0081 *** (3.36) | |||||
Laborstruct | 0.0504 *** (3.02) | |||||
ER | 0.0898 *** (4.47) | |||||
DCG × ER | 1.0435 ** (2.04) | |||||
_cons | 0.9762 *** (47.74) | 0.5078 (1.17) | 0.9720 *** (48.10) | 0.4746 *** (7.55) | 0.9522 *** (43.83) | 3.0337 *** (5.14) |
Controls | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES | YES | YES |
Obs | 379 | 379 | 379 | 379 | 379 | 379 |
0.0995 | 0.1560 | 0.1261 | 0.0687 | 0.1211 | 0.3666 | |
F test | 5.86 *** | 9.80 *** | 6.67 *** | 3.91 *** | 6.37 *** | — |
Bootstrap test | [0.0276, 0.1637] | [0.0026, 0.06279] | — |
Variable Name | GD | NEWGP | GD | INGP | GD |
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
DCG | 0.4482 *** (4.99) | 7.1105 *** (4.96) | 0.0067 ** (2.06) | 10.0819 *** (6.61) | 0.0081 *** (2.68) |
INGP | 0.3663 *** (3.89) | ||||
NEWGP | 0.4008 *** (4.34) | ||||
_cons | 0.9762 *** (47.74) | 0.7320 ** (2.24) | 0.9713 *** (47.39) | 0.2922 (0.84) | 0.9738 *** (47.97) |
Controls | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES | YES |
Obs | 379 | 379 | 379 | 379 | 379 |
0.0995 | 0.1176 | 0.1097 | 0.1715 | 0.1167 | |
F test | 5.86 *** | 7.06 *** | 5.70 *** | 10.97 *** | 6.11 *** |
Bootstrap test | [0.0113, 0.1526] | [0.0142, 0.1497] |
er | Threshold | F Value | p Value | Bootstrap | 1% Threshold Value | 5% Threshold Value | 10% Threshold Value | 95% Confidence Interval |
---|---|---|---|---|---|---|---|---|
Single | 0.2755 *** | 23.51 | 0.0000 | 500 | 14.7194 | 10.0312 | 7.8675 | [0.9778063, 1.59601] |
Double | 0.5645 ** | 22.77 | 0.0480 | 500 | 21.4824 | 12.3383 | 8.7448 | [1.761382, 3.309598] |
Triple | 21.96 | 0.2320 | 500 | 44.7747 | 26.6857 | 20.0056 |
Variable Name | Environment Regulation Effect |
---|---|
GD | |
1 | |
DCG (ER < 0.2755) | 3.99 *** (0.5297) |
DCG (0.2755 ≤ ER ≤ 0.5645) | 8.19 *** (1.2870) |
DCG (ER > 0.5645) | 6.44 *** (2.5355) |
Controls | YES |
_cons | 18.47 *** (0.7041) |
0.3852 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, A.; Wang, R. Digital Transformation and Green Development Research: Microscopic Evidence from China’s Listed Construction Companies. Sustainability 2023, 15, 12481. https://doi.org/10.3390/su151612481
Shen A, Wang R. Digital Transformation and Green Development Research: Microscopic Evidence from China’s Listed Construction Companies. Sustainability. 2023; 15(16):12481. https://doi.org/10.3390/su151612481
Chicago/Turabian StyleShen, Aihua, and Rui Wang. 2023. "Digital Transformation and Green Development Research: Microscopic Evidence from China’s Listed Construction Companies" Sustainability 15, no. 16: 12481. https://doi.org/10.3390/su151612481
APA StyleShen, A., & Wang, R. (2023). Digital Transformation and Green Development Research: Microscopic Evidence from China’s Listed Construction Companies. Sustainability, 15(16), 12481. https://doi.org/10.3390/su151612481