Load-Settlement Characteristics of Stone Column Reinforced Soft Marine Clay Deposit: Combined Field and Numerical Studies
Abstract
:1. Introduction
2. Motivation
3. Field-Based Investigation
4. Finite Element Analysis
4.1. Mathematical Background
4.2. Initial and Boundary Conditions
5. Results and Discussion
5.1. Results
5.2. Discussion
5.3. Interpretations and Implications
6. Summary and Conclusions
6.1. Summary
6.2. Conclusions
6.3. Significance and Novelty
6.4. Limitations and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notations
Ar= | Area replacement ratio; |
cvr= | Coefficient of radial consolidation; |
cvz= | Coefficient of vertical consolidation; |
he= | Embankment height; |
K0= | In-situ earth pressure coefficient; |
mv= | Coefficient of volume compressibility of soil; |
ns= | Stress concentration ratio; |
Pr= | Reduced parameters; |
Pu= | Undisturbed parameters; |
rc= | Radius of stone columns; |
re= | Radius of influence; |
r, z, t= | Radial, depth and time coordinates; |
Rint= | Interface reduction coefficient; |
s= | Centre-to-centre spacing between stone columns; |
u= | Excess pore water pressure; |
= | Average ground settlement; |
σc= | Vertical stress on column; |
σs= | Vertical stress on soil; |
References
- Wang, G. Consolidation of Soft soil foundations reinforced by stone columns under time dependent loading. J. Geotech. Geoenviron. Eng. 2009, 135, 1922–1931. [Google Scholar] [CrossRef]
- Fatahi, B.; Basack, S.; Premananda, S.; Khabbaz, H. Settlement prediction and back analysis of Young’s modulus and dilation angle of stone columns. Aust. J. Civ. Eng. 2012, 10, 67–80. [Google Scholar] [CrossRef]
- Almeida, M.S.; Hosseinpour, I.; Riccio, M.; Alexiew, D. Behaviour of geotextile-encased granular columns supporting test embankments on soft deposits. J. Geotech. Geoenviron. Eng. 2015, 141, 04014116. [Google Scholar] [CrossRef]
- Fahmi, S.K.; Kolosov, E.S.; Fattah, M.Y. Behavior of different materials for stone column construction. J. Eng. Appl. Sci. 2019, 14, 1162–1168. [Google Scholar]
- Han, J.; Ye, S.L. Simplified method for consolidation rate of stone column reinforced foundations. J. Geotech. Geoenviron. Eng. 2001, 127, 597–603. [Google Scholar] [CrossRef]
- Fattah, M.Y.; Shlash, K.T.; Al-Waily, M.J. Experimental evaluation of stress concentration ratio of model stone columns strengthened by additives. Int. J. Phys. Model. Geotech. 2013, 13, 79–98. [Google Scholar] [CrossRef]
- Fattah, M.Y.; Zabar, B.S.; Hassan, H.A. Soil arching analysis in embankments on soft clays reinforced by stone columns. Struct. Eng. Mech. 2015, 56, 507–534. [Google Scholar] [CrossRef]
- Han, J.; Ye, S.L. A theoretical solution for consolidation rates for stone column reinforced foundations accounting for smear and well resistance effects. Int. J. Geomech. 2002, 2, 135–151. [Google Scholar] [CrossRef]
- Sondermann, W. Ground improvement as alternative to piling—effective design solutions for heavily loaded structures. In Proceedings of the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Cairo, Egypt, 24–28 November 2018. [Google Scholar]
- Weber, T.M.; Plotze, M.; Laue, J.; Peschke, G.; Springman, S.M. Smear zone identification and soil properties around stone columns constructed in-flight in centrifuge model tests. Géotechnique 2010, 60, 197–206. [Google Scholar] [CrossRef]
- Indraratna, B.; Basack, S.; Rujikiatkamjorn, C. Numerical solution to stone column reinforced soft ground considering arching, clogging and smear effects. J. Geotech. Geoenviron. Eng. 2013, 139, 377–394. [Google Scholar] [CrossRef]
- Basack, S.; Indraratna, B.; Rujikiatkamjorn, C.; Siahaan, F. Modeling the stone column behavior in soft ground with special emphasis on lateral deformation. J. Geotech. Geoenviron. Eng. 2017, 143, 04017016. [Google Scholar] [CrossRef]
- Basack, S.; Indraratna, B.; Rujikiatkamjorn, C.; Siahaan, F. Stone column–stabilized soft-soil performance influenced by clogging and lateral deformation: Laboratory and numerical evaluation. Int. J. Geomech. 2018, 18, 04018058. [Google Scholar] [CrossRef]
- Basack, S.; Indraratna, B.; Rujikiatkamjorn, C. Modeling the performance of stone column reinforced soft ground under static and cyclic loads. J. Geotech. Geoenviron. Eng. 2016, 142, 04015067. [Google Scholar] [CrossRef]
- Basack, S.; Indraratna, B.; Rujikiatkamjorn, C. Analysis of the behaviour of stone column stabilized soft ground supporting transport infrastructure. Procedia Eng. 2016, 143, 347–354. [Google Scholar] [CrossRef]
- Basack, S.; Nimbalkar, S. Numerical solution of single pile subjected to torsional cyclic load. Int. J. Geomech. 2017, 17, 04017016. [Google Scholar] [CrossRef]
- Fattah, M.Y.; Majeed, Q.G. A Study on the behaviour of geogrid encased capped stone columns by the finite element method. Int. J. Geomate 2012, 3, 343–350. [Google Scholar] [CrossRef]
- Fattah, M.Y.; Zabar, B.S.; Hassan, H.A. An experimental analysis of embankment on stone columns. J. Eng. 2014, 20, 62–84. [Google Scholar]
- Remadna, A.; Benmebarek, S.; Benmebarek, N. Numerical analyses of the optimum length for stone column reinforced foundation. Int. J. Geosynth. Ground Eng. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Ng, K.S. Numerical study on bearing capacity of single stone column. Int. J. Geo-Eng. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Thakur, A.; Rawat, S.; Gupta, A.K. Experimental study of ground improvement by using encased stone columns. Innov. Infrastruct. Solut. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Christoulas, S.; Bouckovalas, G.; Giannaros, C. An experimental study on model stone columns. Soils Found. 2000, 40, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Bruno, T.L.; Marcio, S.S.A.; Iman, H. Field measured and simulated performance of a stone columns-strengthened soft clay deposit. Int. J. Geotech. Eng. 2022, 16, 776–785. [Google Scholar]
- Pandey, B.K.; Rajesh, S.; Chandra, S. Time-dependent behavior of embankment resting on soft clay reinforced with encased stone columns. Transp. Geotech. 2022, 36, 100809. [Google Scholar] [CrossRef]
- Ashour, S.; Ghataora, G.; Jefferson, I. Behaviour of model stone column subjected to cyclic loading. Transp. Geotech. 2022, 35, 100777. [Google Scholar] [CrossRef]
- Hamzh, A.; Mohamad, H.; Yusof, M.H.B. The effect of stone column geometry on soft soil bearing capacity. Int. J. Geotech. Eng. 2019, 16, 200–210. [Google Scholar] [CrossRef]
- Basack, S.; Goswami, G.; Khabbaz, H.; Karakouzian, M.; Baruah, P.; Kalita, N. A Comparative study on soil stabilization relevant to transport infrastructure using bagasse ash and stone dust and cost effectiveness. Civ. Eng. J. 2021, 7, 1947–1963. [Google Scholar] [CrossRef]
- Saxena, S.; Roy, L.B. The effect of geometric parameters on the strength of stone columns. Eng. Technol. Appl. Sci. Res. 2022, 12, 9028–9033. [Google Scholar] [CrossRef]
- Riccio, F.M.V.; Almeida, M.S.S.; Vasconcelos, S.M.; Pires, L.G.S.; Nicodemos, R.L.F. Embankment supported by low area replacement ratio stone columns, monitoring and numerical studies. KSCE J. Civ. Eng. 2022, 26, 619–629. [Google Scholar] [CrossRef]
- Doherty, J.P.; Gourvenec, S.; Gaone, F.M.; Pineda, J.A.; Kelly, R.B.; O’Loughlin, C.D.; Cassidy, M.J.; Sloan, S.W. A novel web based application for storing, managing and sharing geotechnical data, illustrated using the national soft soil field testing facility in Ballina, Australia. Comput. Geotech. 2017, 93, 3–8. [Google Scholar] [CrossRef]
- Wollongbar Planning and Environmental Study. Technical Report, NSW Spatial Services. 2017. Available online: https://ballina.nsw.gov.au/files/Wollongbar-Planning-and-Environmental-Study.pdf (accessed on 1 February 2022).
- Pineda, J.A.; Suwal, L.P.; Kelly, R.B.; Bates, L.; Sloan, S.W. Characterisation of Ballina clay. Géotechnique 2016, 66, 556–577. [Google Scholar] [CrossRef]
- Pineda, J.A.; Kelly, R.B.; Suwal, L.P.; Bates, L.; Sloan, S.W. The Ballina soft soil field testing facility. AIMS Geosci. 2019, 5, 509–534. [Google Scholar] [CrossRef]
- Xie, Z. Influence of Stone Column Installation on Consolidation Characteristics of Soft Clay. Bachelor’s Thesis, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia, 12 June 2016. [Google Scholar]
- Bharadwaj, S. Smear Zone Characterisation of Stone Column Reinforced Soft Ground. Master’s Thesis, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia, 21 December 2016. [Google Scholar]
- Basack, S.; Indraratna, B.; Rujikiatkamjorn, C. Effectiveness of stone column reinforcement for stabilizing soft ground with reference to transport infrastructure. Geotech. Eng. J. 2018, 49, 8–14. [Google Scholar]
- Basack, S.; Nimbalkar, S.; Karakouzian, M.; Bharadwaj, S.; Xie, Z.; Krause, N. Field installation effects of stone columns on load settlement characteristics of reinforced soft ground. Int. J. Geomech. 2022, 22, 04022004. [Google Scholar] [CrossRef]
- Brinkgreve, R.B.J.; Kumarswamy, S.; Swolfs, W.M. PLAXIS 2D (Version 2017) Reference Manual; Delft University of Technology and PLAXIS B.V.: Delft, The Netherlands, 2017. [Google Scholar]
- Basack, S.; Nimbalkar, S. Measured and predicted response of pile groups in soft clay subjected to cyclic lateral loading. Int. J. Geomech. 2018, 18, 04018073. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Y.; Hu, Z.; Xu, C.; Basack, S.; Ke, W. Utilization of horizontally buried hollow pipes for ground vibration mitigation in public transport infrastructure: An innovative technique. Int. J. Geomech. 2022, 22, 04022215. [Google Scholar] [CrossRef]
- Weber, T.M. Centrifuge modeling of ground improvement under embankments. Pollack Periodica 2006, 1, 3–15. [Google Scholar] [CrossRef]
- Marto, A.; Moradi, R.; Helmi, F.; Latifi, N. Performance analysis of reinforced stone columns using finite element method. Electron. J. Geotech. Eng. 2013, 18, 315–323. [Google Scholar]
- Castro, J. Modeling stone columns. Materials 2017, 10, 782. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Equivalent plane strain model of stone column reinforced foundation. IOP Conf. Ser. Earth Environ. Sci. 2021, 634, 012153. [Google Scholar] [CrossRef]
- Nimbalkar, S.; Basack, S. Pile group in clay under cyclic lateral loading with emphasis on bending moment: Numerical modelling. Mar. Georesources Geotechnol. 2022, 41, 269–284. [Google Scholar] [CrossRef]
- Keller. Vibro Ground Improvement; Keller Ground Engineering: Mumbai, India, 2022. [Google Scholar]
- Shehata, H.F.; Sorour, T.M.; Fayed, A.L. Effect of stone column installation on soft clay behaviour. Int. J. Geotech. Eng. 2021, 15, 530–542. [Google Scholar] [CrossRef]
- Barron, B.A. Consolidation of fine grained soil by drain wells. Trans. ASCE 1948, 113, 712–748. [Google Scholar]
- Basack, S.; Karami, M. and Karakouzian, M. Pile-soil interaction under cyclic lateral load in loose sand: Experimental and numerical evaluations. Soil Dyn. Earthq. Eng. 2022, 162, 107439. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Liu, Y.; Li, J.; Fang, Z.N. Does flooding get worse with subsiding land? Investigating the impacts of land subsidence on flood inundation from Hurricane Harvey. Sci. Total Environ. 2023, 865, 161072. [Google Scholar] [CrossRef]
Parameter | Value | Unit | |
---|---|---|---|
Average thickness of soft clay | 10 | m | |
Dry unit weight | 7–10 | kN/m3 | |
Moisture content | 30–107 | % | |
Particle size distribution | Clay | 78 | % |
Silt | 15 | % | |
Sand | 7 | % | |
Atterberg limit | Liquid limit | 36 | % |
Plastic limit | 19.1 | % | |
Shrinkage limit | 9.2 | % | |
Standard Proctor Compaction test | Maximum dry density | 13.9 | kN/m3 |
Optimum moisture content | 38.5 | % | |
Undrained shear strength parameters | Unit cohesion | 2.5–20 | kPa |
Friction angle | 0 | - | |
Consolidation parameters | Permeability | 1.0–1.1 | 10−9 m/s |
Volumetric compressibility | 5.0–5.1 | 10−5 m2/N |
Material | Parameter | Value | Unit | ||
---|---|---|---|---|---|
Embankment | Bulk unit weight | 21.1 | kN/m3 | ||
Moisture content | 21.5 | % | |||
Particle size distribution | Clay | 5 | % | ||
Silt | 40 | % | |||
Sand | 30 | % | |||
Gravel | 25 | % | |||
Standard Proctor compaction test | Maximum dry density | 17.86 | kN/m3 | ||
Optimum moisture content | 22.23 | % | |||
Drain shear strength parameters | Unit cohesion | 5 | kPa | ||
Friction angle | 38 | o | |||
Sand blanket | Average particle size | 0.6 | mm | ||
Dry unit weight | 20 | kN/m3 | |||
Friction angle (direct shear test) | 32 | o | |||
Gravel fill | Particle size | 40–80 | mm | ||
Friction angle (direct shear test) | 42 | o | |||
Dry unit weight | 22.76 | kN/m3 | |||
Crust | Particle size distribution | Clay | 22 | % | |
Silt | 23 | % | |||
Sand | 37 | % | |||
Gravel | 18 | % | |||
Unit weight | Bulk | 14.67 | kN/m3 | ||
Dry | 11.2 | kN/m3 | |||
Friction angle (direct shear test) | 29 | o | |||
Natural moisture content | 31 | % |
Column Radii, rc (m) | Area Replacement Ratio, Ar (%) |
---|---|
0.4 | 14.37 |
0.5 | 24.75 |
0.6 | 39.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basack, S.; Nimbalkar, S. Load-Settlement Characteristics of Stone Column Reinforced Soft Marine Clay Deposit: Combined Field and Numerical Studies. Sustainability 2023, 15, 7457. https://doi.org/10.3390/su15097457
Basack S, Nimbalkar S. Load-Settlement Characteristics of Stone Column Reinforced Soft Marine Clay Deposit: Combined Field and Numerical Studies. Sustainability. 2023; 15(9):7457. https://doi.org/10.3390/su15097457
Chicago/Turabian StyleBasack, Sudip, and Sanjay Nimbalkar. 2023. "Load-Settlement Characteristics of Stone Column Reinforced Soft Marine Clay Deposit: Combined Field and Numerical Studies" Sustainability 15, no. 9: 7457. https://doi.org/10.3390/su15097457
APA StyleBasack, S., & Nimbalkar, S. (2023). Load-Settlement Characteristics of Stone Column Reinforced Soft Marine Clay Deposit: Combined Field and Numerical Studies. Sustainability, 15(9), 7457. https://doi.org/10.3390/su15097457