Green Household Technology and Its Impacts on Environmental Sustainability in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
2.2.1. The Co-Integration Regression
2.2.2. The ARDL Model
2.2.3. The Error Correction Model (ECM)
2.2.4. The Non-Linear Autoregressive Distributed Lag (NARDL) Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, M.; Su, C.W.; Lobonţ, O.R.; Umar, M. Blockchain: A carbon-neutral facilitator or an environmental destroyer? Int. Rev. Econ. Financ. 2023, 86, 604–615. [Google Scholar] [CrossRef]
- Ramani, S.V.; Thutupalli, A. Emergence of controversy in technology transitions: Green Revolution and Bt cotton in India. Technol. Forecast. Soc. Chang. 2015, 100, 198–212. [Google Scholar] [CrossRef]
- Ullah, S.; Ozturk, I.; Majeed, M.T.; Ahmad, W. Do technological innovations have symmetric or asymmetric effects on environmental quality? Evidence from Pakistan. J. Clean. Prod. 2021, 316, 128239. [Google Scholar] [CrossRef]
- Yamano, N.; Guilhoto, J. CO2 Emissions Embodied in International Trade and Domestic Final Demand: Methodology and Results Using the OECD Inter-Country Input-Output Database; OECD Science, Technology and Industry Working Papers, No. 2020/11; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Sohail, M.T.; Ullah, S.; Majeed, M.T.; Usman, A. Pakistan management of green transportation and environmental pollution: A nonlinear ARDL analysis. Environ. Sci. Pollut. Res. 2021, 28, 29046–29055. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Ghoniem, A.F. Needs, resources and climate change: Clean and efficient conversion technologies. Prog. Energ. Combust. 2011, 37, 15–51. [Google Scholar] [CrossRef]
- Ozturk, I.; Ullah, S. Does digital financial inclusion matter for economic growth and environmental sustainability in OBRI economies? An empirical analysis. Resour. Conserv. Recycl. 2022, 185, 106489. [Google Scholar] [CrossRef]
- Malik, Y.; Prakash, N.; Kapoor, A. Green transport: A way forward for environmental sustainability. Environ. Polit. Soc. 2018, 25, 163–180. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, X.J.; Li, Y.M.; Maria, B.R. Blockchain market and green finance: The enablers of carbon neutrality in China. Energ. Econ. 2023, 118, 106501. [Google Scholar] [CrossRef]
- Shahbaz, M.; Sinha, A. Environmental Kuznets curve for CO2 emissions: A literature survey. J. Econ. Stud. 2019, 46, 106–168. [Google Scholar] [CrossRef]
- Vorobeva, D.; Scott, I.J.; Oliveira, T.; Neto, M. Adoption of new household waste management technologies: The role of financial incentives and pro-environmental behavior. J. Clean. Prod. 2022, 362, 132328. [Google Scholar] [CrossRef]
- Gui, X.C.; Gou, Z.H. Household energy technologies in New South Wales, Australia: Regional differences and renewables adoption rates. Renew. Sustain. Energy Rev. 2022, 160, 112290. [Google Scholar] [CrossRef]
- Rahmani, A.; Mashayekh, J.; Aboojafari, R.; Naeini, A.B. Determinants of households’ intention for investment in renewable energy projects. Renew. Energy 2023, 205, 823–837. [Google Scholar] [CrossRef]
- Wu, H.X.; Ge, Y.; Li, J.P. Uncertainty, time preference and households’ adoption of rooftop photovoltaic technology. Energy 2023, 276, 127468. [Google Scholar] [CrossRef]
- Ahmad, M.; Jabeen, G. Biogas technology adoption and household welfare perspectives for sustainable development. Energ. Policy 2023, 181, 113728. [Google Scholar] [CrossRef]
- Milovantseva, N. Are American households willing to pay a premium for greening consumption of Information and Communication Technologies? J. Clean. Prod. 2016, 127, 282–288. [Google Scholar] [CrossRef]
- Behera, P.; Haldar, A.; Sethi, N. Achieving carbon neutrality target in the emerging economies: Role of renewable energy and green technology. Gondwana Res. 2023, 121, 16–32. [Google Scholar] [CrossRef]
- Umme, H.; Cao, X.B.; Shahid, A. Investigating the impact of financial development on carbon emissions: Does the use of renewable energy and green technology really contribute to achieving low-carbon economies? Gondwana Res. 2023, 121, 472–485. [Google Scholar] [CrossRef]
- Tan, W.T.; Cao, T. Can green technology reduce carbon dioxide emissions? Evidence from G7 and BRICS countries. Heliyon 2023, 9, e15683. [Google Scholar] [CrossRef]
- Zhang, M.L.; Liu, Y. Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Sci. Total Environ. 2022, 838, 156463. [Google Scholar] [CrossRef]
- Chang, K.W.; Liu, L.L.; Luo, D.; Xing, K. The impact of green technology innovation on carbon dioxide emissions: The role of local environmental regulations. J. Environ. Manag. 2023, 340, 117990. [Google Scholar] [CrossRef] [PubMed]
- Saqib, N.; Dincă, G. Exploring the asymmetric impact of economic complexity, FDI, and green technology on carbon emissions: Policy stringency for clean-energy investing countries. Geosci. Front. 2023, 101671. [Google Scholar] [CrossRef]
- Shan, S.; Genç, S.Y.; Kamran, H.W.; Dinca, G. Role of green technology innovation and renewable energy in carbon neutrality: A sustainable investigation from Turkey. J. Environ. Manag. 2021, 294, 113004. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Y. What are the roles of green technology innovation and ICT employment in lowering carbon intensity in China? A city-level analysis of the spatial effects. Resour. Conserv. Recy. 2022, 186, 106550. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.; Sun, H.P.; Chen, B.; Wang, L. Optimization of carbon performance evaluation and its application to strategy decision for investment of green technology innovation. J. Environ. Manag. 2023, 325, 116593. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Li, L.M. Differential game model of carbon emission reduction decisions with two types of government contracts: Green funding and green technology. J. Clean. Prod. 2023, 389, 135847. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ansari, F.A.; Bauddh, K.; Singh, B.; Nema, A.K.; Pant, K.K. Harvesting of Microalgae for Biofuels: Comprehensive Performance Evaluation of Natural, Inorganic, and Synthetic Flocculants. In Green Technologies and Environmental Sustainability; Singh, R., Kumar, S., Eds.; Springer: New York, NY, USA, 2017; pp. 131–156. ISBN 978-3-319-50654-8. [Google Scholar] [CrossRef]
- Hou, S.B.; Yu, K.K.; Fei, R.L. How does environmental regulation affect carbon productivity? The role of green technology progress and pollution transfer. J. Environ. Manag. 2023, 345, 118587. [Google Scholar] [CrossRef]
- Xu, X.F.; Cui, X.D.; Zhang, Y.F.; Chen, X.Y.; Li, W.H. Carbon neutrality and green technology innovation efficiency in Chinese textile industry. J. Clean. Prod. 2023, 395, 136453. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Yao, Z.Y.; Zhong, K. Do environmental regulations of carbon emissions and air pollution foster green technology innovation: Evidence from China’s prefecture-level cities. J. Clean. Prod. 2022, 350, 131537. [Google Scholar] [CrossRef]
- Shao, X.F.; Zhong, Y.F.; Liu, W.; Li, R.Y.M. Modeling the effect of green technology innovation and renewable energy on carbon neutrality in N-11 countries? Evidence from advance panel estimations. J. Environ. Manag. 2021, 296, 113189. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In Festschrift in Honor of Peter Schmidt: Econometric Methods and Applications; Sickles, R.C., Horrace, W.C., Eds.; Springer: New York, NY, USA, 2014; pp. 281–314. ISBN 978-1-4899-8008-3. [Google Scholar] [CrossRef]
- Theising, E.; Wied, D. Monitoring cointegration in systems of cointegrating relationships. Economet. Stat. 2023. [Google Scholar] [CrossRef]
- Chen, X.H.; Wohlfarth, P.; Smith, R.P. China’s money demand in a cointegrating vector error correction model. J. Asian Econ. 2021, 75, 101338. [Google Scholar] [CrossRef]
- Le Clech, N.; Guevara-Pérez, J.C.; Urdaneta-Camacho, R. Human capital and non-renewable natural resources in Latin America and the Caribbean: ‘Is it a curse or a blessing’? Sustainability 2023, 15, 11875. [Google Scholar] [CrossRef]
- Madziwa, L.; Pillalamarry, M.; Chatterjee, S. Integrating stochastic mine planning model with ARDL commodity price forecasting. Resour. Policy 2023, 85, 104014. [Google Scholar] [CrossRef]
- Koondhar, M.A.; Aziz, N.; Tan, Z.X.; Yang, S.X.; Abbasi, K.R.; Kong, R. Green growth of cereal food production under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM models. Sustain. Energy Technol. Assess. 2021, 47, 101452. [Google Scholar] [CrossRef]
- Goswami, A.; Kapoor, H.S.; Jangir, R.K.; Ngigi, C.N.; Nowrouzi-Kia, B.; Chattu, V.K. Impact of economic growth, trade openness, urbanization and energy consumption on carbon emissions: A study of India. Sustainability 2023, 15, 9025. [Google Scholar] [CrossRef]
- Xin, L.; Ahmad, M.; Murshed, M. Toward next-generation green solar cells and environmental sustainability: Impact of innovation in photovoltaic energy generation, distribution, or transmission-related technologies on environmental sustainability in the United States. Environ. Sci. Pollut. Res. 2022, 29, 89662–89680. [Google Scholar] [CrossRef] [PubMed]
- Velayutham, E. Does clean energy reduce environmental pollution under the environmental kuznets curve hypothesis in Sri Lanka? Sustainability 2023, 15, 10983. [Google Scholar] [CrossRef]
- Bertelli, S.; Vacca, G.; Zoia, M. Bootstrap cointegration tests in ARDL models. Econ. Model. 2022, 116, 105987. [Google Scholar] [CrossRef]
- Voumik, L.C.; Ridwan, M. Impact of FDI, industrialization, and education on the environment in Argentina: ARDL approach. Heliyon 2023, 9, e12872. [Google Scholar] [CrossRef]
- Noorunnahar, M.; Mila, F.A.; Haque, F.T.I. Does the supply response of maize suffer from climate change in Bangladesh? Empirical evidence using ARDL approach. J. Agr. Food Res. 2023, 14, 100667. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.Y.; Zhou, F.; Li, J.L.; Zhou, D.M.; Cen, G.Z.; Ma, J.; Zhu, X.Y. Spatiotemporal changes of agricultural water footprint and its driving factors using the ARDL model in the Hexi corridor, China. J. Arid Environ. 2023, 213, 104966. [Google Scholar] [CrossRef]
- Awan, A.G.; Yaqoob, R. Economic value of introducing technology to improve productivity: An ARDL approach. Innov. Green Dev. 2023, 2, 100069. [Google Scholar] [CrossRef]
- Akinyemi, Y.C. Air cargo demand in Africa: Application of cointegration and error correction modelling techniques. J. Air Transp. Manag. 2023, 109, 102399. [Google Scholar] [CrossRef]
- Tian, Y.S.; Cheng, T.; Yang, D.P.; Zheng, R. An efficient error-correction model to investigate the rotational structure and microwave spectrum of Ar–AgF complex. Chem. Phys. 2022, 559, 111545. [Google Scholar] [CrossRef]
- Yin, S.; Liu, H.; Duan, Z. Hourly PM2.5 concentration multi-step forecasting method based on extreme learning machine, boosting algorithm and error correction model. Digit. Signal Process. 2021, 118, 103221. [Google Scholar] [CrossRef]
- Zhu, S.L.; Sun, J.N.; Liu, Y.F.; Lu, M.M.; Liu, X.R. The air quality index trend forecasting based on improved error correction model and data preprocessing for 17 port cities in China. Chemosphere 2020, 252, 126474. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.L.; Chen, L.J.; Zhong, R.Y.; Weng, H.T. Marine economic growth, technological innovation, and industrial upgrading: A vector error correction model for China. Ocean Coastal Manag. 2021, 200, 105481. [Google Scholar] [CrossRef]
- Lin, Y.C.; Park, S.D. Effects of FDI, external trade, and human capital of the ICT industry on sustainable development in Taiwan. Sustainability 2023, 15, 11467. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Salem, L.B.; Nouira, R.; Jeguirim, K.; Rault, X. The determinants of crude oil prices: Evidence from ARDL and nonlinear ARDL approaches. Resour. Policy 2022, 79, 103085. [Google Scholar] [CrossRef]
- Soliman, A.M.; Lau, C.K.; Cai, Y.F.; Sarker, P.K.; Dastgir, S. The asymmetric effects of energy inflation, agri-inflation and CPI on agricultural output: Evidence from the NARDL and SVAR models in the UK. Energ. Econ. 2023, 126, 106920. [Google Scholar] [CrossRef]
- Sun, Q.L.; Zhang, Z.Y. Can art hedge against economic policy uncertainty?: New insights through the NARDL model. Financ. Res. Lett. 2023, 54, 103706. [Google Scholar] [CrossRef]
- Zhu, X.H.; Niu, Z.B.; Zhang, H.W.; Huang, J.X.; Zuo, X.G. Can gold and bitcoin hedge against the COVID-19 related news sentiment risk? New evidence from a NARDL approach. Resour. Policy 2022, 79, 103098. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.M.; Kawsar, N.H.; Ariff, M.; Masih, M. Does implied volatility (or fear index) affect Islamic stock returns and conventional stock returns differently? Wavelet-based granger-causality, asymmetric quantile regression and NARDL approaches. J. Int. Financ. Mark. Inst. Money 2022, 77, 101532. [Google Scholar] [CrossRef]
- Chang, C.L.; Fang, M. Impact of a sharing economy and green energy on achieving sustainable economic development: Evidence from a novel NARDL model. J. Innov. Knowl. 2023, 8, 100297. [Google Scholar] [CrossRef]
- Ahmad, W.; Ozturk, I.; Majeed, M.T. How do remittances affect environmental sustainability in Pakistan? Evidence from NARDL approach. Energy 2022, 243, 122726. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Wei, J.G. The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation. Renew. Energy 2020, 159, 827–842. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, X.F. Role of environmental emissions on work engagement in industrial sectors: An exploratory study of the workforce, resource planning, and environmental performance in sustainable development. Resour. Policy 2023, 85, 103874. [Google Scholar] [CrossRef]
- Ny Avotra, A.A.R.; Nawaz, A. Asymmetric impact of transportation on carbon emissions influencing SDGs of climate change. Chemosphere 2023, 324, 138301. [Google Scholar] [CrossRef]
- Demir, E.; Simonyan, S.; García-Gómez, C.D.; Lau, C.K.M. The asymmetric effect of bitcoin on altcoins: Evidence from the nonlinear autoregressive distributed lag (NARDL) model. Financ. Res. Lett. 2021, 40, 101754. [Google Scholar] [CrossRef]
- Idowu, O.F.; Adedoyin, F.F.; Bekun, F.V.; Balsalobre-Lorente, D. Modeling the environmental implications of car ownership and energy consumption in the UK: Evidence from NARDL model. Int. J. Sustain. Transp. 2022, 16, 1097–1109. [Google Scholar] [CrossRef]
- Liang, C.C.; Troy, C.; Rouyer, E.U.S. uncertainty and Asian stock prices: Evidence from the asymmetric NARDL model. N. Am. J. Econ. Financ. 2020, 51, 101046. [Google Scholar] [CrossRef]
- Rahaman, S.K.; Chen, F.Z.; Jiang, G.H. The asymmetric impact of renewable energy consumption on the economic growth of emerging South and East Asian countries: A NARDL approach. Heliyon 2023, 9, e186569. [Google Scholar] [CrossRef]
- Guo, M.; Nowakowska-Grunt, J.; Gorbanyov, V.; Egorova, M. Green technology and sustainable development: Assessment and green growth frameworks. Sustainability 2020, 12, 6571. [Google Scholar] [CrossRef]
- Cao, X.; Dai, X.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energ. Build. 2016, 128, 198–213. [Google Scholar] [CrossRef]
- Husain, S.; Sohag, K.; Wu, Y. The response of green energy and technology investment to climate policy uncertainty: An application of twin transitions strategy. Technol. Soc. 2022, 71, 102132. [Google Scholar] [CrossRef]
- Song, M.; Wang, S.; Zhang, H. Could environmental regulation and R&D tax incentives affect green product innovation? J. Clean. Prod. 2020, 258, 120849. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Kporsu, A.K.; Sarkodie, S.A.; Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation and knowledge spillover. Technol. Forecast. Soc. Chang. 2021, 167, 120659. [Google Scholar] [CrossRef]
- Pang, L.D.; Zhu, M.N.; Yu, H.Y. Is green finance really a blessing for green technology and carbon efficiency? Energ. Econ. 2022, 114, 106272. [Google Scholar] [CrossRef]
Authors | Objects | Variables | Methods | Conclusions |
---|---|---|---|---|
Behera et al. [18] | 18 emerging economies | environmentally efficient technology; carbon emissions | cross-sectional auto-regressive distributed lag (CS-ARDL) model | green technology significantly mitigates carbon emissions in the short and long term |
Umme et al. [19] | E7 countries | registered patents related to the environment; carbon emission | cross-sectional dependence test; Panel Granger causality test | green technology decreases carbon emissions in the long term |
Tan and Cao [20] | G7 and BRICS countries | patent counts of green technology; CO2 emissions and CO2 intensity | panel random and fixed effect models | a single type of green technological innovation exerts no significant effect on emission reduction, while the interaction of two types is significant |
Zhang and Liu [21] | China | the amount of green patent; carbon emission efficiency | panel fixed effect model | The synergistic effect of digital finance and green technological innovation promotes local carbon emission efficiency but suppresses it in surrounding cities |
Chang et al. [22] | China | total green patent count; CO2 emissions | panel fixed effect model | green knowledge innovation plays an essential role in decreasing CO2 emissions |
Saqib and Dincӑ [23] | Leading countries in renewable energy investment | patents on environment technology; carbon emissions | cointegration tests; causality test | green technology is negatively correlated with carbon emissions |
Shan et al. [24] | Turkey | registered patents related to the environment; carbon emissions per capita | bootstrapping bound ARDL test | green technological innovation declines carbon emissions |
Sun [25] | China | green patents; carbon emissions | spatial econometric model | green technological innovation not only reduces local carbon intensity but also imposes spatial spillover effects |
Liu et al. [26] | HJ company | HJ company’s green technology innovation investment; carbon performance | nonlinear regression model | green technological innovation is an efficient way to improve carbon performance |
Chen and Li [27] | – | – | differential game model | emission reduction efficiency brought about by green technology is worse than green funds when it exceeds a certain threshold |
Variables | Definitions | Sources | Mean | Median | Maximum | Minimum | Std. Dev. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
DCO2 | CO2 emissions (tonnes, millions) | WDI | 8.522 | 8.555 | 9.186 | 7.855 | 0.496 | −0.127 | 1.410 |
HT | Access to clean fuels and technologies for cooking (% of the population) | WDI | 3.919 | 3.917 | 4.374 | 3.305 | 0.311 | −0.302 | 2.135 |
Internet | Individuals using the internet (% of the population) | WDI | 1.863 | 2.945 | 4.254 | −5.307 | 2.758 | −1.389 | 3.829 |
FD | Domestic credit to the private sector (% of GDP) | WDI | 4.809 | 4.795 | 5.209 | 4.433 | 0.194 | 0.181 | 2.439 |
EDU | School enrollment, tertiary (% gross) | WDI | 2.944 | 3.025 | 4.068 | 1.479 | 0.819 | −0.374 | 1.951 |
DF-GLS | PP | |||||
---|---|---|---|---|---|---|
I (0) | I (1) | Decision | I (0) | I (1) | Decision | |
DCO2 | −1.456 | −2.987 *** | I (1) | −0.278 | −2.875 * | I (1) |
HT | −0.023 | −1.654 * | I (1) | −0.234 | −4.251 *** | I (1) |
Internet | −0.954 | −1.785 * | I (1) | −5.652 *** | I (0) | |
FD | −0.187 | −1.674 * | I (1) | −0.621 | −3.854 *** | I (1) |
EDU | −2.354 ** | I (0) | −2.678 * | I (0) |
DCO2 | HT | |||||||
---|---|---|---|---|---|---|---|---|
Dimension | BDS Statistic | S.E | z-Stat | Prob. | BDS Statistic | S.E | z-Stat | Prob. |
2 | 0.192 | 0.009 | 20.36 | 0.000 | 0.196 | 0.009 | 20.92 | 0.000 |
3 | 0.318 | 0.015 | 20.77 | 0.000 | 0.327 | 0.015 | 21.29 | 0.000 |
4 | 0.402 | 0.019 | 21.65 | 0.000 | 0.414 | 0.019 | 22.03 | 0.000 |
5 | 0.455 | 0.020 | 23.07 | 0.000 | 0.478 | 0.020 | 23.70 | 0.000 |
6 | 0.490 | 0.019 | 25.15 | 0.000 | 0.523 | 0.020 | 26.09 | 0.000 |
ARDL | NARDL | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | S.E | t-Stat | Prob. | Variable | Coefficient | S.E | t-Stat | Prob. |
Short-term | |||||||||
HT | −0.086 | 0.180 | −0.478 | 0.641 | HT_POS | −0.251 ** | 0.122 | −2.057 | 0.046 |
Internet | −0.041 | 0.031 | −1.323 | 0.213 | HT_POS (−1) | −0.043 | 0.173 | −0.249 | 0.809 |
Internet (−1) | −0.023 | 0.049 | −0.469 | 0.642 | HT_NEG | −0.062 | 0.116 | −0.534 | 0.601 |
Internet (−2) | −0.097 *** | 0.034 | −2.853 | 0.010 | Internet | −0.006 ** | 0.003 | −2.000 | 0.045 |
EDU | −0.262 * | 0.136 | −1.926 | 0.076 | Internet (−1) | −0.054 | 0.064 | −0.844 | 0.414 |
EDU (−1) | −0.054 | 0.179 | −0.302 | 0.768 | EDU | −0.118 | 0.143 | −0.825 | 0.428 |
FD | 0.344 *** | 0.117 | 2.940 | 0.009 | EDU (−1) | −0.069 | 0.172 | −0.401 | 0.694 |
FD (−1) | 0.153 | 0.109 | 1.404 | 0.183 | FD | 0.190 * | 0.109 | 1.743 | 0.098 |
Long-term | |||||||||
HT | −0.598 * | 0.313 | −1.911 | 0.095 | HT_POS | −0.741 *** | 0.223 | −3.323 | 0.006 |
Internet | −0.154 ** | 0.066 | −2.333 | 0.047 | HT_NEG | −0.474 ** | 0.225 | −2.107 | 0.047 |
EDU | −0.496 | 0.531 | −0.934 | 0.386 | Internet | −0.262 * | 0.135 | −1.941 | 0.074 |
FD | −0.279 * | 0.162 | −1.722 | 0.100 | EDU | −0.149 | 0.111 | −1.342 | 0.203 |
C | −6.029 ** | 2.577 | −2.340 | 0.048 | FD | −0.223 * | 0.122 | −1.828 | 0.099 |
C | −9.646 *** | 1.998 | −4.828 | 0.000 |
ARDL | NARDL | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Coefficient | S.E | t-Stat | Prob. | Coefficient | S.E | t-Stat | Prob. |
F-test | 13.21 *** | 9.658 *** | ||||||
ECM (−1) * | −0.254 *** | 0.021 | −12.11 | 0.000 | −0.194 *** | 0.033 | −5.922 | 0.000 |
LM | 1.652 | 2.012 | ||||||
BP | 0.302 | 1.650 | ||||||
RESET | 0.320 | 0.021 | ||||||
CUSUM | S | S | ||||||
CUSUM-sq | S | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Zhang, J.-W.; Wang, Y.; Chang, H.-L.; Su, C.-W. Green Household Technology and Its Impacts on Environmental Sustainability in China. Sustainability 2023, 15, 12919. https://doi.org/10.3390/su151712919
Meng Q, Zhang J-W, Wang Y, Chang H-L, Su C-W. Green Household Technology and Its Impacts on Environmental Sustainability in China. Sustainability. 2023; 15(17):12919. https://doi.org/10.3390/su151712919
Chicago/Turabian StyleMeng, Qin, Jing-Wen Zhang, Yunxu Wang, Hsu-Ling Chang, and Chi-Wei Su. 2023. "Green Household Technology and Its Impacts on Environmental Sustainability in China" Sustainability 15, no. 17: 12919. https://doi.org/10.3390/su151712919
APA StyleMeng, Q., Zhang, J. -W., Wang, Y., Chang, H. -L., & Su, C. -W. (2023). Green Household Technology and Its Impacts on Environmental Sustainability in China. Sustainability, 15(17), 12919. https://doi.org/10.3390/su151712919