Decision Support Systems Based on Gaseous Emissions and Their Impact on the Sustainability Assessment at the Livestock Farm Level: An Evaluation from the User’s Side
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of DS Tools
2.2. DS Tools’ Classification
2.3. Evaluation of DS Tools
2.3.1. Descriptive Evaluation
2.3.2. Checklists
3. Results
3.1. Descriptive Evaluation
3.1.1. Criterion 1: Degree of Accessibility
3.1.2. Criterion 2: User-Friendliness
3.1.3. Criterion 3: Stakeholders
3.1.4. Criterion 4: Sustainability Assessment Methodology
3.1.5. Criterion 5: Modeling Aspects
3.2. Checklists
3.2.1. Inputs of DS Tools
Soil-Related Inputs
Crop-Related Inputs
Climate-Related Inputs
Livestock-Related Inputs
3.2.2. Outputs of DS Tools
4. Discussion
4.1. Aims of Using a Gas-Emission-Based DS Tool
4.2. Current Use of DSSs in the Livestock Sector
4.3. Assurance of Wider Use of Emission-Based DSSs
4.4. Benefits from the Use of Emission-Based DS Tools
4.5. Weaknesses of the Emission-Based DS Tools
4.6. Addition of This Work to the Current State of the Art
4.7. Considerations for a Prototype GHG-Based DS Tool
5. Conclusions
- Clearly defined system boundaries;
- The utilization of recently published emission estimation algorithms (e.g., the 2019 refinement of the IPCC 2006 Guidelines and Tier 2 methodologies) and region-specific emission factors;
- The inclusion of GHG and NH3 emissions;
- The integration of mitigation options spanning all emission sources at the farm level (including control over feed crop production, if managed by the livestock farmer) and the consideration of soil carbon sequestration within the context of the nitrogen (N) and carbon (C) cycles.
- Feature an online user interface;
- Provide ease of access;
- Target inexperienced users while offering comprehensive usage guidelines and methodological transparency;
- Seek input from stakeholders prior to release;
- Demonstrate multinational applicability;
- Disseminate information through guidance documentation;
- Employ scenario analysis, contribution analysis, and progress tracking as a decision support approach;
- Present the impact on sustainability using a scoring system;
- Address strategies for mitigating farm-level emissions.
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. N2O Emissions From Managed Soils, and CO2 Emissions From Lime and Urea Application. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; pp. 1–48. [Google Scholar]
- FAO. Greenhouse gas emissions from agrifood systems. In Global, Regional and Country Trends, 2000–2020; FAOSTAT Analytical Brief Series No. 50; FAO: Rome, Italy, 2022. [Google Scholar]
- FAO. Faostat Database. License: CC BY-NC-SA 3.0 IGO. Available online: https://www.fao.org/faostat/en/#data/GT (accessed on 21 August 2023).
- Caro, D.; Davis, S.J.; Bastianoni, S.; Caldeira, K. Global and Regional Trends in Greenhouse Gas Emissions from Livestock. Clim. Chang. 2014, 126, 203–216. [Google Scholar] [CrossRef]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Campbell, C.A.; McConkey, B.G.; Nemecek, T.; et al. A Comparison of Methods to Quantify Greenhouse Gas Emissions of Cropping Systems in LCA. J. Clean. Prod. 2018, 172, 4010–4017. [Google Scholar] [CrossRef]
- Reisinger, A.; Clark, H. How Much Do Direct Livestock Emissions Actually Contribute to Global Warming? Glob. Chang. Biol. 2018, 24, 1749–1761. [Google Scholar] [CrossRef]
- 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 27 July 2023).
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and Climate Change: Impact of Livestock on Climate and Mitigation Strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Technical Climate Change 2014, Synthesis Report; IPCC: Geneva, Switzerland, 2015.
- FAO. SAFA Guidelines; FAO: Rome, Italy, 2014; ISBN 978-92-5-108485-4. [Google Scholar]
- Schils, R.L.M.; Ellis, J.L.; de Klein, C.A.M.; Lesschen, J.P.; Petersen, S.O.; Sommer, S.G. Mitigation of Greenhouse Gases from Agriculture: Role of Models. Acta Agric. Scand. A Anim. Sci. 2012, 62, 212–224. [Google Scholar] [CrossRef]
- Leahy, S.; Clark, H.; Reisinger, A. Challenges and Prospects for Agricultural Greenhouse Gas Mitigation Pathways Consistent With the Paris Agreement. Front. Sustain. Food Syst. 2020, 4, 69. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Vibart, R.; de Klein, C.; Jonker, A.; van der Weerden, T.; Bannink, A.; Bayat, A.R.; Crompton, L.; Durand, A.; Eugène, M.; Klumpp, K.; et al. Challenges and Opportunities to Capture Dietary Effects in On-Farm Greenhouse Gas Emissions Models of Ruminant Systems. Sci. Total Environ. 2021, 769, 144989. [Google Scholar] [CrossRef]
- Rotz, C.A. Modeling Greenhouse Gas Emissions from Dairy Farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef]
- Jantke, K.; Hartmann, M.J.; Rasche, L.; Blanz, B.; Schneider, U.A. Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers. Land 2020, 9, 130. [Google Scholar] [CrossRef]
- Aryal, J.P.; Rahut, D.B.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A. Climate Change Mitigation Options among Farmers in South Asia. Environ. Dev. Sustain. 2020, 22, 3267–3289. [Google Scholar] [CrossRef]
- Arulnathan, V.; Heidari, M.D.; Doyon, M.; Li, E.; Pelletier, N. Farm-Level Decision Support Tools: A Review of Methodological Choices and Their Consistency with Principles of Sustainability Assessment. J. Clean. Prod. 2020, 256, 120410. [Google Scholar] [CrossRef]
- De Olde, E.M.; Oudshoorn, F.W.; Sørensen, C.A.G.; Bokkers, E.A.M.; De Boer, I.J.M. Assessing Sustainability at Farm-Level: Lessons Learned from a Comparison of Tools in Practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- de Olde, E.M.; Bokkers, E.A.M.; de Boer, I.J.M. The Choice of the Sustainability Assessment Tool Matters: Differences in Thematic Scope and Assessment Results. Ecol. Econ. 2017, 136, 77–85. [Google Scholar] [CrossRef]
- de Olde, E.M.; Oudshoorn, F.W.; Bokkers, E.A.M.; Stubsgaard, A.; Sørensen, C.A.G.; de Boer, I.J.M. Assessing the Sustainability Performance of Organic Farms in Denmark. Sustainability 2016, 8, 957. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmad, S.; Waldrip, H.M.; Ramin, M.; Raza, M.A. Whole Farm Modeling: A Systems Approach to Understanding and Managing Livestock for Greenhouse Gas Mitigation, Economic Viability and Environmental Quality. In Animal Manure: Production, Characteristics, Environmental Concerns, and Management; ASA: Branchburg, NJ, USA, 2020; pp. 345–371. [Google Scholar] [CrossRef]
- Kanter, D.R.; Musumba, M.; Wood, S.L.R.; Palm, C.; Antle, J.; Balvanera, P.; Dale, V.H.; Havlik, P.; Kline, K.L.; Scholes, R.J.; et al. Evaluating Agricultural Trade-Offs in the Age of Sustainable Developme. Agric. Syst. 2018, 163, 73–88. [Google Scholar] [CrossRef]
- MacPherson, J.; Paul, C.; Helming, K. Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models. Sustainability 2020, 12, 6617. [Google Scholar] [CrossRef]
- Coteur, I.; Wustenberghs, H.; Debruyne, L.; Lauwers, L.; Marchand, F. How Do Current Sustainability Assessment Tools Support Farmers’ Strategic Decision Making? Ecol. Indic. 2020, 114, 106298. [Google Scholar] [CrossRef]
- Pelletier, N. Sustainability Indicators, Tools, and Reporting Systems for Agri-Food Products. In Produced for Alberta Agriculture and Forestry by Global Ecologic Environmental Consulting and Management Services; Government of Alberta: Edmonton, AB, Canada, 2015; p. 195. [Google Scholar]
- Huysegoms, L.; Cappuyns, V. Critical Review of Decision Support Tools for Sustainability Assessment of Site Remediation Options. J. Environ. Manag. 2017, 196, 278–296. [Google Scholar] [CrossRef]
- De Otálora, X.D.; Del Prado, A.; Dragoni, F.; Estellés, F.; Amon, B. Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems. Sustainability 2021, 13, 6332. [Google Scholar] [CrossRef]
- Keller, E.; Chin, M.; Chorkulak, V.; Clift, R.; Faber, Y.; Lee, J.; King, H.; Milà i Canals, L.; Stabile, M.; Stickler, C.; et al. Footprinting Farms: A Comparison of Three GHG Calculators. Greenh. Gas Meas. Manag. 2014, 4, 90–123. [Google Scholar] [CrossRef]
- Colomb, V.; Bernoux, M.; Bockel, L.; Chotte, J.-L.; Martin, S.; Martin-Phipps, C.; Mousset, J.; Tinlot, M.; Touchemoulin, O. Review of GHG Calculators in Agriculture and Forestry Sectors; FAO: Rome, Italy, 2012. [Google Scholar]
- Thumba, D.A.; Lazarova-Molnar, S.; Niloofar, P. Data-Driven Decision Support Tools for Reducing Ghg Emissions from Livestock Production Systems: Overview and Challenges. In Proceedings of the 2020 7th International Conference on Internet of Things: Systems, Management and Security, IOTSMS 2020, Paris, France, 14–16 December 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA. [Google Scholar]
- Tuomisto, H.L.; de Camillis, C.; Leip, A.; Nisini, L.; Pelletier, N.; Haastrup, P. Development and Testing of a European Union-Wide Farm-Level Carbon Calculator. Integr. Environ. Assess. Manag. 2015, 11, 404–416. [Google Scholar] [CrossRef]
- Colomb, V.; Touchemoulin, O.; Bockel, L.; Chotte, J.L.; Martin, S.; Tinlot, M.; Bernoux, M. Selection of Appropriate Calculators for Landscape-Scale Greenhouse Gas Assessment for Agriculture and Forestry. Environ. Res. Lett. 2013, 8, 015023. [Google Scholar] [CrossRef]
- Macsween, K.; Feliciano, D. Comparison of Online Greenhouse Gas Accounting Tools for Agriculture Six Tools That Support the Assessment of Climate Change Mitigation in the Land Use Sector; CGIAR Research Program on Climate Change, Agriculture and Food Security: Wageningen, The Netherlands, 2018. [Google Scholar]
- Sykes, A.J.; Topp, C.F.E.; Wilson, R.M.; Reid, G.; Rees, R.M. A Comparison of Farm-Level Greenhouse Gas Calculators in Their Application on Beef Production Systems. J. Clean. Prod. 2017, 164, 398–409. [Google Scholar] [CrossRef]
- Whittaker, C.; McManus, M.C.; Smith, P. A Comparison of Carbon Accounting Tools for Arable Crops in the United Kingdom. Environ. Model. Softw. 2013, 46, 228–239. [Google Scholar] [CrossRef]
- Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Baroutaji, A.; Olabi, A.G. Environmental Impact of Desalination Processes: Mitigation and Control Strategies. Sci. Total Environ. 2020, 740, 140125. [Google Scholar] [CrossRef]
- Green, A.; Lewis, K.A.; Tzilivakis, J.; Warner, D.J. Agricultural Climate Change Mitigation: Carbon Calculators as a Guide for Decision Making. Int. J. Agric. Sustain. 2017, 15, 645–661. [Google Scholar] [CrossRef]
- Ershadi, S.Z.; Dias, G.; Heidari, M.D.; Pelletier, N. Improving Nitrogen Use Efficiency in Crop-Livestock Systems: A Review of Mitigation Technologies and Management Strategies, and Their Potential Applicability for Egg Supply Chains. J. Clean. Prod. 2020, 265, 121671. [Google Scholar] [CrossRef]
- Sykes, A.J.; Topp, C.F.E.; Rees, R.M. Understanding Uncertainty in the Carbon Footprint of Beef Production. J. Clean. Prod. 2019, 234, 423–435. [Google Scholar] [CrossRef]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical Options for the Mitigation of Direct Methane and Nitrous Oxide Emissions from Livestock: A Review. Animal 2013, 7 (Suppl. 2), 220–234. [Google Scholar] [CrossRef]
- Ouatahar, L.; Bannink, A.; Lanigan, G.; Amon, B. Modelling the Effect of Feeding Management on Greenhouse Gas and Nitrogen Emissions in Cattle Farming Systems. Sci. Total Environ. 2021, 776, 145932. [Google Scholar] [CrossRef]
- Kumar, R.; Karmakar, S.; Minz, A.; Singh, J.; Kumar, A.; Kumar, A. Assessment of Greenhouse Gases Emission in Maize-Wheat Cropping System Under Varied N Fertilizer Application Using Cool Farm Tool. Front. Environ. Sci. 2021, 9, 3559. [Google Scholar] [CrossRef]
- Hillier, J.; Walter, C.; Malin, D.; Garcia-Suarez, T.; Mila-i-Canals, L.; Smith, P. A Farm-Focused Calculator for Emissions from Crop and Livestock Production. Environ. Model. Softw. 2011, 26, 1070–1078. [Google Scholar] [CrossRef]
- Lata, S.; Kohli, A.; Singh, Y.K.; Shambhavi, S.; Ghosh, M.; Gupta, S.K. Estimation of Greenhouse Gas Emissions in Rice Based Cropping Systems under Fertigation Using Cool Farm Tool. J. Soil Water Conserv. 2020, 19, 26. [Google Scholar] [CrossRef]
- Morel, P.C.H.; Wheeler, D.M.; Barugh, I.W. Description of an Outdoor Pig Module for OVERSEER; Massey University: Palmerston North, New Zealand, 2016. [Google Scholar]
- Murphy, P.; Crosson, P.; O’Brien, D.; Schulte, R.P. The Carbon Navigator: A Decision Support Tool to Reduce Greenhouse Gas Emissions from Livestock Production Systems. Animal 2013, 7 (Suppl. 2), 427–436. [Google Scholar] [CrossRef] [PubMed]
- Christen, O.; Deumelandt, P.; Erdle, K.; Packeiser, M.; Reinicke, F.; Daniels-Spangenberg, H. Von Dlg Expert Knowledge Series; DLG Committee: Frankfurt, Germany, 2013; Volume 369. [Google Scholar]
- Uwizeye, A.; de Boer, I.J.M.; Opio, C.I.; Schulte, R.P.O.; Falcucci, A.; Tempio, G.; Teillard, F.; Casu, F.; Rulli, M.; Galloway, J.N.; et al. Nitrogen Emissions along Global Livestock Supply Chains. Nat. Food 2020, 1, 437–446. [Google Scholar] [CrossRef]
- MacLeod, M.J.; Vellinga, T.; Opio, C.; Falcucci, A.; Tempio, G.; Henderson, B.; Makkar, H.; Mottet, A.; Robinson, T.; Steinfeld, H.; et al. Invited Review: A Position on the Global Livestock Environmental Assessment Model (GLEAM). Animal 2018, 12, 383–397. [Google Scholar] [CrossRef]
- Vetter, S.H.; Malin, D.; Smith, P.; Hillier, J. The Potential to Reduce GHG Emissions in Egg Production Using a GHG Calculator —A Cool Farm Tool Case Study. J. Clean. Prod. 2018, 202, 1068–1076. [Google Scholar] [CrossRef]
- Gayatri, S.; Gasso-tortajada, V.; Vaarst, M. Assessing Sustainability of Smallholder Beef Cattle Farming in Indonesia: A Case Study Using the FAO SAFA Framework. J. Sustain. Dev. 2016, 9, 236. [Google Scholar] [CrossRef]
- Cammarata, M.; Timpanaro, G.; Scuderi, A. Assessing Sustainability of Organic Livestock Farming in Sicily: A Case Study Using the Fao Safa Framework. Agriculture 2021, 11, 274. [Google Scholar] [CrossRef]
- Pérez-Lombardini, F.; Mancera, K.F.; Suzán, G.; Campo, J.; Solorio, J.; Galindo, F. Assessing Sustainability in Cattle Silvopastoral Systems in the Mexican Tropics Using the Safa Framework. Animals 2021, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Pinxterhuis, J.B.; Edwards, J.P. Comparing Nitrogen Management on Dairy Farms-Canterbury Case Studies. J. N. Z. Grassl. 2018, 80, 201–206. [Google Scholar] [CrossRef]
- Curran, M.; Lazzarini, G.; Baumgart, L.; Gabel, V.; Blockeel, J.; Epple, R.; Stolze, M.; Schader, C. Representative Farm-Based Sustainability Assessment of the Organic Sector in Switzerland Using the SMART-Farm Tool. Front. Sustain. Food Syst. 2020, 4, 554362. [Google Scholar] [CrossRef]
- Berbeć, A.K.; Feledyn-Szewczyk, B.; Thalmann, C.; Wyss, R.; Grenz, J.; Kopiński, J.; Stalenga, J.; Radzikowski, P. Assessing the Sustainability Performance of Organic and Low-Input Conventional Farms from Eastern Poland with the RISE Indicator System. Sustainability 2018, 10, 1792. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Henry Janzen, H.; Little, S.M.; McAllister, T.A.; McGinn, S.M. Life Cycle Assessment of Greenhouse Gas Emissions from Beef Production in Western Canada: A Case Study. Agric. Syst. 2010, 103, 371–379. [Google Scholar] [CrossRef]
- Mc Geough, E.J.; Little, S.M.; Janzen, H.H.; McAllister, T.A.; McGinn, S.M.; Beauchemin, K.A. Life-Cycle Assessment of Greenhouse Gas Emissions from Dairy Production in Eastern Canada: A Case Study. J. Dairy Sci. 2012, 95, 5164–5175. [Google Scholar] [CrossRef] [PubMed]
- Kiggundu, N.; Ddungu, S.P.; Wanyama, J.; Cherotich, S.; Mpairwe, D.; Zziwa, E.; Mutebi, F.; Falcucci, A. Greenhouse Gas Emissions from Uganda’s Cattle Corridor Farming Systems. Agric. Syst. 2019, 10, 176. [Google Scholar] [CrossRef]
- Ran, Y.; Lannerstad, M.; Barron, J.; Fraval, S.; Paul, B.K.; Notenbaert, A.; Mugatha, S.; Herrero, M. A Review of Environmental Impact Assessment Frameworks for Livestock Production Systems; Stockholm Environment Institute: Stockholm, Sweden, 2015. [Google Scholar]
- Bernoux, M.; Bockel, L.; Branca, G.; Colomb, V.; Gentien; Tinlot, M. EX-Ante Carbon-Balance Tool (EX-ACT) Technical Guidelines for Version 4 for the Food and Agriculture Organization of the United Nations, FAO Resources for Policy Making the EX-Ante Carbon-Balance Tool; FAO: Rome, Italy, 2011; ISBN 9789251067819. [Google Scholar]
- Branca, G.; Medeiros, K. Estimating Mitigation Potential of Agricultural Projects: An Application of the EX-Ante Carbon-Balance Tool (EX-ACT) in Brazil; FAO: Rome, Italy, 2010. [Google Scholar]
- Breitschuh, T.; Breitschuh, G.; Eckert, H.; Gernand, U.; Geyer, M. Betriebsbewertungssystem KSNL—Anwendung und Ausgewählte Kriterien; KTBL: Darmstadt, Germany, 2019; pp. 1–15. [Google Scholar]
- Grenz, J.; Mainiero, R.; Schoch, M.; Sereke, F.; Stalder, S.; Thalmann, C.; Wyss, R. RISE 3.0—Manual; Bern University of Applied Sciences: Bern, Switzerland, 2018; p. 113. [Google Scholar]
- Grenz, J.; Thalmann, C.; Heeb, L.; Schoch, M.; Kaufmann, M.; Wyss, R. RISE 3.0—Software Manual; Bern University of Applied Sciences: Bern, Switzerland, 2016. [Google Scholar]
- Alexandropoulos, E.; Anestis, V.; Bartzanas, T. Farm-Scale Greenhouse Gas Emissions’ Decision Support Systems. Eng. Proc. 2021, 9, 22. [Google Scholar] [CrossRef]
- Hales, B.M.; Pronovost, P.J. The Checklist-a Tool for Error Management and Performance Improvement. J. Crit. Care 2006, 21, 231–235. [Google Scholar] [CrossRef]
- Martin, G.; Moraine, M.; Ryschawy, J.; Magne, M.A.; Asai, M.; Sarthou, J.P.; Duru, M.; Therond, O. Crop–Livestock Integration beyond the Farm Level: A Review. Agron. Sustain. Dev. 2016, 36, 53. [Google Scholar] [CrossRef]
- Alexandropopoulos, E.; (Agricultural University of Athens, Athens, Greece); Anestis, V.; (Agricultural University of Athens, Athens, Greece); Hutchings, N.; (Aarhus University, Aarhus, Denmark). Personal Communication, 2022.
- Ordinance on the Application of Fertilisers, Soil Additives, Cultivation Substrates and Plant Auxiliaries in Accordance with the Principles of Good Fertilising Practice. Federal Law Gazette, Volume 2007, Part I, No. 7, Bonn, North Rhine-Westphalia, Germany, 5 March 2007. Available online: http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl107s0221.pdf (accessed on 24 August 2023).
- EMEP. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2009; Technical Report No.6/2009; European Monitoring and Evaluation Programme: Geneva, Switzerland, 2009. [Google Scholar]
- Baek, C.Y.; Park, K.H.; Tahara, K.; Chun, Y.Y. Data Quality Assessment of the Uncertainty Analysis Applied to the Greenhouse Gas Emissions of a Dairy Cow System. Sustainability 2017, 9, 1676. [Google Scholar] [CrossRef]
- Howard, P.J.A.; Howard, D.M. Use of Organic Carbon and Loss-on-Ignition to Estimate Soil Organic Matter in Different Soil Types and Horizons. Biol. Fertil. Soils 1990, 9, 306–310. [Google Scholar] [CrossRef]
- FAO. GAEZ Definitions; FAO: Rome, Italy, 2012. [Google Scholar]
- Prendiville, R.; Pierce, K.M.; Delaby, L.; Buckley, F. Animal Performance and Production Efficiencies of Holstein-Friesian, Jersey and Jersey × Holstein-Friesian Cows throughout Lactation. Livest. Sci. 2011, 138, 25–33. [Google Scholar] [CrossRef]
- Castells, L.; Bach, A.; Araujo, G.; Montoro, C.; Terré, M. Effect of Different Forage Sources on Performance and Feeding Behavior of Holstein Calves. J. Dairy Sci. 2012, 95, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-H.; Yoon, J.T.; Lee, J.H.; Kim1, C.K.; Chung1, Y.C.; Kim, C.-H. Effects of Milk Production, Season, Parity and Lactation Period on Variations of Milk Urea Nitrogen Concentration and Milk Components of Holstein Dairy Cows. J. Anim. Sci. 2004, 17, 479–484. [Google Scholar] [CrossRef]
- Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.; Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V. Decision Support Tools for Agriculture: Towards Effective Design and Delivery. Agric. Syst. 2016, 149, 165–174. [Google Scholar] [CrossRef]
- Rose, D.C.; Morris, C.; Lobley, M.; Winter, M.; Sutherland, W.J.; Dicks, L.V. Exploring the Spatialities of Technological and User Re-Scripting: The Case of Decision Support Tools in UK Agriculture. Geoforum 2018, 89, 11–18. [Google Scholar] [CrossRef]
- Lundström, C.; Lindblom, J. Considering Farmers’ Situated Knowledge of Using Agricultural Decision Support Systems (AgriDSS) to Foster Farming Practices: The Case of CropSAT. Agric. Syst. 2018, 159, 9–20. [Google Scholar] [CrossRef]
- Meul, M.; van Middelaar, C.E.; de Boer, I.J.M.; van Passel, S.; Fremaut, D.; Haesaert, G. Potential of Life Cycle Assessment to Support Environmental Decision Making at Commercial Dairy Farms. Agric. Syst. 2014, 131, 105–115. [Google Scholar] [CrossRef]
- Howitt, M.; McManus, J. Stakeholder Management: An Instrument for Decision Making. Manag. Serv. 2012, 56, 29–34. [Google Scholar]
- Reiter, D.; Meyer, W.; Parrott, L. Stakeholder Engagement with Environmental Decision Support Systems: The Perspective of End Users. Can. Geogr. 2019, 63, 631–642. [Google Scholar] [CrossRef]
- Mackrell, D.; Kerr, D.; von Hellens, L. A Qualitative Case Study of the Adoption and Use of an Agricultural Decision Support System in the Australian Cotton Industry: The Socio-Technical View. Decis. Support Syst. 2009, 47, 143–153. [Google Scholar] [CrossRef]
- Cheung, K.L.; Evers, S.M.A.A.; Hiligsmann, M.; Vokó, Z.; Pokhrel, S.; Jones, T.; Muñoz, C.; Wolfenstetter, S.B.; Józwiak-Hagymásy, J.; de Vries, H. Understanding the Stakeholders’ Intention to Use Economic Decision-Support Tools: A Cross-Sectional Study with the Tobacco Return on Investment Tool. Health Policy 2016, 120, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. The Role of Sensors, Big Data and Machine Learning in Modern Animal Farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Groher, T.; Heitkämper, K.; Umstätter, C. Digital Technology Adoption in Livestock Production with a Special Focus on Ruminant Farming. Animal 2020, 14, 2404–2413. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci. 2019, 7, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Ingram, J.; Gaskell, P. Reflections on Co-Constructing a Digital Adviser with Stakeholders in Agriculture and Forestry. In Proceedings of the European IFSA Symposium, Chania, Greece, 1–5 July 2018; p. 1. [Google Scholar]
- Rose, D.C.; Parker, C.; Fodey, J.; Park, C.; Sutherland, W.J.; Dicks, L.V. Involving Stakeholders in Agricultural Decision Support Systems: Improving User-Centred Design. Int. J. Agric. Manag. 2018, 6, 80–89. [Google Scholar]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A Scoping Review on Incentives for Adoption of Sustainable Agricultural Practices and Their Outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Kilpatrick, S. Education and Training: Impacts on Farm Management Practice. J. Agric. Educ. Ext. 2000, 7, 105–116. [Google Scholar] [CrossRef]
- Jithin Das, V.; Sharma, S.; Kaushik, A. Views of Irish Farmers on Smart Farming Technologies: An Observational Study. AgriEngineering 2019, 1, 164–187. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision Support Systems for Agriculture 4.0: Survey and Challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A Review on Dairy Cattle Farming: Is Precision Livestock Farming the Compromise for an Environmental, Economic and Social Sustainable Production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Rotz, C.A.; Asem-Hiablie, S.; Place, S.; Thoma, G. Environmental Footprints of Beef Cattle Production in the United States. Agric. Syst. 2019, 169, 1–13. [Google Scholar] [CrossRef]
- Pardo, G.; del Prado, A.; Fernández-Álvarez, J.; Yáñez-Ruiz, D.R.; Belanche, A. Influence of Precision Livestock Farming on the Environmental Performance of Intensive Dairy Goat Farms. J. Clean. Prod. 2022, 351, 131518. [Google Scholar] [CrossRef]
- Sala, S.; Cerutti, A.K.; Pant, R. Development of a Weighting Approach for the Environmental Footprint; Publications Office of the European Union: Luxembourg, 2018. [CrossRef]
- Crenna, E.; Secchi, M.; Benini, L.; Sala, S. Global Environmental Impacts: Data Sources and Methodological Choices for Calculating Normalization Factors for LCA. Int. J. Life Cycle Assess. 2019, 24, 1851–1877. [Google Scholar] [CrossRef]
- Vandyck, T.; Keramidas, K.; Tchung-Ming, S.; Weitzel, M.; Van Dingenen, R. Quantifying Air Quality Co-Benefits of Climate Policy across Sectors and Regions. Clim. Chang. 2020, 163, 1501–1517. [Google Scholar] [CrossRef]
- Bachmann, T.M. Considering Environmental Costs of Greenhouse Gas Emissions for Setting a CO2 Tax: A Review. Sci. Total Environ. 2020, 720, 137524. [Google Scholar] [CrossRef]
- Cool Farm Alliance Cool Farm Tool. Available online: https://coolfarmtool.org/ (accessed on 10 July 2023).
- Cool Farm Alliance Cool Farm Guidance. Available online: https://coolfarm.org/resources/ (accessed on 10 July 2023).
- Aarhus University FarmAC. Available online: https://www.farmac.dk/ (accessed on 10 July 2023).
- Aarhus University FarmAC. Guidance. Available online: https://web04.agro.au.dk/projectnet/farmac/Pages/FarmAC%20users%20guide%20v3.htm (accessed on 10 July 2023).
- Overseer Limited Overseer. Available online: https://www.overseer.org.nz/ (accessed on 10 July 2023).
- Overseer Limited Overseer Support and Training. Available online: https://www.overseer.org.nz/support-and-training (accessed on 10 July 2023).
- Bord Bia BORD BIA. Available online: https://qas.bordbia.ie/Login.aspx?ReturnUrl=%2F (accessed on 10 July 2023).
- Τeagasc; Bord Bia. The Carbon Navigator Dairy. 2019. Available online: https://www.teagasc.ie/publications/2019/the-dairy-carbon-navigator.php (accessed on 10 July 2023).
- Buckley, C.; Donnellan, T.; Dillon, E.; Hanrahan, K.; Moran, B.; Ryan, M.; Curley, A.; Deane, L.; Delaney, L.; Harnett, P.; et al. Teagasc National Farm Survey 2017 Sustainability Report; Athenry, Co.: Galway, Ireland, 2019; ISBN 978-1-84170-650-4. [Google Scholar]
- Teagasc The Carbon Navigator Beef. Available online: https://www.teagasc.ie/publications/2019/the-beef-carbon-navigator.php (accessed on 10 July 2023).
- Effenberger, M.; Gödeke, K.; Grebe, S.; Haenel, H.-D.; Hansen, A.; Häußermann, U.; Kätsch, S.; Lasar, A.; Nyfeler-Brunner, A.; Osterburg, B.; et al. Berechnungsstandard Für Einzelbetriebliche Klimabilanzen (BEK) in Der Landwir; KTBL: Darmstadt, Germany, 2016. [Google Scholar]
- KTBL AG BEK (2016): Berechnungsstandard Für Einzelbetriebliche Klimabilanzen (BEK) in Der Landwirtschaft. Berechnungsparameter Für Einzelbetriebliche Klimabilanzen. Darmstadt, Kuratorium Für Technik Und Bauwesen in Der Landwirtschaft (KTBL). Available online: https://www.ktbl.de/themen/bek (accessed on 10 July 2023).
- FAO. SAFA. Available online: http://www.fao.org/nr/sustainability/sustainability-assessments-safa/safa-tool/en/ (accessed on 10 July 2023).
- FAO. Food and Agricultural Organization of United Nations: Sustainability Pathways; FAO: Rome, Italy, 2016; Volume 45. [Google Scholar]
- DLG e.V. DLG. Available online: https://www.dlg-nachhaltigkeit.info/de/ (accessed on 10 July 2023).
- Goverment of Canada HOLOS. Available online: https://agriculture.canada.ca/en/agricultural-production/holos-software-program (accessed on 10 July 2023).
- FAO EX-ACT. Available online: https://www.fao.org/in-action/epic/ex-act-tool/suite-of-tools/ex-act/en/ (accessed on 10 July 2023).
- Grewer, U.; Bockel, L.; Schiettecatte, L.-S.; Bernoux, M. Ex-Ante Carbon-Balance Tool (EX-ACT); FAO: Rome, Italy, 2017. [Google Scholar]
- FAO. GLEAM 2, 2016. Global Livestock Environmental Assessment Model; FAO: Rome, Italy, 2018. [Google Scholar]
DS Tool | Availability | Registration Required |
---|---|---|
Cool Farm Tool v2.0 | Freeware; online * | Yes |
FarmAC v1.8 | Open-source code; online | Yes; registration to be approved by developers |
Overseer v5.4 | License purchase required for full use (with Beta mode); Online | Yes |
Carbon Navigator—Dairy/Beef | Freeware—developer’s permission login; online | Yes; registration to be approved by developers |
KSNL-Kriteriensystem Nachhaltige Landwirtschaft | License purchase required; online | Yes; registration to be approved by developers |
SAFA v2.2.41 | Free; for downloading | Yes |
RISE v3.0-Response-Inducing Sustainability Evaluation | License purchase required; for downloading or online use | Yes; registration to be approved by developers |
BEK v1.0-Berechnungsstandard für einzelbetriebliche Klimabilanzen in der Landwirtschaft | Freeware; for downloading or online use | No |
DLG-Nachhaltigkeitsstandard (based on REPRO) | License purchase required (without beta mode); not online | Yes; registration to be approved by developers |
HOLOS v4.0 | Freeware; for downloading | No |
EX-ACT v9.0 | Freeware; for downloading | No |
GLEAM v2.0 (GLEAM-I) | Freeware; online | No |
DS Tool | Sub-Criteria | |||||
---|---|---|---|---|---|---|
Level of Expertise | Degree of Simplicity | Presentation of Results | Available Results for Downloading or Saving | Data-Entry Error Management | Design of User Interface | |
Cool Farm Tool v2.0 | Inexperienced | Simple | Aggregated; graphical | Yes (saved on webpage) | Easy | Smaller weaknesses |
FarmAC v1.8 | Expert | Complex | Aggregated | Yes (MS Excel, XML, HTML) | Difficult | Larger weaknesses |
Overseer v5.4 | Inexperienced | Simple | Aggregated; graphical | Yes (MS Excel) | Easy | Smaller weaknesses |
Carbon Navigator—Dairy/Beef | Inexperienced | Simple | Aggregated; graphical | Yes (MS Excel) | Easy | Smaller weaknesses |
KSNL—Kriteriensystem Nachhaltige Landwirtschaft | Experienced | Semi-simple | Aggregated; graphical; scores | Yes (PDF, MS Excel) | Easy | Smaller weaknesses |
SAFA v2.2.41 | Inexperienced | Simple | Aggregated; scores; graphical | Yes (XML, HTML) | Easy | Smaller weaknesses |
RISE v3.0—Response-Inducing Sustainability Evaluation | Experienced | Simple | Aggregated; scores; graphical | Yes (MS Word) | Easy | Smaller weaknesses |
BEK v1.0—Berechnungsstandard für einzelbetriebliche Klimabilanzen in der Landwirtschaft | Experienced | Simple | Aggregated (carbon footprint); tabular | Yes (MS Excel) | Easy | Smaller weaknesses |
DLG-Nachhaltigkeitsstandard (based on REPRO) | Experienced | Simple | Aggregated; graphical | Yes (XML, TXT, CSV, GML) | Easy | Smaller weaknesses |
HOLOS v4.0 | Experienced | Simple | Aggregated; graphical | Yes (MS Excel) | Easy | Smaller weaknesses |
EX-ACT v9.0 | Experienced | Simple | Aggregated; graphical | Yes (MS Excel) | Easy | Smaller weaknesses |
GLEAM v2.0 (GLEAM-I) | Experienced | Simple | Aggregated; graphical | Yes (MS Excel) | Easy | Smaller weaknesses |
DS Tool | Sub-Criteria | ||
---|---|---|---|
Agriculture Sub-Sector Represented | Target Group | Stakeholders’ Involvement | |
Cool Farm Tool v2.0 | Livestock: Dairy cattle, pigs, beef cattle, sheep, goats, camels, horses, rabbits, chickens, turkeys, buffalo, ducks; Crops: Arable, rice, potatoes | Agri-food sector; researchers, farmers, consultants | Tested by stakeholders; semi-involved |
FarmAC v1.8 | Livestock: Pig, cattle; Crops: Arable | Researchers, university students, higher-level education users | The tool developers also use the tool for their research needs; not involved |
Overseer v5.4 | Livestock: Dairy, sheep, beef, deer, goats, outdoor pigs; Crops: Grains, vegetables, seeds; Trees: Kiwifruit, apples, grapes, avocados, peaches | Agri-food sector, researchers, farmers, consultants, clients | Not involved |
Carbon Navigator—Dairy/Beef | Dairy cattle | Consultants, recorders, researchers, clients | Many stakeholders have linked their systems with the Carbon Navigator including, but not limited to, the Irish Cattle Breeding Federation, Bord Bia, the DAFM, and milk and meat processors |
KSNL—Kriteriensystem Nachhaltige Landwirtschaft | Crop and livestock production | Farm consultants | Not involved |
SAFA v2.2.41 | Crop and livestock production | Researchers, farmers, consultants | NE * |
RISE v3.0—Response-Inducing Sustainability Evaluation | Crop and livestock production | Clients, especially farm managers, consultants | NE * |
BEK v1.0—Berechnungsstandard für einzelbetriebliche Klimabilanzen in der Landwirtschaft | Crop and livestock production | Not public; suitable for farm consultants | Not involved |
DLG-Nachhaltigkeitsstandard (based on REPRO) | Crop and livestock production | Clients (farmers, farmer advisors, agricultural value chain, public) | NE * |
HOLOS v4.0 | Livestock: Beef cattle, dairy cattle, swine, sheep, poultry, other animals; Crops: Annual, perennials, fallow areas, grasslands, tree planting | Researchers, farmers, consultants | Involved |
EX-ACT v9.0 | Livestock: Dairy cattle, pigs, beef cattle, sheep, goats, camels, horses, poultry, buffalo, other livestock; Crops: Arable, rice, potatoes, soybeans, beans, pulses | Researchers, farmers, consultants | Not involved |
GLEAM v2.0 (GLEAM-I) | Livestock: Dairy cattle, pigs, beef cattle, sheep, goats, buffalo, poultry | Anyone familiar with the agri-food sector, researchers, farmers, consultants | Not involved |
DS Tool | Sub-Criteria | ||||
---|---|---|---|---|---|
Level of Sustainability Assessment | Types of Gas Emissions (Farm Level) | GHG Emissions’ Estimation Methodology | NH3 Emissions’ Estimation Methodology | Decision Support Approach | |
Cool Farm Tool v2.0 | Pillars: Multi-pillar (economic, environmental); Indicators: Multi-indicator | N2O, CH4, CO2, CO2 eq | IPCC 2006 | No | Scenario analysis, contribution analysis, progress monitoring, action plans, knowledge transfer, comparative assessment |
FarmAC v1.8 | Pillars: Single-pillar (environmental); Indicators: Multi-indicator | NH3 and N2O, CH4, CO2, CO2 eq | IPCC 2006 | IPCC 2006 and EMEP [70] | Scenario analysis, knowledge transfer, contribution analysis, progress monitoring |
Overseer v5.4 | Pillars: Multi-pillar (economic, environmental); Indicators: Multi-indicator | N2O, CH4, CO2, CO2 eq | Overseer and IPCC 2006 | No | Scenario analysis, contribution analysis, progress monitoring, action plans, knowledge transfer, comparative assessment |
Carbon Navigator—Dairy/Beef | Pillars: Multi-pillar (environmental, economic); Indicators: Multi-indicator | N2O, CH4, CO2, CO2 eq | IPCC 2006 | No | Progress monitoring, comparative assessment, scenario analysis, knowledge transfer |
KSNL—Kriteriensystem Nachhaltige Landwirtschaft | Pillars: Multi-pillar (environmental, economic, social); Indicators: Multi-indicator | NH3 and N2O, CH4, CO2, CO2 eq | KSNL, IPCC 2006, and environmental sustainability impact | German fertilizer ordinance (2007) [71] | Contribution analysis, scenario analysis, progress monitoring, comparative assessment, action plans, knowledge transfer |
SAFA v2.2.41 | Pillars: Multi-pillar (environmental, economic, governance, social); Indicators: Multi-indicator | No output provided | FAO Guidance (SAFA guidance), only environmental sustainability impact | No | Contribution analysis, progress monitoring, comparative assessment, action plans, knowledge transfer |
RISE v3.0—Response-Inducing Sustainability Evaluation | Pillars: Multi-pillar (environmental, economic, social); Indicators: Multi-indicator | NH3 risk, N2O, CH4, CO2, CO2 eq | RISE, IPCC 2006, and environmental sustainability impact | RISE for the ammonia risk | Contribution analysis, progress monitoring, comparative assessment, action plans, knowledge transfer |
BEKv1.0—Berechnungsstandard für einzelbetriebliche Klimabilanzen in der Landwirtschaft | Pillars: Single-pillar (environmental); Indicators: GHG and NH3 emissions | NH3 and N2O, CH4, CO2, CO2 eq | BEK and IPCC 2006 | EMEP (2009) [72] | Contribution analysis, scenario analysis, knowledge transfer |
DLG-Nachhaltigkeitsstandard (based on REPRO) | Pillars: Multi-pillar (environmental, economic, social); Indicators: Multi-indicator | N2O, CH4, CO2, CO2 eq | REPRO model, N2O based on IPCC 1996 | No | Contribution analysis, progress monitoring, comparative assessment, action plans, knowledge transfer |
HOLOS v4.0 | Pillars: Multi-pillar (environmental, economic); Indicators: Multi-indicator | NH3 and N2O, CH4, CO2, CO2eq | IPCC 2006 | HOLOS 4 and IPCC 2006 | Scenario analysis, contribution analysis, progress monitoring, knowledge transfer, comparative assessment |
EX-ACT v9.0 | Pillars: Single-pillar (environmental); Indicators: Multi-indicator | N2O, CH4, CO2, CO2 eq | IPCC 2006, 2019 refinement of the IPCC 2006 | No | Scenario analysis, contribution analysis, progress monitoring, comparative assessment, knowledge transfer |
GLEAM v2.0 (GLEAM-I) | Pillars: Single-pillar (environmental); Indicators: GHG emissions | N2O, CH4, CO2, CO2 eq | IPCC 2006 | No | Scenario analysis, contribution analysis, progress monitoring, comparative assessment, knowledge transfer |
DS Tool | Sub-Criteria | ||
---|---|---|---|
Software | Type of Modeling | Modeling Method Transparency | |
Cool Farm Tool v2.0 | Online: User interface based on Excel sheets. | Quantitative approach | Semi-transparent |
FarmAC v1.8 | Online: Internet browser (C, HTML). | Quantitative approach | Transparent |
Overseer v5.4 | Online | Quantitative approach | Transparent |
Carbon Navigator—Dairy/Beef | Online | Quantitative approach | Semi-transparent |
KSNL—Kriteriensystem Nachhaltige Landwirtschaft | Online | Semi-quantitative approach | Semi-transparent |
SAFA v2.2.41 | Offline: Downloading from website (HTML, JavaScript, CSS). | Semi-quantitative approach | Transparent |
RISE v3.0—Response-Inducing Sustainability Evaluation | Online: Only Internet Explorer; Offline: Downloading from website (HTML). | Semi-quantitative approach | Semi-transparent |
BEK v1.0—Berechnungsstandard für einzelbetriebliche Klimabilanzen in der Landwirtschaft | Offline, Excel tool | Quantitative approach | Transparent |
DLG-Nachhaltigkeitsstandard (based on REPRO) | Offline tool | Semi-quantitative approach | Transparent |
HOLOS v4.0 | Offline: Downloading from website. Provides synchronization with databases. | Quantitative approach | Transparent |
EX-ACT v9.0 | Offline: Based on Excel sheets. | Quantitative approach | Transparent |
GLEAM v2.0 (GLEAM-I) | Online | Quantitative approach | Transparent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandropoulos, E.; Anestis, V.; Dragoni, F.; Hansen, A.; Cummins, S.; O’Brien, D.; Amon, B.; Bartzanas, T. Decision Support Systems Based on Gaseous Emissions and Their Impact on the Sustainability Assessment at the Livestock Farm Level: An Evaluation from the User’s Side. Sustainability 2023, 15, 13041. https://doi.org/10.3390/su151713041
Alexandropoulos E, Anestis V, Dragoni F, Hansen A, Cummins S, O’Brien D, Amon B, Bartzanas T. Decision Support Systems Based on Gaseous Emissions and Their Impact on the Sustainability Assessment at the Livestock Farm Level: An Evaluation from the User’s Side. Sustainability. 2023; 15(17):13041. https://doi.org/10.3390/su151713041
Chicago/Turabian StyleAlexandropoulos, Evangelos, Vasileios Anestis, Federico Dragoni, Anja Hansen, Saoirse Cummins, Donal O’Brien, Barbara Amon, and Thomas Bartzanas. 2023. "Decision Support Systems Based on Gaseous Emissions and Their Impact on the Sustainability Assessment at the Livestock Farm Level: An Evaluation from the User’s Side" Sustainability 15, no. 17: 13041. https://doi.org/10.3390/su151713041
APA StyleAlexandropoulos, E., Anestis, V., Dragoni, F., Hansen, A., Cummins, S., O’Brien, D., Amon, B., & Bartzanas, T. (2023). Decision Support Systems Based on Gaseous Emissions and Their Impact on the Sustainability Assessment at the Livestock Farm Level: An Evaluation from the User’s Side. Sustainability, 15(17), 13041. https://doi.org/10.3390/su151713041