Experimental Method to Estimate the Density of Passengers on Urban Railway Platforms
Abstract
:1. Introduction
2. Passengers’ Interaction in the Boarding and Alighting Process
3. Experimental Method of Detection and Estimation of Density
3.1. Area of Interest
3.2. Detection of Passengers
3.3. Feet Projection
3.4. Voronoi Polygons
4. Results
4.1. Experimental Set-Up
4.2. Passenger Detection and Error Calculations
4.3. Voronoi Polygons and Density Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawhney, M. Infrastructure of life: Public address, listening and crowds in the Delhi metro and Kumbh. Media Cult. Soc. 2022, 44, 341–361. [Google Scholar] [CrossRef]
- Seriani, S.; Fujiyama, T.; Holloway, C. Exploring the pedestrian level of interaction on platform conflict areas at metro stations by real-scale laboratory experiments. Transp. Plan. Technol. 2017, 40, 100–118. [Google Scholar] [CrossRef]
- Seriani, S.; Fernandez, R. Pedestrian traffic management of boarding and alighting in metro stations. Res. Part C Emerg. Technol. 2015, 53, 76–92. [Google Scholar] [CrossRef]
- Seriani, S.; de Ana Rodríguez, G.; Holloway, C. The combined effect of platform edge doors and level access on the boarding and alighting process in the London Underground. Transp. Res. Rec. 2017, 2648, 60–67. [Google Scholar] [CrossRef]
- Metro de Santiago. Memoria Anual Metro de Santiago, Chile. 2019. Available online: https://www.metro.cl/corporativo/memoria (accessed on 15 September 2020). (In Spanish).
- Basnak, P.; Giesen, R.; Muñoz, J.C. Estimation of crowding factors for public transport during the COVID-19 pandemic in Santiago, Chile. Transp. Res. Part A Policy Pract. 2022, 159, 140–156. [Google Scholar] [CrossRef]
- RSSB. Platform Train Interface Strategy; Rail Safety and Standards Board: London, UK, 2015. [Google Scholar]
- TfL. Report 12. Transport for London, United Kingdom. 2019. Available online: http://content.tfl.gov.uk/travel-in-london-report-12.pdf (accessed on 19 September 2020).
- Still, K. Introduction to Crowd Science; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- TRB. Highway Capacity Manual 2000, Special Report 209; Transportation Research Board: Washington, DC, USA, 2000. [Google Scholar]
- TRB. Transit Capacity and Level of Service Manual, 2nd ed.; TCRP Report 100; Transportation Research Board: Washington, DC, USA, 2003. [Google Scholar]
- RSSB. T-426 Minimisation of accidents at the train platform interface. In Rail Safety and Standards Board Final Report; RSSB: London, UK, 2006. [Google Scholar]
- Yuting, H. Strategies for Improving Public Transportation Accessibility in Beijing’s Urban Regeneration from an Inclusive Perspective: Inspirations from Paris’s Experience. China City Plan. Rev. 2021, 30, 54–61. [Google Scholar]
- Seriani, S.; Fernandes, V.A.; Moraga, P.; Cortes, F. Experimental Location of the Vertical Handrail to Improve the Accessibility of Wheelchair Passengers Boarding and Alighting at Metro Stations—A Pilot Study. Sustainability 2022, 14, 9224. [Google Scholar] [CrossRef]
- Ferrari, L.; Berlingerio, M.; Calabrese, F.; Reades, J. Improving the accessibility of urban transportation networks for people with disabilities. Transp. Res. Part C Emerg. Technol. 2014, 45, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.; Chung, S.; Jang, K. Effects of built environment in subway stations on pedestrian injuries. J. Transp. Health 2022, 26, 101389. [Google Scholar] [CrossRef]
- NACTO. Streets for Pandemic Response & Recovery; National Association of City Transportation Officials: New York, NY, USA, 2020; Available online: https://nacto.org/wp-content/uploads/2020/05/NACTO_Streets-for-Pandemic-Response-and-Recovery_2020-05-21.pdf (accessed on 15 September 2020).
- MINVU. Guía Para La Demarcación De Veredas Con Distanciamiento; Ministry of Housing and Urbanisation: Santiago, Chile, 2020; Available online: https://www.minvu.cl/beneficio/ciudad/guia-para-la-demarcacion-de-veredas-con-distanciamiento/ (accessed on 15 September 2020). (In Spanish)
- Fruin, J.J. Designing for pedestrians: A level-of-service concept. Highw. Res. Rec. 1971, 377, 1–15. [Google Scholar]
- MINVU. Manual de Recomendaciones para el Diseño de Elementos de Infraestructura Vial Urbana; Ministry of Housing and Urbanisation: Santiago, Chile, 2010; Available online: http://www.sectra.gob.cl/biblioteca/detalle1.asp?mfn=2820 (accessed on 19 September 2020). (In Spanish)
- Aashtiani, H.Z.; Irvani, H. Application of dwell time functions in transit assignment models. Transp. Res. Rec. 2002, 1817, 88–92. [Google Scholar] [CrossRef]
- Harris, N.G. Train boarding and alighting rates at high passenger loads. J. Adv. Transp. 2006, 40, 249–263. [Google Scholar] [CrossRef]
- Wiggenraad, P.B.L. Alighting and Boarding Times of Passengers at Dutch Railway Stations—Analysis of Data Collected at 7 Stations in October 2000; TRAIL Research School, Delft University of Technology: Delft, The Netherlands, 2001. [Google Scholar]
- Heinz, W. Passenger Service Times on Trains-Theory, Measurements and Models. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2003. [Google Scholar]
- Tirachini, A. Bus dwell time: The effect of different fare collection systems, bus floor level and age of passengers. Transp. A Transp. Sci. 2013, 9, 28–49. [Google Scholar] [CrossRef]
- Currie, G.; Delbosc, A.; Gelfand, S.; Sarvi, M. Exploring the impact of crowding and stop design on streetcar dwell time. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013. [Google Scholar]
- Christoforou, Z.; Chandakas, E.; Kaparias, I. An analysis of dwell time and reliability in urban light rail systems. In Proceedings of the Transportation Research Board 95th Annual Meeting, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Li, D.; Daamen, W.; Goverde, R.M. Estimation of train dwell time at short stops based on track occupation event data: A study at a Dutch railway station. J. Adv. Transp. 2016, 50, 877–896. [Google Scholar] [CrossRef] [Green Version]
- D’Acierno, L.; Botte, M.; Placido, A.; Caropreso, C.; Montella, B. Methodology for determining dwell times consistent with passenger flows in the case of metro services. Urban Rail Transit 2017, 3, 73–89. [Google Scholar] [CrossRef]
- Yazdani, D.; Omidvar, M.N.; Deplano, I.; Lersteau, C.; Makki, A.; Wang, J.; Nguyen, T.T. Real-time seat allocation for minimizing boarding/alighting time and improving quality of service and safety for passengers. Transp. Res. Part C Emerg. Technol. 2019, 103, 158–173. [Google Scholar] [CrossRef]
- Ullah, I.; Liu, K.; Yamamoto, T.; Zahid, M.; Jamal, A. Modeling of machine learning with SHAP approach for electric vehicle charging station choice behavior prediction. Travel Behav. Soc. 2023, 31, 78–92. [Google Scholar] [CrossRef]
- Fernández, R.; Zegers, P.; Weber, G.; Tyler, N. Influence of platform height, door width, and fare collection on bus dwell time. Laboratory evidence for Santiago de Chile. Transp. Res. Rec. 2010, 2143, 59–66. [Google Scholar] [CrossRef]
- Rudloff, C.; Bauer, D.; Matyus, T.; Seer, S. Mind the gap: Boarding and alighting processes using the social force paradigm calibrated on experimental data. In Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems, Washington, DC, USA, 5–7 October 2011; pp. 353–358. [Google Scholar]
- Holloway, C.; Thoreau, R.; Roan, T.-R.; Boampong, D.; Clarke, T.; Watts, D. Effect of vertical step height on boarding and alighting time of train passengers. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2016, 230, 1234–1241. [Google Scholar] [CrossRef]
- Seriani, S.; Fujiyama, T. Experimental study for estimating the passenger space at metro stations with platform edge doors. Transp. Res. Rec. 2018, 2672, 307–315. [Google Scholar] [CrossRef]
- Shen, J. Simplified calculation for the width of on and off regions of station platform. Urban Rapid Transit 2008, 21, 9–12. (In Chinese) [Google Scholar]
- Wu, J.; Ma, S. Division method for waiting areas on island platforms at metro stations. J. Transp. Eng. 2013, 139, 339–349. [Google Scholar] [CrossRef]
- Pushkarev, B.; Zupan, J. Urban Space for Pedestrians; The MIT Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Gérin-Lajoie, M.; Richards, C.L.; McFadyen, B.J. The negotiation of stationary and moving obstructions during walking: Anticipatory locomotor adaptations and preservation of personal space. Mot. Control 2005, 9, 242–269. [Google Scholar] [CrossRef] [PubMed]
- Gérin-Lajoie, M.; Richards, C.L.; Fung, J.; McFadyen, B.J. Characteristics of personal space during obstacle circumvention in physical and virtual environments. Gait Posture 2008, 27, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Templer, J.A. Human territoriality and space needs on stairs. In The Staircase: Studies of Hazards, Falls, and Safer Design; MIT Press: Cambridge, MA, USA, 1992; pp. 61–70. [Google Scholar]
- Sinha, S.P.; Nayyar, P. Crowding effects of density and personal space requirements among older people: The impact of self-control and social support. J. Soc. Psychol. 2000, 140, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.D.; Weber, M.J. Influence of sensor abilities on the interpersonal distance of the elderly. Environ. Behav. 2003, 35, 695–711. [Google Scholar] [CrossRef]
- Sakuma, T.; Mukai, T.; Kuriyama, S. Psychological model for animating crowded pedestrians. J. Vis. Comput. Animat. 2005, 16, 343–351. [Google Scholar] [CrossRef]
- Daamen, W.; Hoogendoorn, S. Controlled experiments to derive walking behaviour. Eur. J. Transp. Infrastruct. Res. 2003, 3, 39–59. [Google Scholar]
- Willis, A.; Gjersoe, N.; Havard, C.; Kerridge, J.; Kukla, R. Human movement behaviour in urban spaces: Implications for the design and modelling of effective pedestrian environments. Environ. Plan. B Urban Anal. City Sci. 2004, 31, 805–828. [Google Scholar] [CrossRef] [Green Version]
- Chattaraj, U.; Seyfried, A.; Chakroborty, P. Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst. 2009, 12, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Hall, E. The Hidden Dimension; Doubleday: New York, NY, USA, 1966; Volume 14, pp. 103–124. [Google Scholar]
- Valdivieso, J.; Seriani, S. Study of the Space Occupied by a Wheelchair User at Metro de Santiago Platforms by Laboratory Experiments. J. Adv. Transp. 2021, 2021, 1789241. [Google Scholar] [CrossRef]
- Simonnet, D.; Velastin, S.A.; Turkbeyler, E.; Orwell, J. Backgroundless Detection of Pedestrians in Cluttered Conditions based on Monocular Images: A Review. IET Comput. Vis. 2012, 6, 540–550. [Google Scholar] [CrossRef]
- Calero, M.J.F.; Aldás, M.; Onofa, N.; Quinga, B. Detección de Peatones bajo oclusión parcial usando Inferencia Logística, HOG y SVM. IEEE Lat. Am. Trans. 2019, 17, 1552–1559. [Google Scholar]
- Jeong, E.; You, S.I.; Lee, J.; Moon, D. Identifying the indoor space characteristics of an urban railway station based on pedestrian trajectory data. J. Adv. Transp. 2019, 2019, 8401318. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, H.; Velastin, S.A.; Meza, I.; Fabregas, E.; Makris, D.; Farias, G. Fall detection and activity recognition using human skeleton features. IEEE Access 2021, 9, 33532–33542. [Google Scholar] [CrossRef]
- Velastin, S.A.; Fernández, R.; Espinosa, J.E.; Bay, A. Detecting, tracking and counting people getting on/off a metropolitan train using a standard video camera. Sensors 2020, 20, 6251. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Meng, Q.; Cheng, Q. A tailored machine learning approach for urban transport network flow estimation. Transp. Res. Part C Emerg. Technol. 2019, 108, 130–150. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE Computer Society: Washington, DC, USA, 2016; pp. 2818–2826. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) 2015, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, E.A.; Lu, J.; Rycroft, C.H. Voronoi cell analysis: The shapes of particle systems. arXiv 2022, arXiv:2201.10842. [Google Scholar] [CrossRef]
Camera Height (m) | Passenger Height (m) | Passengers (Ground Truth) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
2.5 | 1.6 | 0.15 | 0.175 | 0.209 | 0.194 | 0.13 | 0.126 | 0.135 | 0.123 | 0.042 |
1.65 | 0.191 | 0.192 | 0.195 | 0.207 | 0.125 | 0.101 | 0.118 | 0.149 | 0.071 | |
1.7 | 0.225 | 0.156 | 0.209 | 0.218 | 0.114 | 0.101 | 0.134 | 0.168 | 0.071 | |
1.75 | 0.266 | 0.191 | 0.237 | 0.235 | 0.141 | 0.095 | 0.145 | 0.168 | 0.097 | |
1.8 | 0.32 | 0.213 | 0.308 | 0.223 | 0.162 | 0.14 | 0.145 | 0.149 | 0.109 | |
2.7 | 1.6 | 0.075 | 0.175 | 0.486 | 0.347 | 0.219 | 0.23 | 0.176 | 0.087 | 0.072 |
1.65 | 0.075 | 0.157 | 0.378 | 0.317 | 0.174 | 0.165 | 0.142 | 0.095 | 0.05 | |
1.7 | 0.125 | 0.157 | 0.331 | 0.263 | 0.138 | 0.149 | 0.142 | 0.08 | 0.042 | |
1.75 | 0.166 | 0.175 | 0.209 | 0.194 | 0.13 | 0.126 | 0.121 | 0.123 | 0.042 | |
1.8 | 0.191 | 0.192 | 0.182 | 0.216 | 0.125 | 0.101 | 0.118 | 0.149 | 0.071 | |
2.9 | 1.6 | 0.025 | 0.149 | 0.533 | 0.567 | 0.316 | 0.255 | 0.318 | 0.138 | 0.154 |
1.65 | 0.025 | 0.175 | 0.533 | 0.468 | 0.316 | 0.255 | 0.252 | 0.13 | 0.131 | |
1.7 | 0.05 | 0.175 | 0.5 | 0.41 | 0.295 | 0.23 | 0.208 | 0.115 | 0.072 | |
1.75 | 0.075 | 0.175 | 0.445 | 0.329 | 0.188 | 0.205 | 0.166 | 0.098 | 0.05 | |
1.8 | 0.1 | 0.157 | 0.331 | 0.317 | 0.174 | 0.15 | 0.142 | 0.095 | 0.05 |
Camera Height (m) | Passenger Height (m) | Passengers (Ground Truth) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||
2.5 | 1.6 | 0.072 | 0.073 | 0.101 | 0.075 | 0.07 | 0.058 | 0.064 | 0.044 | 0.091 |
1.65 | 0.072 | 0.078 | 0.107 | 0.093 | 0.072 | 0.053 | 0.066 | 0.046 | 0.091 | |
1.7 | 0.096 | 0.089 | 0.105 | 0.093 | 0.072 | 0.052 | 0.066 | 0.048 | 0.091 | |
1.75 | 0.076 | 0.08 | 0.105 | 0.097 | 0.081 | 0.056 | 0.073 | 0.048 | 0.091 | |
1.8 | 0.085 | 0.088 | 0.115 | 0.086 | 0.087 | 0.056 | 0.073 | 0.048 | 0.091 | |
2.7 | 1.6 | 0.051 | 0.146 | 0.121 | 0.075 | 0.087 | 0.079 | 0.068 | 0.073 | 0.091 |
1.65 | 0.035 | 0.096 | 0.112 | 0.071 | 0.08 | 0.071 | 0.074 | 0.057 | 0.091 | |
1.7 | 0.048 | 0.085 | 0.104 | 0.07 | 0.074 | 0.055 | 0.061 | 0.047 | 0.091 | |
1.75 | 0.072 | 0.073 | 0.101 | 0.08 | 0.07 | 0.058 | 0.064 | 0.044 | 0.0911 | |
1.8 | 0.072 | 0.078 | 0.107 | 0.093 | 0.072 | 0.053 | 0.066 | 0.046 | 0.091 | |
2.9 | 1.6 | 0.154 | 0.239 | 0.185 | 0.182 | 0.136 | 0.151 | 0.155 | 0.196 | 0.144 |
1.65 | 0.112 | 0.214 | 0.164 | 0.125 | 0.109 | 0.113 | 0.093 | 0.116 | 0.117 | |
1.7 | 0.087 | 0.176 | 0.137 | 0.08 | 0.084 | 0.084 | 0.079 | 0.093 | 0.091 | |
1.75 | 0.051 | 0.134 | 0.121 | 0.078 | 0.082 | 0.082 | 0.068 | 0.07 | 0.091 | |
1.8 | 0.035 | 0.088 | 0.112 | 0.071 | 0.08 | 0.075 | 0.073 | 0.054 | 0.091 |
Camera Height (m) | Passenger Height (m) | Average Error (m2) |
---|---|---|
2.5 | 1.6 | 0.107 |
1.65 | 0.112 | |
1.7 | 0.109 | |
1.75 | 0.127 | |
1.8 | 0.139 | |
2.7 | 1.6 | 0.148 |
1.65 | 0.124 | |
1.7 | 0.115 | |
1.75 | 0.107 | |
1.8 | 0.112 | |
2.9 | 1.6 | 0.222 |
1.65 | 0.191 | |
1.7 | 0.165 | |
1.75 | 0.139 | |
1.8 | 0.122 |
Polygon Number | Voronoi’s Occupied Space [m2/Passenger] | Voronoi’s Density [Passenger/m2] and Level of Service (LOS) | Fruin’s Density [Passenger/m2] and Level of Service (LOS) | Density Difference between Voronoi and Fruin Method |
---|---|---|---|---|
1 | 0.166 | 6.024 (LOS F) | 1.50 (LOS C) | +301.6% |
2 | 0.303 | 3.300 (LOS D) | 1.50 (LOS C) | +120% |
3 | 0.527 | 1.897 (LOS D) | 1.50 (LOS C) | +26.5% |
4 | 0.392 | 2.551 (LOS D) | 1.50 (LOS C) | +70% |
5 | 0.800 | 1.250 (LOS C) | 1.50 (LOS C) | −16.6% |
6 | 1.057 | 0.946 (LOS B) | 1.50 (LOS C) | −36.9% |
7 | 0.420 | 2.380 (LOS D) | 1.50 (LOS C) | +58.6% |
8 | 1.115 | 0.896 (LOS B) | 1.50 (LOS C) | −40.2% |
9 | 1.215 | 0.823 (LOS A) | 1.50 (LOS C) | −45.1% |
Polygon Number | Voronoi’s Occupied Space [m2/Passenger] | Voronoi’s Density [Passenger/m2] and Level of Service (LOS) | Fruin’s Density [Passenger/m2] and Level of Service (LOS) | Density Difference between Voronoi and Fruin Method |
---|---|---|---|---|
1 | 0.824 | 1.213 (LOS C) | 0.50 (LOS A) | +142.6% |
2 | 1.278 | 0.782 (LOS A) | 0.50 (LOS A) | +56.4% |
3 | 3.897 | 0.256 (LOS A) | 0.50 (LOS A) | −48.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguayo, P.; Seriani, S.; Delpiano, J.; Farias, G.; Fujiyama, T.; Velastin, S.A. Experimental Method to Estimate the Density of Passengers on Urban Railway Platforms. Sustainability 2023, 15, 1000. https://doi.org/10.3390/su15021000
Aguayo P, Seriani S, Delpiano J, Farias G, Fujiyama T, Velastin SA. Experimental Method to Estimate the Density of Passengers on Urban Railway Platforms. Sustainability. 2023; 15(2):1000. https://doi.org/10.3390/su15021000
Chicago/Turabian StyleAguayo, Paulo, Sebastian Seriani, Jose Delpiano, Gonzalo Farias, Taku Fujiyama, and Sergio A. Velastin. 2023. "Experimental Method to Estimate the Density of Passengers on Urban Railway Platforms" Sustainability 15, no. 2: 1000. https://doi.org/10.3390/su15021000
APA StyleAguayo, P., Seriani, S., Delpiano, J., Farias, G., Fujiyama, T., & Velastin, S. A. (2023). Experimental Method to Estimate the Density of Passengers on Urban Railway Platforms. Sustainability, 15(2), 1000. https://doi.org/10.3390/su15021000