Performance Enhancement of an Upflow Anaerobic Dynamic Membrane Bioreactor via Granular Activated Carbon Addition for Domestic Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lab-Scale Experimental Setup and Operational Conditions
2.2. Analytical Methods
2.3. Specific Methanogenic Activity (SMA)
2.4. Metagenomic Analysis
3. Results and Discussion
3.1. Pollutant Removal Performance
3.2. Methanogenic Performance
3.3. Filtration Performance
3.4. Properties of Anaerobic Sludge and DM
3.4.1. DM Properties
3.4.2. Microbial Community Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, M.; Khan, S.J.; Mehbub Malik, S.; Shahzad, H.M.A.; Visvanathan, C. Up-concentration of wastewater to maximize biogas potential: A step towards positive energy wastewater treatment. J. Water Proc. Eng. 2020, 36, 101246. [Google Scholar] [CrossRef]
- Ansari, A.J.; Hai, F.I.; Guo, W.; Ngo, H.H.; Price, W.E.; Nghiem, L.D. Factors governing the pre-concentration of wastewater using forward osmosis for subsequent resource recovery. Sci. Total Environ. 2016, 566–567, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Khan, S.J.; Shahzad, H.M.A. Anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment- potential benefits, constraints, and future perspectives: An updated review. Sci. Total Environ. 2022, 802, 149612. [Google Scholar] [CrossRef]
- Lei, Z.; Yang, S.; Li, Y.Y.; Wen, W.; Wang, X.C.; Chen, R. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives. Bioresour. Technol. 2018, 267, 756–768. [Google Scholar] [CrossRef]
- Gouveia, J.; Plaza, F.; Garralon, G.; Fdz-Polanco, F.; Pena, M. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresour. Technol. 2015, 185, 225–233. [Google Scholar] [CrossRef]
- Hu, Y.; Cai, X.; Xue, Y.; Du, R.; Ji, J.; Chen, R.; Sano, D.; Li, Y.-Y. Recent developments of anaerobic membrane bioreactors for municipal wastewater treatment and bioenergy recovery: Focusing on novel configurations and energy balance analysis. J. Clean. Prod. 2022, 356, 131856. [Google Scholar] [CrossRef]
- Chen, C.; Guo, W.; Ngo, H.H.; Lee, D.-J.; Tung, K.-L.; Jin, P.; Wang, J.; Wu, Y. Challenges in biogas production from anaerobic membrane bioreactors. Renew. Energy 2016, 98, 120–134. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Biswal, B.K.; Saleem, M.; Guan, D.; Iqbal, A.; Wu, D.; Khanal, S.K.; Chen, G. Anaerobic self-forming dynamic membrane bioreactors (AnSFDMBRs) for wastewater treatment—Recent advances, process optimization and perspectives. Bioresour. Technol. 2021, 332, 125101. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.C.; Ngo, H.H.; Sun, Q.; Yang, Y. Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: A review. Bioresour. Technol. 2018, 247, 1107–1118. [Google Scholar] [CrossRef]
- Yang, Y.; Zang, Y.; Hu, Y.; Wang, X.C.; Ngo, H.H. Upflow anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment at room temperature and short HRTs: Process characteristics and practical applicability. Chem. Eng. J. 2020, 383, 123186. [Google Scholar] [CrossRef]
- Awual, M.R. A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 2015, 266, 368–375. [Google Scholar] [CrossRef]
- Kubra, K.T.; Salman, M.S.; Znad, H.; Hasan, M.N. Efficient encapsulation of toxic dye from wastewater using biodegradable polymeric adsorbent. J. Mol. Liq. 2021, 329, 115541. [Google Scholar] [CrossRef]
- Lei, Z.; Ma, Y.; Wang, J.; Wang, X.C.; Li, Q.; Chen, R. Biochar addition supports high digestion performance and low membrane fouling rate in an anaerobic membrane bioreactor under low temperatures. Bioresour. Technol. 2021, 330, 124966. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Q.; Lei, Z.; Wen, W.; Huang, X.; Chen, R. Comparing powdered and granular activated carbon addition on membrane fouling control through evaluating the impacts on mixed liquor and cake layer properties in anaerobic membrane bioreactors. Bioresour. Technol. 2019, 294, 122137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Guo, B.; Zhou, Y.; Gao, M.; Sharaf, A.; Liu, Y. Granular activated carbon stimulated microbial physiological changes for enhanced anaerobic digestion of municipal sewage. Chem. Eng. J. 2020, 400, 125838. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, B.; Zhang, L.; Zhang, H.; Liu, Y. Microbial community dynamics in granular activated carbon enhanced up-flow anaerobic sludge blanket (UASB) treating municipal sewage under sulfate reducing and psychrophilic conditions. Chem. Eng. J. 2021, 405, 126975. [Google Scholar] [CrossRef]
- Lei, Z.; Yang, S.; Li, X.; Wen, W.; Huang, X.; Yang, Y.; Wang, X.; Li, Y.Y.; Sano, D.; Chen, R. Revisiting the effects of powdered activated carbon on membrane fouling mitigation in an anaerobic membrane bioreactor by evaluating long-term impacts on the surface layer. Water Res. 2019, 167, 115137. [Google Scholar] [CrossRef]
- Chen, C.; Sun, M.; Liu, Z.; Zhang, J.; Xiao, K.; Zhang, X.; Song, G.; Chang, J.; Liu, G.; Wang, H.; et al. Robustness of granular activated carbon-synergized anaerobic membrane bioreactor for pilot-scale application over a wide seasonal temperature change. Water Res. 2021, 189, 116552. [Google Scholar] [CrossRef]
- Salman, M.S.; Hasan, M.N.; Kubra, K.T.; Hasan, M.M. Optical detection and recovery of Yb(III) from waste sample using novel sensor ensemble nanomaterials. Microchem. J. 2021, 162, 105868. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Dzakpasu, M.; Gao, X.; Yuwen, C.; Wang, X.C. Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge. Waste Manag. 2018, 80, 73–80. [Google Scholar] [CrossRef]
- Nepa, C. Water and Wastewater Monitoring Methods, 4th ed.; Chinese Environmental Science Publishing House: Beijing, China, 2002. [Google Scholar]
- Gaudy, A.F. Colorimetric Determination of Protein and Carbohydrate. Ind. Water Wastes 1962, 7, 17–22. [Google Scholar]
- Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Du, R.; Nitta, S.; Ji, J.; Rong, C.; Cai, X.; Qin, Y.; Li, Y.-Y. Identification of sustainable filtration mode of an anaerobic membrane bioreactor for wastewater treatment towards low-fouling operation and efficient bioenergy production. J. Clean. Prod. 2021, 329, 129686. [Google Scholar] [CrossRef]
- Noguchi, H.; Park, J.; Takagi, T. MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006, 34, 5623–5630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Reuter, K.; Drost, H.G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, B.; Dang, H.; Zhang, L.; Sun, H.; Yu, N.; Tang, Y.; Liu, Y. Roles of granular activated carbon (GAC) and operational factors on active microbiome development in anaerobic reactors. Bioresour. Technol. 2022, 343, 126104. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, W.; Hu, Y.; Chen, R.; Wang, X.C. Gravity-driven high flux filtration behavior and microbial community of an integrated granular activated carbon and dynamic membrane bioreactor for domestic wastewater treatment. Sci. Total Environ. 2022, 825, 153930. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Y.; Yu, S.; Wang, X.C.; Tang, J. Psychrophilic anaerobic dynamic membrane bioreactor for domestic wastewater treatment: Effects of organic loading and sludge recycling. Bioresour. Technol. 2018, 270, 62–69. [Google Scholar] [CrossRef]
- Alibardi, L.; Bernava, N.; Cossu, R.; Spagni, A. Anaerobic dynamic membrane bioreactor for wastewater treatment at ambient temperature. Chem. Eng. J. 2016, 284, 130–138. [Google Scholar] [CrossRef]
- Smith, A.L.; Skerlos, S.J.; Raskin, L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res. 2013, 47, 1655–1665. [Google Scholar] [CrossRef]
- Zhang, L.; De Vrieze, J.; Hendrickx, T.L.G.; Wei, W.; Temmink, H.; Rijnaarts, H.; Zeeman, G. Anaerobic treatment of raw domestic wastewater in a UASB-digester at 10 °C and microbial community dynamics. Chem. Eng. J. 2018, 334, 2088–2097. [Google Scholar] [CrossRef]
- Liu, T.; Ou, H.; Su, K.; Hu, Z.; He, C.; Wang, W. Promoting direct interspecies electron transfer and acetoclastic methanogenesis for enhancing anaerobic digestion of butanol octanol wastewater by coupling granular activated carbon and exogenous hydrogen. Bioresour. Technol. 2021, 337, 125417. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, B.; Zhang, L.; Liu, Y. Key syntrophic partnerships identified in a granular activated carbon amended UASB treating municipal sewage under low temperature conditions. Bioresour. Technol. 2020, 312, 123556. [Google Scholar] [CrossRef]
- Ding, A.; Liang, H.; Qu, F.; Bai, L.; Li, G.; Ngo, H.H.; Guo, W. Effect of granular activated carbon addition on the effluent properties and fouling potentials of membrane-coupled expanded granular sludge bed process. Bioresour. Technol. 2014, 171, 240–246. [Google Scholar] [CrossRef]
- Alibardi, L.; Cossu, R.; Saleem, M.; Spagni, A. Development and permeability of a dynamic membrane for anaerobic wastewater treatment. Bioresour. Technol. 2014, 161, 236–244. [Google Scholar] [CrossRef]
- Jiao, C.; Hu, Y.; Zhang, X.; Jing, R.; Zeng, T.; Chen, R.; Li, Y.Y. Process characteristics and energy self-sufficient operation of a low-fouling anaerobic dynamic membrane bioreactor for up-concentrated municipal wastewater treatment. Sci. Total Environ. 2022, 843, 156992. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, Y.; Dzakpasu, M.; Wang, X.C.; Ngo, H.H. Dynamic membrane bioreactor performance enhancement by powdered activated carbon addition: Evaluation of sludge morphological, aggregative and microbial properties. J. Environ. Sci. 2019, 75, 73–83. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Yin, X.; Tian, L. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. J. Membr. Sci. 2008, 325, 238–244. [Google Scholar] [CrossRef]
- Hu, Y.; Zang, Y.; Yang, Y.; Duan, A.; Wang, X.C.; Ngo, H.H.; Li, Y.Y.; Du, R. Zero-valent iron addition in anaerobic dynamic membrane bioreactors for preconcentrated wastewater treatment: Performance and impact. Sci. Total Environ. 2020, 742, 140687. [Google Scholar] [CrossRef] [PubMed]
- Lawson, C.E.; Wu, S.; Bhattacharjee, A.S.; Hamilton, J.J.; McMahon, K.D.; Goel, R.; Noguera, D.R. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat. Commun. 2017, 8, 15416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, H.; Yu, N.; Mou, A.; Zhang, L.; Guo, B.; Liu, Y. Metagenomic insights into direct interspecies electron transfer and quorum sensing in blackwater anaerobic digestion reactors supplemented with granular activated carbon. Bioresour. Technol. 2022, 352, 127113. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, J.H.; Je Seong, H.; Sul, W.J.; Jin, K.H.; Park, H.D. Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon. Bioresour. Technol. 2018, 259, 414–422. [Google Scholar] [CrossRef]
- Wu, W.; Chen, G.; Wang, Z. Enhanced sludge digestion using anaerobic dynamic membrane bioreactor: Effects of hydraulic retention time. Energy 2022, 261, 125396. [Google Scholar] [CrossRef]
- Yin, Q.; Gu, M.; Hermanowicz, S.W.; Hu, H.; Wu, G. Potential interactions between syntrophic bacteria and methanogens via type IV pili and quorum-sensing systems. Environ. Int. 2020, 138, 105650. [Google Scholar] [CrossRef]
Parameter | Phase I (C-AnDMBR) | Phase II (G-AnDMBR) |
---|---|---|
Period (d) | 1–124 | 125–212 |
Temperature (°C) | 25 ± 1 | |
HRT (h) | 12 | |
Flux (LMH) | 15 | |
Filtration to relaxation time ratio | 4:1 | |
Initial MLSS (g/L) | 10.20 ± 0.14 | 12.20 ± 0.17 |
Initial MLVSS (g/L) | 4.07 ± 0.03 | 5.90 ± 0.07 |
Parameter | Phase I (C-AnDMBR) | Phase II (G-AnDMBR) | ||||||
---|---|---|---|---|---|---|---|---|
Influent | Supernatant | Effluent | Removal Rate | Influent | Supernatant | Effluent | Removal Rate | |
TCOD (mg/L) | 456.7 ± 151.2 | 107.8 ± 32.3 | 81.6 ± 27.7 | 82.1 ± 5.1% | 454.7 ± 79.2 | 85.1 ± 18.4 | 59.6 ± 12.5 | 86.9 ± 2.9% |
Polysaccharide (mg/L) | 7.4 ± 1.5 | 4.6 ± 1.3 | 4.1 ± 1.2 | 44.6 ± 8.9% | 7.1 ± 1.0 | 4.2 ± 0.9 | 3.6 ± 0.7 | 49.3 ± 8.6% |
Protein (mg/L) | 34.0 ± 5.1 | 22.4 ± 3.6 | 19.7 ± 3.0 | 42.1 ± 6.0% | 29.0 ± 5.7 | 18.2 ± 4.1 | 15.4 ± 3.9 | 46.9 ± 6.3% |
TN (mg/L) | 54.6 ± 13.8 | 49.2 ± 12.5 | 47.6 ± 12.4 | 12.8 ± 7.1% | 56.9 ± 8.3 | 50.1 ± 9.5 | 47.7 ± 9.0 | 16.2 ± 5.0% |
NH4+-N (mg/L) | 44.6 ± 10.0 | 50.0 ± 9.5 | 48.3 ± 9.3 | - | 43.5 ± 6.3 | 44.9 ± 9.4 | 45.5 ± 8.0 | - |
TP (mg/L) | 7.2 ± 1.9 | 5.9 ± 1.5 | 5.5 ± 1.3 | 23.6 ± 8.4% | 7.7 ± 1.5 | 6.0 ± 1.1 | 5.7 ± 1.1 | 26.0 ± 6.7% |
PO4−-P (mg/L) | 5.2 ± 0.8 | 5.6 ± 0.8 | 5.5 ± 0.9 | - | 4.8 ± 0.8 | 5.3 ± 0.8 | 5.3 ± 0.9 | - |
pH | 7.94 ± 0.19 | 7.46 ± 0.29 | 7.69 ± 0.19 | - | 7.95 ± 0.09 | 7.53 ± 0.14 | 7.73 ± 0.06 | - |
Turbidity (NTU) | 261.8 ± 106.1 | 88.0 ± 53.8 | 29.7 ± 11.5 | 88.7 ± 10.0% | 236.0 ± 26.2 | 43.0 ± 10.9 | 16.1 ± 4.8 | 93.2 ± 1.7% |
Parameter | Phase I (C-AnDMBR) | Phase II (G-AnDMBR) |
---|---|---|
Biogas production (L/d) | 0.12 ± 0.08 | 0.17 ± 0.07 |
Methane production (L/d) | 0.08 ± 0.05 | 0.14 ± 0.04 |
Gaseous methane production rate (L CH4/g COD) | 0.03 ± 0.01 | 0.05 ± 0.01 |
Dissolved methane production rate (L CH4/g COD) | 0.17 ± 0.10 | 0.18 ± 0.08 |
Total methane production rate (L CH4/g COD) | 0.21 ± 0.11 | 0.23 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Hu, Y.; Qu, Y.; Cheng, D.; Yang, Y.; Chen, R.; Ji, J. Performance Enhancement of an Upflow Anaerobic Dynamic Membrane Bioreactor via Granular Activated Carbon Addition for Domestic Wastewater Treatment. Sustainability 2023, 15, 1055. https://doi.org/10.3390/su15021055
Liu L, Hu Y, Qu Y, Cheng D, Yang Y, Chen R, Ji J. Performance Enhancement of an Upflow Anaerobic Dynamic Membrane Bioreactor via Granular Activated Carbon Addition for Domestic Wastewater Treatment. Sustainability. 2023; 15(2):1055. https://doi.org/10.3390/su15021055
Chicago/Turabian StyleLiu, Le, Yisong Hu, Yi Qu, Dongxing Cheng, Yuan Yang, Rong Chen, and Jiayuan Ji. 2023. "Performance Enhancement of an Upflow Anaerobic Dynamic Membrane Bioreactor via Granular Activated Carbon Addition for Domestic Wastewater Treatment" Sustainability 15, no. 2: 1055. https://doi.org/10.3390/su15021055
APA StyleLiu, L., Hu, Y., Qu, Y., Cheng, D., Yang, Y., Chen, R., & Ji, J. (2023). Performance Enhancement of an Upflow Anaerobic Dynamic Membrane Bioreactor via Granular Activated Carbon Addition for Domestic Wastewater Treatment. Sustainability, 15(2), 1055. https://doi.org/10.3390/su15021055