Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Monitoring Indexes Selection
2.4. Data Analysis
3. Results
3.1. Changes in Plant Species Diversity before and after Flooding
3.2. Spatial Characteristics of Plant Species Diversity after Flooding
3.3. Relationship between Plant Species Diversity and Environmental Factors
4. Discussion
4.1. The Effect and Function of River Flooding on Plant Species Diversity
4.2. The Desert Riparian Forest Distribution after River Flooding Irrigation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arthun, D.; Zaimes, G.N. Channel changes following human activity exclusion in the riparian areas of Bonita Creek, Arizona, USA. Landsc. Ecol. Eng. 2020, 16, 263–271. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Chen, Y.N.; Li, W.-H. Relationship between soil properties and plant diversity in a desert riparian forest in the lower reaches of the Tarim River, Xinjiang, China. Arid Land Res. Manag. 2009, 23, 283–296. [Google Scholar] [CrossRef]
- Hao, X.-M.; Chen, Y.-N.; Li, W.-H. Indicating appropriate groundwater tables for desert river-bank forest at the Tarim River, Xinjiang, China. Environ. Monit. Assess. 2009, 152, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-z.; Chen, Y.-n.; Chen, Y.-j.; Zhang, N.; Li, W.-h. Degradation of Populus euphratica community in the lower reaches of the Tarim River, Xinjiang, China. J. Environ. Sci. 2005, 17, 740–747. [Google Scholar]
- Arsénio, P.; Rodríguez-González, P.M.; Bernez, I.; Dias, S.F.; Bugalho, M.N.; Dufour, S. Riparian vegetation restoration: Does social perception reflect ecological value? River Res. Appl. 2020, 36, 907–920. [Google Scholar] [CrossRef]
- Basak, S.M.; Hossain, M.S.; Tusznio, J.; Grodzińska-Jurczak, M. Social benefits of river restoration from ecosystem services perspective: A systematic review. Environ. Sci. Policy 2021, 124, 90–100. [Google Scholar] [CrossRef]
- Mohan, M.; Chacko, A.; Rameshan, M.; Gopikrishna, V.G.; Kannan, V.M.; Vishnu, N.G.; Sasi, S.A.; Baiju, K.R. Restoring Riparian Ecosystems during the UN-Decade on Ecosystem Restoration: A Global Perspective. Anthr. Sci. 2022, 1, 42–61. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiao, F.; Li, Y.; Kallenbach, R.L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 2016, 6, 22132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Deng, X.; Long, A.; Xu, H.; Ye, M.; Li, J. Change in spatial distribution patterns and regeneration of Populus euphratica under different surface soil salinity conditions. Sci. Rep. 2019, 9, 9123. [Google Scholar] [CrossRef] [Green Version]
- Fraser, L.H.; Karnezis, J.P. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences. Wetlands 2005, 25, 520–530. [Google Scholar] [CrossRef] [Green Version]
- Vervuren, P.; Blom, C.; De Kroon, H. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. J. Ecol. 2003, 91, 135–146. [Google Scholar] [CrossRef]
- Arias, M.E.; Wittmann, F.; Parolin, P.; Murray-Hudson, M.; Cochrane, T.A. Interactions between flooding and upland disturbance drives species diversity in large river floodplains. Hydrobiologia 2018, 814, 5–17. [Google Scholar] [CrossRef]
- Trebino, H.J.; Chaneton, E.J.; León, R.J. Flooding, topography, and successional age as determinants of species diversity in old-field vegetation. Can. J. Bot. 1996, 74, 582–588. [Google Scholar] [CrossRef]
- Peterson, J.E.; Baldwin, A.H. Seedling emergence from seed banks of tidal freshwater wetlands: Response to inundation and sedimentation. Aquat. Bot. 2004, 78, 243–254. [Google Scholar] [CrossRef]
- Florentine, S.; Westbrooke, M. Invasion of the noxious weed Nicotiana glauca R. Graham after an episodic flooding event in the arid zone of Australia. J. Arid Environ. 2005, 60, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Connell, J.H. Diversity in tropical rain forests and coral reefs: High diversity of trees and corals is maintained only in a nonequilibrium state. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Huston, M. A general hypothesis of species diversity. Am. Nat. 1979, 113, 81–101. [Google Scholar] [CrossRef]
- Pollock, M.M.; Naiman, R.J.; Hanley, T.A. Plant species richness in riparian wetlands—A test of biodiversity theory. Ecology 1998, 79, 94–105. [Google Scholar] [CrossRef]
- Ling, H.; Xu, H.; Guo, B.; Deng, X.; Zhang, P.; Wang, X. Regulating water disturbance for mitigating drought stress to conserve and restore a desert riparian forest ecosystem. J. Hydrol. 2019, 572, 659–670. [Google Scholar] [CrossRef]
- Xu, H.; Ye, M.; Li, J. The ecological characteristics of the riparian vegetation affected by river overflowing disturbance in the lower Tarim River. Environ. Geol. 2009, 58, 1749–1755. [Google Scholar] [CrossRef]
- Deng, X.; Xu, H.; Ye, M.; Li, B.; Fu, J.; Yang, Z. Impact of long-term zero-flow and ecological water conveyance on the radial increment of Populus euphratica in the lower reaches of the Tarim River, Xinjiang, China. Reg. Environ. Chang. 2015, 15, 13–23. [Google Scholar] [CrossRef]
- De Vriend, H. Velocity redistribution in curved rectangular channels. J. Fluid Mech. 1981, 107, 423–439. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Xu, C.; Ye, Z.; Li, Z.; Zhu, C.; Ma, X. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrol. Process. Int. J. 2010, 24, 170–177. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, Z.; Shen, Y. Desiccation of the Tarim River, Xinjiang, China, and mitigation strategy. Quat. Int. 2011, 244, 264–271. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.; Chen, Y.; Zhao, R.; Ding, H. Responses of surface runoff to climate change and human activities in the arid region of Central Asia: A case study in the Tarim River Basin, China. Environ. Manag. 2013, 51, 926–938. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z. Plausible impact of global climate change on water resources in the Tarim River Basin. Sci. China Ser. D Earth Sci. 2005, 48, 65–73. [Google Scholar] [CrossRef]
- Ye, M.; Xu, H.; Song, Y. The utilization of water resources and its variation tendency in Tarim River Basin. Chin. Sci. Bull. 2006, 51, 16–24. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.; Bao, A.; Chang, C. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China. J. Arid Land 2021, 13, 814–834. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Zilliacus, H.; Li, W.-H.; Zhang, H.-F.; Chen, Y.-P. Ground-water level affects plant species diversity along the lower reaches of the Tarim river, Western China. J. Arid Environ. 2006, 66, 231–246. [Google Scholar] [CrossRef]
- Chen, S.; Cao, Y.; Li, J. The effect of water rights trading policy on water resource utilization efficiency: Evidence from a quasi-natural experiment in China. Sustainability 2021, 13, 5281. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Binswanger, H.P. Markets in tradable water rights: Potential for efficiency gains in developing country water resource allocation. World Dev. 1994, 22, 1613–1625. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Zhu, C.; Li, Z.; Fang, G.; Li, Y.; Fu, A. Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: Evidence from tree-rings of Populus euphratica. Ecol. Indic. 2020, 111, 105997. [Google Scholar] [CrossRef]
- Kluge, R.; Gordon, A. The fixed plot survey method for determining the host range of the flowerbud-feeding weevil Dicomada rufa, a candidate for the biological control of Hakea sericea in South Africa. BioControl 2004, 49, 341–355. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Si, J.H.; Feng, Q.; Yu, T.F.; Li, P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017, 82, 353–362. [Google Scholar] [CrossRef]
- Xu, H.-l.; Mao, Y.; Li, J.-m. Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River. J. Environ. Sci. 2007, 19, 1199–1207. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Norton, D.A. Towards a conceptual framework for restoration ecology. Restor. Ecol. 1996, 4, 93–110. [Google Scholar] [CrossRef]
- Rood, S.B.; Samuelson, G.M.; Braatne, J.H.; Gourley, C.R.; Hughes, F.M.; Mahoney, J.M. Managing river flows to restore floodplain forests. Front. Ecol. Environ. 2005, 3, 193–201. [Google Scholar] [CrossRef]
- Richter, B.D.; Richter, H.E. Prescribing flood regimes to sustain riparian ecosystems along meandering rivers. Conserv. Biol. 2000, 14, 1467–1478. [Google Scholar] [CrossRef]
- Havril, T.; Tóth, Á.; Molson, J.W.; Galsa, A.; Mádl-Szőnyi, J. Impacts of predicted climate change on groundwater flow systems: Can wetlands disappear due to recharge reduction? J. Hydrol. 2018, 563, 1169–1180. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Y.; Zhang, G.; Wang, L.; Yoshikawa, K. Regeneration properties of a Populus euphratica riparian forest located in the vicinity of the Ejina Oasis, Inner Mongolia, China. Landsc. Ecol. Eng. 2017, 13, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xu, H.; Yin, L.; Li, J.; Zhang, Z.; Li, Y. Effects of water treatments on the activation of soil seed banks–A case study on the lower reaches of the Tarim River. Prog. Nat. Sci. 2009, 19, 733–740. [Google Scholar] [CrossRef]
- Hazelton, E.L.; Downard, R.; Kettenring, K.M.; McCormick, M.K.; Whigham, D.F. Spatial and temporal variation in brackish wetland seedbanks: Implications for wetland restoration following Phragmites control. Estuaries Coasts 2018, 41, 68–84. [Google Scholar] [CrossRef] [Green Version]
- Chantal, M.D.; Kuuluvainen, T.; Lindberg, H.; Vanha-Majamaa, I. Early regeneration of Populus tremula from seed after forest restoration with fire. Scand. J. For. Res. 2005, 20, 33–42. [Google Scholar] [CrossRef]
- Cheng, K.; Zang, R.; Zhou, X.; Zhang, W.; Bai, Z. Influence of floods on natural riparian forests along the Ergis River, west China. Front. For. China 2007, 2, 66–71. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Wang, Y.; Zhao, Y.; Xu, X. Survival and growth of three afforestation species under high saline drip irrigation in the Taklimakan Desert, China. Ecosphere 2016, 7, e01285. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Wang, R.; Sun, H.; Zhang, H. Assessment of water-recharging based on ecological features of riparian forest in the lower reaches of Tarim River. Chin. Sci. Bull. 2006, 51, 37–42. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, H.; Yang, C.; Zhang, L.; Sun, C. Quantitative assessment of hydrological alteration caused by irrigation projects in the Tarim River basin, China. Sci. Rep. 2017, 7, 4291. [Google Scholar] [CrossRef] [Green Version]
- Imin, B.; Dai, Y.; Shi, Q.; Guo, Y.; Li, H.; Nijat, M. Responses of two dominant desert plant species to the changes in groundwater depth in hinterland natural oasis, Tarim Basin. Ecol. Evol. 2021, 11, 9460–9471. [Google Scholar] [CrossRef] [PubMed]
Growth Grade | Score | Growth Status and Morphological Characteristics of Populus eupratica |
---|---|---|
Excellent | 8–10 | Trees are in good shape and mainly composed of plump primary crowns, with little damage; they have dark green leaves and a crown loss of less than 10% in most cases. |
Good | 6–8 | Growth status is good and trees are largely composed of defective compound crowns; the withered part of the trunk accounts for 1/4 of the whole tree; leaves are light-colored and crown loss remains within 11–25%. |
Moderate | 4–6 | Growth in moderate conditions, showing the coexistence of primary and secondary crowns; withered parts of the trunk exceed 1/3 of the whole tree; the crown loss remains within 26–50%. |
Relatively poor | 2–4 | Most trees have secondary crowns with obvious defects; withered parts of the branches and trunk exceed 2/3 of the whole tree; the crown loss is within 51–75%. |
Poor | 0–2 | The primary crowns are nearly decayed, while secondary crowns are still underdeveloped; withered parts of the branches, trunk, and shoots exceed 3/4 of the whole tree; there are only a few leaves and crown loss is between 76–100%. |
No. | Species Name | Life Form | Before Flooding | After Flooding |
---|---|---|---|---|
1 | Alhagi sparsifolia | Subshrub | + | + |
2 | Halostachys caspica | Shrub | + | + |
3 | Halimodendron halodendron | Shrub | + | + |
4 | Lycium ruthernicum | Shrub | + | + |
5 | Inula salsoloides | Subshrub | + | + |
6 | Apoacynum hendersonii | Subshrub | + | + |
7 | Artemisia scoparia | Perennial herb | + | + |
8 | Phragmites communis | Perennial herb | + | + |
9 | Acroptilon repens | Perennial herb | + | + |
10 | Oxytropis glabra (Lam.) | Perennial herb | + | + |
11 | Karelinia caspica | Perennial herb | + | + |
12 | Potentilla chinensis | Perennial herb | + | + |
13 | Glycyrrhiza inflata | Perennial herb | + | + |
14 | Hexinia polydichotoma | Perennial herb | + | + |
15 | Populus euphratica | Tree | + | |
16 | Sophora alopecuroides | Annual herb | + | |
17 | Salsola collina | Annual herb | + | |
18 | Poa annua | Annual herb | + | |
19 | Cirsium segetum | Perennial herb | + | |
20 | Taraxacum mongolicum | Perennial herb | + | |
21 | Aeluropus pungens | Perennial herb | + | |
22 | Scorzonera austriaca | Perennial herb | + | |
23 | Cynanchum sibiricum | Subshrub | + | |
24 | Tamarix ramosissima | Shrub | + | |
25 | Tamarix hispida | Shrub | + |
Flooding Distance | Species | Important Value | Flooding Distance | Species | Important Value |
---|---|---|---|---|---|
150 m | Sophora | 0.35 | 300 m | Populus euphratica | 0.33 |
Populus euphratica | 0.23 | Phragmites australis | 0.22 | ||
Potentila chinensis | 0.15 | Gramineae sp. | 0.21 | ||
Gramineae sp. | 0.10 | Glycyrrhiza uralensis | 0.11 | ||
Populus euphratica | 0.10 | Tamarix ramosissima | 0.04 | ||
Glycyrrhiza uralensis | 0.05 | Populus euphratica | 0.04 | ||
Cirsium sp. | 0.01 | Leguminosae sp. | 0.02 | ||
Cynanchum sibiricum | 0.00 | Crypsis aculeata | 0.02 | ||
Poa annua | 0.00 | Karelinia caspia | 0.01 | ||
Alhagi sparsifolia | 0.00 | Apocynum venetum | 0.01 | ||
Taraxacum sp. | 0.00 | Calamagrostis | 0.00 | ||
Acroptilon repens | 0.00 | ||||
450 m | Cynodon dactylon | 0.21 | 600 m | Tamarix ramosissima | 0.44 |
Phragmites australis | 0.21 | Populus euphratica | 0.28 | ||
Sophora | 0.19 | Phragmites australis | 0.14 | ||
Populus euphratica | 0.19 | Tamarix ramosissima | 0.08 | ||
Tamarix ramosissima | 0.07 | Halostachys caspica | 0.05 | ||
Glycyrrhiza uralensis | 0.06 | Lycium ruthernicum | 0.01 | ||
Taraxacum sp. | 0.02 | Halimodendron | 0.00 | ||
Oxytropis sp. | 0.02 | Aeluropus pungens | 0.00 | ||
Gramineae sp. | 0.01 | ||||
Scorzonera austriaca | 0.01 | ||||
Tamarix | 0.01 | ||||
Populus euphratica | 0.01 | ||||
Salsola collina | 0.00 | ||||
Inula salsoloides | 0.00 | ||||
Apocynum venetum | 0.00 | ||||
Lactuca sativa | 0.00 |
Flooding Distance | Species | Important Value | Flooding Distance | Species | Important Value |
---|---|---|---|---|---|
150 m | Tamarix ramosissima | 0.30 | 300 m | Tamarix ramosissima | 0.20 |
Populus euphratica | 0.19 | Taraxacum | 0.14 | ||
Phragmites communis | 0.09 | Lycium ruthernicum | 0.13 | ||
Halimodendron halodendron | 0.08 | Tamarix ramosissima | 0.12 | ||
Populus euphratica | 0.07 | Scorzonera austriaca | 0.11 | ||
Acroptilon repens | 0.06 | Populus euphratica | 0.11 | ||
Leguminosae sp. | 0.05 | Populus euphratica | 0.10 | ||
Scorzonera austriaca | 0.04 | Phragmites communis | 0.03 | ||
Tamarix ramosissima | 0.03 | Poa annua | 0.02 | ||
Cynanchum sibiricum | 0.02 | Alhagi sparsifolia | 0.01 | ||
Gramineae sp. | 0.02 | Potentilla chinensis | 0.01 | ||
Alhagi sparsifolia | 0.02 | Cynanchum sibiricum | 0.01 | ||
Sophora alopecuroides | 0.01 | Acroptilon repens | 0.01 | ||
Lycium ruthernicum | 0.01 | Glycyrrhiza inflata | 0.00 | ||
Taraxacum | 0.01 | Hexinia polydichotoma | 0.00 | ||
Scorzonera austriaca | 0.00 | ||||
Artemisia sp. | 0.00 | ||||
Halostachys caspica | 0.00 | ||||
Karelinia caspica | 0.00 | ||||
450 m | Phragmites communis | 0.33 | 600 m | Glycyrrhiza inflata | 0.29 |
Tamarix ramosissima | 0.22 | Tamarix ramosissima | 0.29 | ||
Lycium ruthernicum | 0.20 | Populus euphratica | 0.16 | ||
Alhagi sparsifolia | 0.09 | Alhagi sparsifolia | 0.10 | ||
Populus euphratica | 0.06 | Halimodendron halodendron | 0.07 | ||
Artemisia sp. | 0.05 | Sophora alopecuroides | 0.03 | ||
Potentilla chinensis | 0.03 | Lycium ruthernicum | 0.03 | ||
Phragmites communis | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, J.; Qian, K.; Ye, M. Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China. Sustainability 2023, 15, 1243. https://doi.org/10.3390/su15021243
Wang Y, Li J, Qian K, Ye M. Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China. Sustainability. 2023; 15(2):1243. https://doi.org/10.3390/su15021243
Chicago/Turabian StyleWang, Yonghui, Jin Li, Kaixuan Qian, and Mao Ye. 2023. "Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China" Sustainability 15, no. 2: 1243. https://doi.org/10.3390/su15021243
APA StyleWang, Y., Li, J., Qian, K., & Ye, M. (2023). Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China. Sustainability, 15(2), 1243. https://doi.org/10.3390/su15021243