The Impact of High-Quality Energy Development and Technological Innovation on the Real Economy of the Yangtze River Economic Belt in China: A Spatial Economic and Threshold Effect Analysis
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Description
3.2. Model Specification
3.2.1. Spatial Durbin Model
3.2.2. Threshold Model
4. Empirical Analysis and Results
4.1. Variable Selection
4.1.1. Core Variables
4.1.2. Control Variables
4.2. Selection of Spatial Durbin Model
4.2.1. Spatial Autocorrelation Test
4.2.2. Model Selection Test
4.3. Results and Discussion
4.4. Testing for Threshold Effects
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- WEF. Competitive Cities and their Connections to Global Value Chains; World Economic Forum: Geneva, Switzerland, 2016. [Google Scholar]
- Derudder, B.; Feng, X.; Shen, W.; Shao, R.; Taylor, P.J. Connections between Asian and European World Cities: Measurement, Analysis, and Evaluation. Land 2022, 11, 1574. [Google Scholar] [CrossRef]
- Zeng, D.Z. Building a Competitive City through Integrating into Global Value Chains: The Case of the Sino–Singapore Suzhou Industrial Park. China Int. J. 2019, 17, 164–180. [Google Scholar] [CrossRef]
- Raźniak, P.; Dorocki, S.; Rachwał, T.; Winiarczyk-Raźniak, A. The Role of the Energy Sector in the Command and Control Function of Cities in Conditions of Sustainability Transitions. Energies 2021, 14, 7579. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Z. Spatial Pattern Change and Influencing Factors of Industrial Eco-Efficiency of Yangtze River Economic Belt (YREB). SAGE Open 2022, 12, 21582440221113849. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Pan, X.; Ma, X.; Tang, M. The spatial integration and coordinated industrial development of urban agglomerations in the Yangtze River Economic Belt, China. Cities 2020, 104, 102801. [Google Scholar] [CrossRef]
- Gu, Y. Five Years on: Xi Jinping’s Blueprint for Yangtze River Economic Belt. Available online: https://news.cgtn.com/news/2021-01-05/Five-years-on-Xi-Jinping-s-blueprint-for-Yangtze-River-Economic-Belt-WKrA1oYBvG/index.html (accessed on 15 October 2021).
- Gereffi, G. What does the COVID-19 pandemic teach us about global value chains? The case of medical supplies. J. Int. Bus. Policy 2020, 3, 287–301. [Google Scholar] [CrossRef]
- Prud’homme, D.; von Zedtwitz, M. Managing “forced” technology transfer in emerging markets: The case of China. J. Int. Manag. 2019, 25, 100670. [Google Scholar] [CrossRef]
- Florida, R.; Adler, P.; Mellander, C. The City as Innovation Machine. In Transitions in Regional Economic Development; Routledge: Oxfordshire, UK, 2018; pp. 151–170. [Google Scholar]
- Bokhari, S.A.A.; Myeong, S. Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective. Sustainability 2022, 14, 620. [Google Scholar] [CrossRef]
- Heidari, A.; Navimipour, N.J.; Unal, M. Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review. Sustain. Cities Soc. 2022, 85, 104089. [Google Scholar] [CrossRef]
- Pramanik, M.I.; Lau, R.Y.; Demirkan, H.; Azad, M.A.K. Smart health: Big data enabled health paradigm within smart cities. Expert Syst. Appl. 2017, 87, 370–383. [Google Scholar] [CrossRef]
- Hu, R. The state of smart cities in China: The case of Shenzhen. Energies 2019, 12, 4375. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Fong, P.S.; Dai, S.; Li, Y. Towards sustainable smart cities: An empirical comparative assessment and development pattern optimization in China. J. Clean. Prod. 2019, 215, 730–743. [Google Scholar] [CrossRef]
- Acs, Z.J.; Anselin, L.; Varga, A. Patents and innovation counts as measures of regional production of new knowledge. Res. Policy 2002, 31, 1069–1085. [Google Scholar] [CrossRef]
- Capello, R. Towards a New Conceptualization of Innovation in Space: Territorial Patterns of Innovation. Int. J. Urban Reg. Res. 2017, 41, 976–996. [Google Scholar] [CrossRef]
- Crescenzi, R.; Rodríguez-Pose, A. The geography of innovation in China and India. Int. J. Urban Reg. Res. 2017, 41, 1010–1027. [Google Scholar] [CrossRef]
- He, S.; Fang, B.; Xie, X. Temporal and Spatial Evolution and Driving Mechanism of Urban Ecological Welfare Performance from the Perspective of High-Quality Development: A Case Study of Jiangsu Province, China. Land 2022, 11, 1607. [Google Scholar] [CrossRef]
- Song, H.; Zhang, M. Spatial Spillovers of Regional Innovation: Evidence from Chinese Provinces. Emerg. Mark. Finance Trade 2017, 53, 2104–2122. [Google Scholar] [CrossRef]
- Peng, W.; Yin, Y.; Kuang, C.; Wen, Z.; Kuang, J. Society, Spatial spillover effect of green innovation on economic development quality in China: Evidence from a panel data of 270 prefecture-level and above cities. Sustain. Cities Soc. 2021, 69, 102863. [Google Scholar] [CrossRef]
- Hao, Y.; Ba, N.; Ren, S.; Wu, H.J.S.P. Consumption, How does international technology spillover affect China’s carbon emissions? A new perspective through intellectual property protection. Sustain. Prod. Consum. 2021, 25, 577–590. [Google Scholar] [CrossRef]
- Hong, J.; Zhou, C.; Wu, Y.; Wang, R.; Marinova, D. Technology gap, reverse technology spillover and domestic innovation performance in outward foreign direct investment: Evidence from China. China World Econ. 2019, 27, 1–23. [Google Scholar] [CrossRef]
- Kahouli-Brahmi, S. Technological learning in energy–environment–economy modelling: A survey. Energy Policy 2008, 36, 138–162. [Google Scholar] [CrossRef]
- Kaya, Y.; Yokobori, K. Environment, Energy, and Economy: Strategies for Sustainability; United Nations University Press: Tokyo, Japan, 1997. [Google Scholar]
- Gökgöz, F.; Güvercin, M.T. Energy security and renewable energy efficiency in EU. Renew. Sustain. Energy Rev. 2018, 96, 226–239. [Google Scholar] [CrossRef]
- Sotnyk, I.; Kurbatova, T.; Kubatko, O.; Prokopenko, O.; Prause, G.; Kovalenko, Y.; Trypolska, G.; Pysmenna, U. Energy Security Assessment of Emerging Economies under Global and Local Challenges. Energies 2021, 14, 5860. [Google Scholar] [CrossRef]
- Zahedi, K.; Wittenstein, M.D. Considering energy security in the transition to a low carbon world. UN ESCAP 2022, 2022. [Google Scholar]
- Zhang, Y.; Zhang, J.; Yang, Z.; Li, J. Analysis of the distribution and evolution of energy supply and demand centers of gravity in China. Energy Policy 2012, 49, 695–706. [Google Scholar] [CrossRef]
- Tóth, G.; Sebestyén Szép, T. Spatial Evolution of the Energy and Economic Centers of Gravity. Resources 2019, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Omri, A.; Bhuiya, M.M.K.; Hazrat, M.A. Modelling of renewable energy economy in Australia. Energy Procedia 2014, 61, 1902–1906. [Google Scholar] [CrossRef] [Green Version]
- Armeanu, D.Ş.; Vintilă, G.; Gherghina, Ş.C. Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries. Energies 2017, 10, 381. [Google Scholar] [CrossRef]
- Liu, W.-C. The Relationship between Primary Energy Consumption and Real Gross Domestic Product: Evidence from Major Asian Countries. Sustainability 2020, 12, 2568. [Google Scholar] [CrossRef] [Green Version]
- Alper, A.; Oguz, O. The role of renewable energy consumption in economic growth: Evidence from asymmetric causality. Renew. Sustain. Energy Rev. 2016, 60, 953–959. [Google Scholar] [CrossRef]
- Sari, R.; Ewing, B.T.; Soytas, U. The relationship between disaggregate energy consumption and industrial production in the United States: An ARDL approach. Energy Econ. 2008, 30, 2302–2313. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model. Energy Econ. 2012, 34, 733–738. [Google Scholar] [CrossRef]
- Siddiqui, R. Energy and Economic Growth in Pakistan. Pak. Dev. Rev. 2004, 43, 175–200. [Google Scholar] [CrossRef] [Green Version]
- Olusegun, O.; Chinedu, O. Does energy consumption contribute to economic performance? Empirical evidence from Nigeria. J. Econ. Int. Financ. 2009, 1, 044–058. [Google Scholar]
- Razzaqi, S.; Bilquees, F.; Sherbaz, S. Dynamic Relationship Between Energy and Economic Growth: Evidence from D8 Countries. Pak. Dev. Rev. 2011, 50, 437–458. [Google Scholar] [CrossRef] [Green Version]
- Payne, J.E. On the dynamics of energy consumption and output in the US. Appl. Energy 2009, 86, 575–577. [Google Scholar] [CrossRef]
- Halicioglu, F. A dynamic econometric study of income, energy and exports in Turkey. Energy 2011, 36, 3348–3354. [Google Scholar] [CrossRef] [Green Version]
- Bowden, N.; Payne, J.E. Sectoral analysis of the causal relationship between renewable and non-renewable energy consumption and real output in the US. Energy Sources Part B Econ. Plan. Policy 2010, 5, 400–408. [Google Scholar] [CrossRef]
- Menegaki, A.N. Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis. Energy Econ. 2011, 33, 257–263. [Google Scholar] [CrossRef]
- Li, J.; Li, S. Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model. Energy Policy 2020, 140, 111425. [Google Scholar] [CrossRef]
- Stern, D.I. Energy-GDP Relationship. In The New Palgrave Dictionary of Economics; Palgrave Macmillan UK: London, UK, 2018; pp. 3697–3714. [Google Scholar]
- Akizu, O.; Urkidi, L.; Bueno, G.; Lago, R.; Barcena, I.; Mantxo, M.; Basurko, I.; Lopez-Guede, J.M. Tracing the emerging energy transitions in the Global North and the Global South. Int. J. Hydrogen Energy 2017, 42, 18045–18063. [Google Scholar] [CrossRef]
- Griliches, Z. Patent Statistics as Economic Indicators: A survey. In R&D and Productivity: The Econometric Evidence; University of Chicago Press: Chicago, IL, USA, 1998; pp. 287–343. [Google Scholar]
- Mansfield, E. Contribution of R&D to Economic Growth in the United States. Science 1972, 175, 477–486. [Google Scholar]
- Nadiri, M.I. Innovations and Technological Spillovers; National Bureau of Economic Research: Cambridge, MA, USA, 1993. [Google Scholar]
- Balash, V.A.; Balash, O.S.; Faizliev, A.; Chistopolskaya, E.V. Modeling the Spatial Effects of the Impact of Innovation on Regional Economic Growth. In Proceedings of the Fourth Workshop on Computer Modelling in Decision Making (CMDM 2019), Saratov, Russia, 14–15 November 2019; pp. 108–114. [Google Scholar]
- Faggian, A.; Partridge, M.; Malecki, E. Creating an environment for economic growth: Creativity, entrepreneurship or human capital? Int. J. Urban Reg. Res. 2017, 41, 997–1009. [Google Scholar] [CrossRef]
- Popkova, E.G.; Sergi, B.S. Energy efficiency in leading emerging and developed countries. Energy 2021, 221, 119730. [Google Scholar] [CrossRef]
- Hasan, I.; Tucci, C.L. The innovation–economic growth nexus: Global evidence. Res. Policy 2010, 39, 1264–1276. [Google Scholar] [CrossRef] [Green Version]
- Sohag, K.; Begum, R.A.; Abdullah, S.M.S.; Jaafar, M. Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia. Energy 2015, 90, 1497–1507. [Google Scholar] [CrossRef]
- Torres-Preciado, V.H.; Polanco-Gaytán, M.; Tinoco-Zermeño, M. Technological innovation and regional economic growth in Mexico: A spatial perspective. Ann. Reg. Sci. 2013, 52, 183–200. [Google Scholar] [CrossRef]
- Akalpler, E.; Hove, S. Carbon emissions, energy use, real GDP per capita and trade matrix in the Indian economy-an ARDL approach. Energy 2018, 168, 1081–1093. [Google Scholar] [CrossRef]
- Omri, A. An international literature survey on energy-economic growth nexus: Evidence from country-specific studies. Renew. Sustain. Energy Rev. 2014, 38, 951–959. [Google Scholar] [CrossRef] [Green Version]
- Tientao, A.; Legros, D.; Pichery, M. Technology spillover and TFP growth: A spatial Durbin model. Int. Econ. 2016, 145, 21–31. [Google Scholar] [CrossRef]
- Cao, J.; Law, S.H.; Samad, A.R.B.A.; Mohamad, W.N.B.W.; Wang, J.; Yang, X. Effect of financial development and technological innovation on green growth—Analysis based on spatial Durbin model. J. Clean. Prod. 2022, 365, 132865. [Google Scholar] [CrossRef]
- Kenourgios, D.; Dimitriou, D. Contagion of the Global Financial Crisis and the real economy: A regional analysis. Econ. Model. 2015, 44, 283–293. [Google Scholar] [CrossRef]
- Kwasnicki, W. Logistic growth of the global economy and competitiveness of nations. Technol. Forecast. Soc. Change 2013, 80, 50–76. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Bekun, F.V.; Driha, O.M.; Balsalobre-Lorente, D. The effects of air transportation, energy, ICT and FDI on economic growth in the industry 4.0 era: Evidence from the United States. Technol. Forecast. Soc. Chang. 2020, 160, 120297. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y. Population urbanization competition among prefecture-level cities in china based on two-regime spatial econometrics. J. Chin. Econ. Bus. Stud. 2020, 18, 73–89. [Google Scholar] [CrossRef]
- Yifu, L.J.; Wang, X. Dual Circulation: A New Structural Economics view of development. J. Chin. Econ. Bus. Stud. 2022, 20, 303–322. [Google Scholar] [CrossRef]
- Chudik, A.; Pesaran, M.H. Theory and Practice of GVAR Modeling. J. Econ. Surv. 2016, 30, 165–197. [Google Scholar] [CrossRef]
Variables | Symbol | Observed Value | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|---|
Development of real economy | LNRE | 187 | 9.5678 | 0.8163 | 7.3473 | 11.3657 |
Technological innovation | LNTI | 187 | 9.9523 | 1.4832 | 6.6026 | 13.1204 |
Energy development | ED | 187 | 0.3459 | 0.1243 | 0.1539 | 0.7434 |
Financial development | LNFD | 187 | 1.6512 | 0.4911 | 0.5040 | 2.9187 |
Fixed investment | LNFI | 187 | 4.1444 | 0.4249 | 1.8290 | 4.7616 |
Exports | LNEX | 187 | 2.4186 | 0.9700 | 0.6678 | 4.4722 |
Consumption level | LNCL | 187 | 3.6491 | 0.1556 | 3.3223 | 3.9709 |
Indicators | Secondary Indicators | Unit | Attribute | Weight |
---|---|---|---|---|
Energy Supply (0.2532) | Energy consumption per capita | Tons of standard coal | 0.2532 | |
Energy Consumption (0.6092) | Coal | Thousand tons | − | 0.0611 |
Electricity | Billion kWh | 0.2510 | ||
Gas | Billion cubic meters | 0.2971 | ||
Energy Efficiency (0.1376) | Energy consumption per unit of GDP | Tons of standard coal/1000 Yuan | − | 0.0705 |
Electricity consumption per unit of GDP | KWh/Yuan | − | 0.0671 |
Year | I | Z | Year | I | Z |
---|---|---|---|---|---|
2004 | 0.266 ** | 1.775 | 2013 | 0.188 * | 1.401 |
2005 | 0.273 ** | 1.805 | 2014 | 0.187 * | 1.394 |
2006 | 0.272 ** | 1.801 | 2015 | 0.192 * | 1.423 |
2007 | 0.266 ** | 1.770 | 2016 | 0.203 * | 1.479 |
2008 | 0.263 ** | 1.763 | 2017 | 0.202 * | 1.484 |
2009 | 0.243 ** | 1.671 | 2018 | 0.160 | 1.274 |
2010 | 0.235 * | 1.627 | 2019 | 0.144 | 1.190 |
Tests | Null Hypothesis | Significance | Result |
---|---|---|---|
LM Test | SEM Model | 3.650 * | Reject |
SEM Model (Robust) | 3.404 * | ||
SLM Model | 3.414 * | ||
SLM Model (Robust) | 3.168 * | ||
Hausman Test | Random effect | 24.09 *** | Reject |
Wald Test | SEM/SAR perform better than SDM | 17.07 *** | Reject |
LR Test | SEM performs better than SDM | 16.32 ** | Reject |
SLM performs better than SDM | 237.25 *** | Reject | |
Space-fixed effect performs better than two-way fixed effect | 105.92 *** | Reject | |
Time-fixed effect performs better than two-way fixed effect | 363.42 *** | Reject |
Variable | Coefficients | Variable | Coefficients | ||
---|---|---|---|---|---|
w1 | w2 | w1 | w2 | ||
LNTI | 0.1205 *** | 0.1562 *** | W*LNGTI | 0.0538 | 0.0901 |
(6.51) | (9.63) | (1.58) | (1.17) | ||
ED | −0.3101 *** | −0.2291 ** | W*ED | −0.6113 ** | −0.6998 * |
(−2.84) | (−1.98) | (−2.26) | (−1.75) | ||
LNFD | −0.2671 *** | −0.2451 *** | W*LNFD | −0.2219 *** | −0.0410 |
(−8.02) | (−6.26) | (−3.34) | (−0.24) | ||
LNFI | 0.1149 *** | 0.1021 *** | W*LNFI | 0.1436 *** | 0.4456 *** |
(6.22) | (5.29) | (3.03) | (4.77) | ||
LNEX | 0.0988 *** | 0.0486 *** | W*LNEX | 0.1610 *** | 0.3230 *** |
(5.30) | (2.61) | (4.45) | (5.17) | ||
LNCL | 0.1164 | −0.0316 | W*LNCL | 0.2135 | −0.6247 * |
(1.53) | (−0.45) | (1.48) | (−1.73) | ||
R2 | 0.7046 | 0.7919 | α2 | 0.0029 *** | 0.0025 *** |
Variable | Coefficients | F Value/t Value | p Value | |
---|---|---|---|---|
LNTI | Threshold value γ | 9.3953 *** | 58.4 (F value) | 0.001 |
ED | (LNTI ≤ γ) | 0.3875 | 0.53 (t value) | 0.608 |
(LNTI > γ) | 1.5539 * | 1.82 (t value) | 0.098 | |
C | 2.8881 * | 2.04 (t value) | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Xue, H.; Wang, F.; Wang, L. The Impact of High-Quality Energy Development and Technological Innovation on the Real Economy of the Yangtze River Economic Belt in China: A Spatial Economic and Threshold Effect Analysis. Sustainability 2023, 15, 1453. https://doi.org/10.3390/su15021453
Fu J, Xue H, Wang F, Wang L. The Impact of High-Quality Energy Development and Technological Innovation on the Real Economy of the Yangtze River Economic Belt in China: A Spatial Economic and Threshold Effect Analysis. Sustainability. 2023; 15(2):1453. https://doi.org/10.3390/su15021453
Chicago/Turabian StyleFu, Jiangyuan, Huidan Xue, Fayuan Wang, and Liming Wang. 2023. "The Impact of High-Quality Energy Development and Technological Innovation on the Real Economy of the Yangtze River Economic Belt in China: A Spatial Economic and Threshold Effect Analysis" Sustainability 15, no. 2: 1453. https://doi.org/10.3390/su15021453
APA StyleFu, J., Xue, H., Wang, F., & Wang, L. (2023). The Impact of High-Quality Energy Development and Technological Innovation on the Real Economy of the Yangtze River Economic Belt in China: A Spatial Economic and Threshold Effect Analysis. Sustainability, 15(2), 1453. https://doi.org/10.3390/su15021453