Spatio-Temporal Changes and Influencing Factors of Meteorological Dry-Wet in Northern China during 1960–2019
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area and Data Collection
2.1.1. Study Area
2.1.2. Data Collection
2.2. Methodology
2.2.1. Thiessen Polygon
2.2.2. Standardized Precipitation Index (SPI)
2.2.3. Drought Identification
2.2.4. Mann-Kendall Trend Test and Sen’s Trend
3. Results
3.1. Dry-Wet Change Characteristics
3.1.1. Characteristics of Meteorological Dry-Wet Change in Northern China
3.1.2. Regional Differences of Meteorological Dry-Wet Changes
The Trend of Meteorological Dry-Wet Change in Different Seasons
Analysis of Dry-Wet Fluctuation Process
3.2. Evolution Characteristics of Drought Events
3.2.1. Threshold Optimization
3.2.2. Spatial Distribution of Drought Characteristics
3.2.3. Change Trend of Drought Characteristics
4. Discussion
4.1. Influencing Factors of Meteorological Dry-Wet Changes in Different Seasons
4.1.1. Analysis on Influencing Factors of Meteorological Wetting in Winter and Spring
4.1.2. Analysis of Influencing Factors of Summer and Autumn Dry-Wet Change
4.1.3. Factors Influencing the Reverse Fluctuation of Meteorological Dry-Wet in HA and AA in Summer
4.2. Comparison with Previous Studies and Future Prospect
5. Conclusions
- (1)
- At the inter-annual scale, the number of wetting stations in Northern China was slightly more than that of drying stations. It presented the spatio-temporal characteristics of drying in the HA and SHA in the east, and wetting in the SAA and AA in the west. The AA and SAA in the west had the same trend of wetting at the inter-annual and seasonal scales, while the HA and SHA in the east had complex meteorological dry-wet changes in different seasons. The AA and HA not only showed the opposite dry-wet trend, but also appeared a very pronounced “reverse fluctuation” called the “seesaw effect” in summer.
- (2)
- The drought characteristics differed widely in space. Overall, the south-central part of the AA was the low-value center of drought events; the DF and DI showed strong spatial consistency, as did the DD and DS in space. From 1960 to 2019, the DF in the SHA, SAA and AA showed a decreasing trend. The DD and DS of SHA and AA showed a decreasing trend, while HA and SHA increased. In addition, the DI of each dry-wet area showed a decreasing trend.
- (3)
- TP1 (r = 0.708, p = 0.01) and APV (r = −0.906, p = 0.01) were the main influencing factors of dry-wet change in winter and spring in Northern China, respectively. In summer, PNA, WP, PDO and TP1 were the main influencing factors of dry-wet change in HA, SHA, SAA and AA, respectively. In autumn, TP1 was the main influencing factor of dry-wet change in HA and SHA, while AMO was the main influencing factor of that in SAA and AA. Moreover, the co-direction fluctuation of NAO-NINO3.4, PNA-AMO and PNA-SOI and the reverse fluctuation of NAO-SOI, NAO-AMO and PNA-NINO3.4 jointly determined the reverse fluctuation process of SPI3 of HA and AA in summer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.S.; Li, Y.H.; Wang, R.Y.; Feng, J.Y.; Zhao, Y.X. Preliminary analysis on the demand and review of progress in the field of meteorological drought research. J. Arid Meteorol. 2012, 30, 497–508. [Google Scholar]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, Y.; Pan, Y.; Li, W. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. Drought modeling—A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Touma, D.; Ashfaq, M.; Nayak, M.A.; Kao, S.-C.; Diffenbaugh, N.S. A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol. 2015, 526, 196–207. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Feldman, D.; Hoerling, M.; Huxman, T.; Lund, J. Water and climate: Recognize anthropogenic drought. Nature 2015, 524, 409–411. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; He, C. A modified water demand estimation method for drought identification over arid and semiarid regions. Agric. For. Meteorol. 2016, 230, 58–66. [Google Scholar] [CrossRef]
- Frank, A.; Armenski, T.; Gocic, M.; Popov, S.; Popovic, L.; Trajkovic, S. Influence of mathematical and physical background of drought indices on their complementarity and drought recognition ability. Atmospheric Res. 2017, 194, 268–280. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, W. Applicability analysis of standardized precipitation evapotranspiration index in drought monitoring in China. Plateau Meteorol. 2014, 33, 423–431. (In Chinese) [Google Scholar]
- Hoerling, M.; Eischeid, J.; Kumar, A.; Leung, R.; Mariotti, A.; Mo, K.; Schubert, S.; Seager, R. Causes and Predictability of the 2012 Great Plains Drought. Bull. Am. Meteor. Soc. 2014, 95, 269–282. [Google Scholar] [CrossRef]
- He, P.; Ma, X.; Sun, Z.; Han, Z.; Ma, S.; Meng, X. Compound drought constrains gross primary productivity in Chinese grasslands. Environ. Res. Lett. 2022, 17, 104054. [Google Scholar] [CrossRef]
- Lei, T.; Pang, Z.; Wang, X.; Li, L.; Fu, J.; Kan, G.; Zhang, X.; Ding, L.; Li, J.; Huang, S.; et al. Drought and Carbon Cycling of Grassland Ecosystems under Global Change: A Review. Water 2016, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Schubert, S.D.; Stewart, R.E.; Wang, H.; Barlow, M.; Berbery, E.H.; Cai, W.; Hoerling, M.P.; Kanikicharla, K.K.; Koster, R.D.; Lyon, B.; et al. Global meteorological drought: A synthesis of current understanding with a focus on sst drivers of precipitation deficits. J. Clim. 2016, 29, 3989–4019. [Google Scholar] [CrossRef] [Green Version]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igbawua, T.; Zhang, J.; Yao, F.; Zhang, D. Assessment of moisture budget over West Africa using MERRA-2’s aerological model and satellite data. Clim. Dyn. 2019, 52, 83–106. [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Lei, T.; Peng, L. Drought evolution, severity and trends in mainland China over 1961. Sci. Total Environ. 2018, 616, 73–89. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S.; Zhang, H.; Bai, Y.; Zhang, J. Monitoring drought using composite drought indices based on remote sensing. Sci. Total. Environ. 2020, 711, 134585. [Google Scholar] [CrossRef]
- Depsky, N.; Pons, D. Meteorological droughts are projected to worsen in Central America’s dry corridor throughout the 21st century. Environ. Res. Lett. 2020, 16, 014001. [Google Scholar] [CrossRef]
- Coelho Junior, L.M.; de Lourdes da Costa Martins, K.; Carvalho, M. Carbon footprint associated with firewood consumption in northeast Brazil: An analysis by the IPCC 2013 GWP 100y Criterion. Waste Biomass Valorization 2019, 10, 2985–2993. [Google Scholar] [CrossRef]
- Sharma, J.; Ravindranath, N.H. Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environ. Res. Commun. 2019, 1, 051004. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, G. Theoratical Study and Research Prospect on Drought Indices. Adv. Earth Sci. 2004, 6, 982–991. [Google Scholar]
- Wu, Y.; Bake, B.; Zhang, J.; Rasulov, H. Spatio-temporal patterns of drought in North Xinjiang, China, 1961–2012 based on meteorological drought index. J. Arid. Land 2015, 7, 527–543. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, M. Drought analysis in Antakya-Kahramanmaraş Graben, Turkey. J. Arid Land 2015, 7, 741–754. [Google Scholar] [CrossRef]
- Palmer, W.C. Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index; Taylor & Francis: Abingdon, UK, 1968; Volume 1, pp. 156–161. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Wu, M.; Li, Y.; Hu, W.; Yao, N.; Li, L.; Liu, D.L. Spatiotemporal variability of standardized precipitation evapotranspiration index in mainland China over 1961–2016. Int. J. Clim. 2020, 40, 4781–4799. [Google Scholar] [CrossRef]
- Christos, A.K.; Stavros, A.; Demetrios, E.T.; George, A. Application of the Standardized Precipitation Index (SPI) in Greece. Water 2011, 3, 787–805. [Google Scholar]
- Karavitis, C.A.; Skondras, N.A.; Tsesmelis, D.E.; Stamatakos, C.G.; Alexandris, S.G.; Fassouli, V.P. Drought impacts archive and drought vulnerability index. DMCSEE Summ. Proj. Result 2012. [Google Scholar]
- Karavitis, C.A.; Skondras, N.A.; Tsesmelis, D.E.; Stamatakos, C.G.; Alexandris, S.G.; Fassouli, V.P. Linking drought characteristics to impacts on a spatial and temporal scale. Water Policy 2014, 16, 1172–1197. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Oikonomou, P.D.; Vasilakou, C.G.; Skondras, N.A.; Fassouli, V.; Alexandris, S.G.; Grigg, N.S.; Karavitis, C.A. Assessing structural uncertainty caused by different weighting methods on the Standardized Drought Vulnerability Index (SDVI). Stoch. Environ. Res. Risk Assess. 2019, 33, 515–533. [Google Scholar] [CrossRef]
- Kalisa, W.; Zhang, J.; Igbawua, T.; Ujoh, F.; Ebohon, O.J.; Namugize, J.N.; Yao, F. Spatio-temporal analysis of drought and return periods over the East African region using Standardized Precipitation Index from 1920 to 2016. Agric. Water Manag. 2020, 237, 106195. [Google Scholar] [CrossRef]
- Achour, K.; Meddi, M.; Zeroual, A.; Bouabdelli, S.; Maccioni, P.; Moramarco, T. Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J. Earth Syst. Sci. 2020, 129, 1–22. [Google Scholar] [CrossRef]
- Raziei, T. Performance evaluation of different probability distribution functions for computing Standardized Precipitation Index over diverse climates of Iran. Int. J. Clim. 2021, 41, 3352–3373. [Google Scholar] [CrossRef]
- Song, Z.; Xia, J.; She, D.; Zhang, L.; Hu, C.; Zhao, L. The development of a Nonstationary Standardized Precipitation Index using climate covariates: A case study in the middle and lower reaches of Yangtze River Basin, China. J. Hydrol. 2020, 588, 125115. [Google Scholar] [CrossRef]
- Oliveira Júnior, J.F.; Gois, G.; Silva, I.J.L.; Jardim, A.M.R.F.; Silva, M.V.; Shah, M.; Jamjareegulgarn, P. Wet and dry periods in the state of Alagoas (Northeast Brazil) via Standardized Precipitation Index. J. Atmos. Sol. Terr. Phys. 2021, 224, 105746. [Google Scholar] [CrossRef]
- Abdelmalek, M.B.; Nouiri, I. Study of trends and mapping of drought events in Tunisia and their impacts on agricultural production. Sci. Total Environ. 2020, 734, 139311. [Google Scholar] [CrossRef]
- Baronetti, A.; González-Hidalgo, J.C.; Vicente-Serrano, S.M.; Acquaotta, F.; Fratianni, S. A weekly spatio-temporal distribution of drought events over the Po Plain (North Italy) in the last five decades. Int. J. Climatol. 2020, 40, 4463–4476. [Google Scholar] [CrossRef]
- Ayala, J.H.; Heslar, M. Examining the spatiotemporal characteristics of droughts in the Caribbean using the standardized precipitation index (SPI). Clim. Res. 2019, 78, 103–116. [Google Scholar] [CrossRef]
- Yuan, N.; Yang, Q.; Liu, J.; Tao, L.; Feng, J.M.; Ma, Z.G. Research progress on attribution and prediction of interdecadal climate events. China Basic Sci. 2019, 21, 36–44. [Google Scholar]
- Dai, A.; Fyfe, J.C.; Xie, S.-P.; Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Chang. 2015, 5, 555–559. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R.F. Spatial Patterns of Global Precipitation Change and Variability during 1901–2010. J. Clim. 2015, 28, 4431–4453. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R.F.; Huffman, G. Long-term changes/trends in surface temperature and precipitation during the satellite era (1979–2012). Clim. Dyn. 2015, 46, 1091–1105. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Z.; Fan, X.; Yang, Z.-L.; Xu, Z.; Wu, P. Decadal Modulation of Precipitation Patterns over Eastern China by Sea Surface Temperature Anomalies. J. Clim. 2017, 30, 7017–7033. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Z.; Xu, B. Modulation of monthly precipitation patterns over East China by the Pacific Decadal Oscillation. Clim. Chang. 2016, 144, 405–417. [Google Scholar] [CrossRef]
- Ma, F.; Ye, A.; You, J.; Duan, Q. 2015–2016 floods and droughts in China, and its response to the strong El Niño. Sci. Total Environ. 2018, 627, 1473–1484. [Google Scholar] [CrossRef]
- Nalley, D.; Adamowski, J.; Biswas, A.; Gharabaghi, B.; Hu, W. A multiscale and multivariate analysis of precipitation and streamflow variability in relation to ENSO, NAO and PDO. J. Hydrol. 2019, 574, 288–307. [Google Scholar] [CrossRef]
- Allen, R.J.; Luptowitz, R. El Niño-like Teleconnection Increases California Precipitation in Response to Warming. Nat. Commun. 2017, 8, 16055. [Google Scholar] [CrossRef] [Green Version]
- Casanueva, A.; Rodríguez-Puebla, C.; Frías, M.D.; González-Reviriego, N. Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol. Earth Syst. Sci. 2014, 18, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.N.; Zhu, Q.K.; Zhao, W.J.; Zhao, X.K. The drought trend and its relationship with rainfall intensity in the Loess Plateau of China. Nat. Hazard 2015, 77, 479–495. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhou, J.J.; Zhang, H.W.; Wang, B.; Cao, J.J. Temporal and spatial patterns of climate drought-wet and drought event based on Standard Precipitation Index in Shiyang River Basin. Acta Ecol. Sin. 2017, 37, 996–1007. [Google Scholar]
- Hu, Z.; Zhou, J.; Zhang, L.; Wei, W. Climate dry-wet change and drought evolution characteristics of different dry-wet areas in northern China. Acta Ecologica Sinica. 2018, 38, 1908–1919. [Google Scholar]
- Ribeiro, A.S.; Almeida, M.C.; Cox, M.G.; Sousa, J.A.; Martins, L.; Loureiro, D.; Brito, R.; Silva, M.; Soares, A.C. Role of measurement uncertainty in the comparison of average areal rainfall methods. Metrologia. 2021, 58, 044001. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Q.; Wang, L.; Lei, L.; Huang, M.; Xiang, J.; Feng, W.; Zhao, Y.; Xue, D.; Liu, C.; et al. Impact of Climate Change and Land-Use on the Propagation from Meteorological Drought to Hydrological Drought in the Eastern Qilian Mountains. Water 2019, 11, 1602. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Q. Chinese Meteorological Society. In Proceedings of the 33rd Annual Meeting of Chinese Meteorological Society, Xi’an, China, 2 November 2016. [Google Scholar]
- Zhuo, Y.; Bao, Y.M.; Liu, G.X.; Yu, F.M. Characteristics of Drought Disaster Frequency of China in Last 50 Years Based on the Drought Index SPI. In Information Technology in Risk Analysis and Crisis Response, Proceedings of the 6th Annual Conference of Risk Analysis Committee of China Disaster Prevention Association, Hohhot, China, 23 August 2014; Risk Analysis Committee of China Disaster Prevention Association: Beijing, China, 2014; pp. 859–863. [Google Scholar]
- Chen, Z.Q.; Hou, W.; Zuo, D.D.; Hu, J.G. Research on Drought Characteristics in China Based on the Revised Copula Function. J. Arid. Meteorol. 2016, 34, 213–222. [Google Scholar]
- Tao, R.; Zhang, K. PDSI-based analysis of characteristics and spatiotemporal changes of meteorological drought in China from 1982 to 2015. Water Resour. Prot. 2020, 426, 50–56. [Google Scholar]
- Wang, X.F.; Zhang, Y.; Feng, X.M.; Feng, Y.; Xue, Y.Y.; Pan, N.Q. Analysis and application of drought characteristics based on run theory and Copula function. Trans. Chin. Soc. Agric. Eng. 2017, 33, 206–214. (In Chinese) [Google Scholar]
- Liu, X.; Leng, X.; Sun, G.; Peng, Y.; Huang, Y.; Yang, Q. Assessment of drought characteristics in Yunnan Province based on SPI and SPEI from 1961 to 2100. Trans. Chin. Soc. Agric. Mach. 2018, 49, 299. [Google Scholar]
- Li, M.; Hu, W.; Wang, G.; Chai, X.; Zhang, L. Drought Risk in MonsoonArea of the Eastern China Based on Copula Function. Sci. Geogr. Sinica 2019, 39, 506–515. [Google Scholar]
- Ma, J.; Liu, B.; Xia, J. Analysis of Temporal and Spatial Characteristics of Meteorological Drought in Shandong Province Based on the Theory of Runs. Yellow River. 2013, 35, 4–7. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975; p. 220. [Google Scholar]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Kumar, V. Trend analysis of rainfall and temperature data for India. Curr. Sci. India 2012, 102, 37–49. [Google Scholar]
- Raj, P.P.N.; Azeez, P.A. Trend analysis of rainfall in Bharathapuzha River basin, Kerala, India. Int. J. Climatol. 2012, 32, 533–539. [Google Scholar]
- Lettenmaier, D.P.; Wood, E.F.; Wallis, J.R. Hydro-climatological trends in the continental United-States, 1948–1988. J. Clim. 1994, 7, 586–607. [Google Scholar] [CrossRef]
- Asadi Zarch, M.A.; Sivakumar, B.; Sharma, A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total. Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef]
- Thompson, D.W.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.; Zhou, J.; Hu, M. The Linkage between Winter-spring Arctic Oscillation and Precipitation over Western and Central China. J. Chengdu Univ. Inf. Technol. 2019, 34, 403–410. [Google Scholar]
- Wang, Y.; Li, S.; Luo, D. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Jia, Y.Q.; Zhang, B. Relationship of Dry-Wet Climate Changes in Northern China in the Past 57 Years with Pacific Decadal Oscillation (PDO). Acta Ecol. Sin. 2019, 56, 1085–1097. [Google Scholar]
- Kerr, R.A. A North Atlantic climate pacemaker for the centuries. Science 2000, 288, 1984–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Hu, Q. How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Kumar, M.N.; Murthy, C.S.; Sai, M.V.R.S.; Roy, P.S. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Solanki, J.K.; Parekh, F. Drought assessment using standardized precipitation index. Int. J. Sci. Res. 2014, 3, 1073–1076. [Google Scholar]
- Shi, S.; Wang, F.; Jin, K.; Ding, W. Temporal and spatial characteristics of drought based on SPEI in northern China from 1981 to 2017. Agric. Res. Arid Areas 2019, 37, 215–222. [Google Scholar]
- Ma, Z.; Fu, Z. Basic facts of aridity in northern China from 1951 to 2004. Chin. Sci. Bull. 2006, 51, 2429–2439. [Google Scholar] [CrossRef]
- Ren, P.; Zhang, B.; Zhang, T.; Li, X.Y.; Chen, L.; Lu, L.P. Trend analysis of meteorological drought change in Northwest China on standardized precipitation evapotranspiration index. Bull. Soil Water Conserv. 2014, 34, 182–187. [Google Scholar]
- Han, L.; Zhang, Q.; Jia, J.; Wang, Y.; Huang, T. Drought severity, frequency, duration and regional differences in China. J. Des. Res. 2019, 39, 1–10. [Google Scholar]
- Moradi, M.; Yahya Safari, S.; Biglari, H.; Ghayebzadeh, M.; Darvishmotevalli, M. Multi-year assessment of drought changes in the Kermanshah city by standardized precipitation index. Int. J. Power 2016, 8, 17975–17987. [Google Scholar]
- Khan, F.; Ali, S.; Mayer, C.; Ullah, H.; Muhammad, S. Climate change and spatio-temporal trend analysis of climate extremes in the homogeneous climatic zones of Pakistan during 1962–2019. PLoS ONE 2022, 17, e0271626. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Gayen, A.; Saha, P.; Bhattacharya, S.K. Meteorological drought analysis using Standardized Precipitation Index over Luni River Basin in Rajasthan, India. SN Appl. Sci. 2020, 2, 1–17. [Google Scholar] [CrossRef]
SPI Value | Categories | SPI Value | Categories |
---|---|---|---|
≥2 | Extremely wet | −0.99 to −0.50 | Mildly drought |
1.50–1.99 | Very wet | −1.49 to −1.0 | Moderately drought |
1.0–1.49 | Moderately wet | −1.99 to −1.50 | Very drought |
0.50–0.99 | Mildly wet | ≤−2.0 | Extremely drought |
−0.49–0.49 | Normal |
Inter-Annual | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
Wetting | 173 (54.06%) | 243 (75.94%) | 138 (43.13%) | 145 (45.31%) | 269 (84.06%) |
Drying | 147 (45.94%) | 77 (24.06%) | 182 (56.87%) | 175 (54.69%) | 51 (15.94%) |
Value (X1 = −0.3) | Time (X1 = −0.3) | Value (X1 = −0.4) | Time (X1 = −0.4) | |
---|---|---|---|---|
MAX-DD(HA) | 7 | December 1981 to June 1982/April 1997 to October 1997/March 2001 to September 2001 | 7 | April 1997 to October 1997 |
MAX-DS(HA) | 8.66 | March 2001 to September 2001 | 7.32 | April 1997 to October 1997 |
MAX-DI(HA) | 2.89 | March 1962 | 2.89 | March 1962 |
MAX-DD(SHA) | 9 | March 2001 to November 2001 | 9 | March 2001 to November 2001 |
MAX-DS(SHA) | 8.88 | March 2001 to November 2001 | 8.88 | March 2001 to November 2001 |
MAX-DI(SHA) | 2.51 | May 1979 | 2.51 | May 1979 |
MAX-DD(SAA) | 11 | November 1964 to September 1965 | 11 | November 1964 to September 1965 |
MAX-DS(SAA) | 16.16 | November 1964 to September 1965 | 16.16 | November 1964 to September 1965 |
MAX-DI(SAA) | 2.07 | July 2015 to August 2015 | 2.07 | July 2015 to August 2015 |
MAX-DD(AA) | 12 | November 1964 to September 1965 | 9 | September 1974 to May 1975 |
MAX-DS(AA) | 10.85 | November 1964 to September 1965 | 8.97 | February 1962 to August 1969 |
MAX-DI(AA) | 2.42 | April 1993 | 2.42 | April 1993 |
Northern China | HA | SHA | SAA | AA | |
---|---|---|---|---|---|
DF (times/10a) | −0.4587 | d | −1 | −0.2286 | −1.4857 |
DD | −0.0043/10a | 0.0027/10a | 0.0018/10a | −0.0104/10a | −0.007/10a |
DS | −0.052/10a | 0.019/10a | 0.009/10a | −0.108/10a | −0.07/10a |
DI | −0.011/10a | −0.012/10a | −0.0005/10a | −0.004/10a | −0.005/10a |
TP1 | AO | AMO | SOI | PDO | APV | |
---|---|---|---|---|---|---|
Winter | 0.708 ** | 0.594 ** | 0.624 ** | - | - | - |
Spring | 0.712 ** | - | 0.875 ** | −0.376 ** | 0.468 ** | −0.906 ** |
HA | SHA | SAA | AA | |
---|---|---|---|---|
TP1 | - | −0.274 * | - | 0.659 ** |
AO | - | - | 0.351 ** | - |
NAO | −0.282 * | - | - | - |
WP | - | −0.428 ** | - | −0.61 ** |
PNA | 0.381 ** | - | - | - |
NINO3.4 | - | - | - | 0.471 ** |
AMO | - | −0.342 * | - | 0.348 ** |
SOI | - | - | - | −0.279 * |
PDO | - | - | 0.396 ** | 0.376 ** |
HA | SHA | SAA | AA | |
---|---|---|---|---|
TP1 | −0.430 ** | −0.444 ** | −0.319 * | 0.509 ** |
AO | - | - | 0.356 ** | - |
WP | - | −0.277 * | - | - |
PNA | - | −0.370 ** | - | - |
AMO | - | - | 0.533 ** | 0.691 ** |
SOI | - | - | 0.482 ** | 0.372 ** |
PDO | 0.298 * | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Tang, H.; Qiu, Y.; Guo, Z.; Luo, C.; Wang, X.; Shi, W.; Zhang, D.; Wang, C.; Yang, X.; et al. Spatio-Temporal Changes and Influencing Factors of Meteorological Dry-Wet in Northern China during 1960–2019. Sustainability 2023, 15, 1499. https://doi.org/10.3390/su15021499
Zhou J, Tang H, Qiu Y, Guo Z, Luo C, Wang X, Shi W, Zhang D, Wang C, Yang X, et al. Spatio-Temporal Changes and Influencing Factors of Meteorological Dry-Wet in Northern China during 1960–2019. Sustainability. 2023; 15(2):1499. https://doi.org/10.3390/su15021499
Chicago/Turabian StyleZhou, Junju, Haitao Tang, Yu Qiu, Zhaonan Guo, Chuyu Luo, Xue Wang, Wei Shi, Dongxia Zhang, Chunli Wang, Xuemei Yang, and et al. 2023. "Spatio-Temporal Changes and Influencing Factors of Meteorological Dry-Wet in Northern China during 1960–2019" Sustainability 15, no. 2: 1499. https://doi.org/10.3390/su15021499
APA StyleZhou, J., Tang, H., Qiu, Y., Guo, Z., Luo, C., Wang, X., Shi, W., Zhang, D., Wang, C., Yang, X., Liu, C., & Wei, W. (2023). Spatio-Temporal Changes and Influencing Factors of Meteorological Dry-Wet in Northern China during 1960–2019. Sustainability, 15(2), 1499. https://doi.org/10.3390/su15021499