Using a Low-Temperature Pyrolysis Device for Polymeric Waste to Implement a Distributed Energy System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Technology Pipeline Structure for Waste-to-Resource
2.2. Operation Procedures of LTPD Host for Pyrolysis
2.3. Refining Module of Product Pyrolysis and Chemical Analysis
2.4. System Verifications for Mixed Polymers and Tandem Power Generation
3. Results
3.1. Conversion of Different Polymeric Materials by Low-Temperature Pyrolysis
3.2. Converting Waste Mixture into Renewable Energy
3.3. Implementation of Waste-to-Electricity Ongoing Operation
4. Discussion
4.1. Effects of Input Materials on WPO Output
4.2. Mitigation of Environmental Hazards by Waste Reduction
4.3. Energy Performance of Different Waste Treatment Plants
4.4. Auxiliary Supply of Distributed Energy to Green Power Grids
4.5. Scenario Analysis of Energy System Applications in Extreme Climates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vij, D. Urbanization and Solid Waste Management in India: Present Practices and Future Challenges. Procedia Soc. Behav. Sci. 2012, 37, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Vinti, G.; Bauza, V.; Clasen, T.; Medlicott, K.; Tudor, T.; Zurbrügg, C.; Vaccari, M. Municipal solid waste management and adverse health outcomes: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 4331. [Google Scholar] [CrossRef]
- Namazi, H. Polymers in our daily life. BioImpacts 2017, 7, 73. [Google Scholar] [CrossRef]
- Moore, C.J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 2008, 108, 131–139. [Google Scholar] [CrossRef]
- Seltenrich, N. New link in the food chain? Marine plastic pollution and seafood safety. Environ. Health Perspect. 2015, 123, A34–A41. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.L.; Lee, Y.H.; Chiu, I.J.; Lin, Y.F.; Chiu, H.W. Potent impact of plastic nanomaterials and micromaterials on the food chain and human health. Int. J. Mol. Sci. 2020, 21, 1727. [Google Scholar] [CrossRef] [Green Version]
- Magazzino, C.; Mele, M.; Schneider, N.; Sarkodie, S.A. Waste generation, wealth and GHG emissions from the waste sector: Is Denmark on the path towards circular economy? Sci. Total Environ. 2021, 755, 142510. [Google Scholar] [CrossRef]
- Pan, D.; Su, F.; Liu, C.; Guo, Z. Research progress for plastic waste management and manufacture of value-added products. Adv. Compos. Hybrid Mater. 2020, 3, 443–461. [Google Scholar] [CrossRef]
- Panda, A.K.; Singh, R.K.; Mishra, D.K. Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew. Sustain. Energy Rev. 2010, 14, 233–248. [Google Scholar] [CrossRef]
- Majumdar, A.; Shukla, S.; Singh, A.A.; Arora, S. Circular fashion: Properties of fabrics made from mechanically recycled poly-ethylene terephthalate (PET) bottles. Resour. Conserv. Recycl. 2020, 161, 104915. [Google Scholar] [CrossRef]
- Oladele, I.O.; Adediran, A.A.; Akinwekomi, A.D.; Adegun, M.H.; Olumakinde, O.O.; Daramola, O.O. Development of ecofriendly snail shell particulate-reinforced recycled waste plastic composites for automobile application. Sci. World J. 2020, 2020, 7462758. [Google Scholar] [CrossRef] [PubMed]
- Sormunen, P.; Timo, K. Compression molded thermoplastic composites entirely made of recycled materials. Sustainability 2019, 11, 631. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y. Technology innovation and sustainability: Challenges and research needs. Clean Technol. Environ. Policy 2021, 23, 1663–1664. [Google Scholar] [CrossRef] [PubMed]
- Hacking, N.; Flynn, A. Protesting against neoliberal and illiberal governmentalities: A comparative analysis of waste governance in the UK and China. Political Geogr. 2018, 63, 31–42. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Su, G.; Ong, H.C.; Cheah, M.Y.; Chen, W.-H.; Lam, S.S.; Huang, Y. Microwave-assisted pyrolysis technology for bioenergy recovery: Mechanism, performance, and prospect. Fuel 2022, 326, 124983. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Chithra, K. Optimization studies on bio-oil yield using microwave-assisted pyrolysis of bio-sludge. Biofuels 2022, 13, 1165–1171. [Google Scholar] [CrossRef]
- Yan, G.; Jing, X.; Wen, H.; Xiang, S. Thermal cracking of virgin and waste plastics of PP and LDPE in a semibatch reactor under atmospheric pressure. Energy Fuels 2015, 29, 2289–2298. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 2016, 174, 164–171. [Google Scholar] [CrossRef]
- Al-asadi, M.; Miskolczi, N. High Temperature Pyrolysis of Municipal Plastic Waste Using Me/Ni/ZSM-5 Catalysts: The Effect of Metal/Nickel Ratio. Energies 2020, 13, 1284. [Google Scholar] [CrossRef]
- Karaca, C.; Sözen, S.; Orhon, D.; Okutan, H. High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery. Waste Manag. 2018, 78, 217–226. [Google Scholar] [CrossRef]
- Chua, H.S.; Bashir, M.J.K.; Tan, K.T. A sustainable pyrolysis technology for the treatment of municipal solid waste in Malaysia. In AIP Conference Proceedings. AIP Publ. LLC 2019, 2124, 020016. [Google Scholar] [CrossRef]
- Maya, D.M.Y.; Sarmiento, A.L.E.; Oliveira, C.A.V.B.; Lora, E.S.; Andrade, R. Gasification of municipal solid waste for power generation in Brazil, a review of available technologies and their environmental benefits. J. Chem. Chem. Eng. 2016, 10, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Beyene, H.D. Recycling of plastic waste into fuels, a review. Int. J. Sci. Technol. Soc. 2014, 2, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.S.; Mahari, W.A.W.; Ok, Y.S.; Peng, W.; Chong, C.T.; Ma, N.L.; Chase, H.A.; Liew, Z.; Yusup, S.; Kwon, E.E.; et al. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renew. Sustain. Energy Rev. 2019, 115, 109359. [Google Scholar] [CrossRef]
- Abomohra, A.E.F.; Sheikh, H.M.; El-Naggar, A.H.; Wang, Q. Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization. Renew. Sustain. Energy Rev. 2021, 149, 111335. [Google Scholar] [CrossRef]
- Chen, G.; Sun, B.; Li, J.; Lin, F.; Xiang, L.; Yan, B. Products distribution and pollutants releasing characteristics during pyrolysis of waste tires under different thermal process. J. Hazard. Mater. 2022, 424, 127351. [Google Scholar] [CrossRef]
- Chia, S.R.; Nomanbhay, S.; Milano, J.; Chew, K.W.; Tan, C.-H.; Khoo, K.S. Microwave-absorbing catalysts in catalytic reactions of biofuel production. Energies 2022, 15, 7984. [Google Scholar] [CrossRef]
- Ethaib, S.; Omar, R.; Kamal, S.M.M.; Awang Biak, D.R.; Zubaidi, S.L. Microwave-assisted pyrolysis of biomass waste: A mini review. Processes 2020, 8, 1190. [Google Scholar] [CrossRef]
- Jouhara, H.; Ahmad, D.; Van Den Boogaert, I.; Katsou, E.; Simons, S.; Spencer, N. Pyrolysis of domestic based feedstock at temperatures up to 300 C. Therm. Sci. Eng. Prog. 2018, 5, 117–143. [Google Scholar] [CrossRef]
- Garcia-Nunez, J.A.; Pelaez-Samaniego, M.R.; Garcia-Perez, M.E.; Fonts, I.; Abrego, J.; Westerhof, R.J.M.; Garcia-Perez, M. Historical developments of pyrolysis reactors: A review. Energy Fuels 2017, 31, 5751–5775. [Google Scholar] [CrossRef] [Green Version]
- Jahirul, M.I.; Rasul, M.G.; Schaller, D.; Khan, M.M.K.; Hasan, M.M.; Hazrat, M.A. Transport fuel from waste plastics pyrolysis–A review on technologies, challenges and opportunities. Energy Convers. Manag. 2022, 258, 115451. [Google Scholar] [CrossRef]
- Edo-Alcón, N.; Gallardo, A.; Colomer-Mendoza, F.J. Characterization of SRF from MBT plants: Influence of the input waste and of the processing technologies. Fuel Process. Technol. 2016, 153, 19–27. [Google Scholar] [CrossRef]
- Velis, C.A.; Jeff, C. Are solid recovered fuels resource-efficient? Waste Manag. Res. 2013, 31, 113–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, J.S.; Kim, S.W.; Lee, J.H.; Joo, J.C.; Ohm, T.I. Combustion characteristics of solid refuse fuel derived from mixture of food and plastic wastes. J. Mater. Cycles Waste Manag. 2020, 22, 1047–1055. [Google Scholar] [CrossRef]
- Ohnishi, S.; Fujii, M.; Ohata, M.; Rokuta, I.; Fujita, T. Efficient energy recovery through a combination of waste-to-energy systems for a low-carbon city. Resour. Conserv. Recycl. 2018, 128, 394–405. [Google Scholar] [CrossRef]
- AI Saffar, I.Q.; Ezzat, A.W. Qualitative risk assessment of combined cycle power plant using hazards identification technique. J. Mech. Eng. Res. Dev. 2020, 43, 284–293. [Google Scholar]
- Dmitrienko, M.A.; Strizhak, P.A. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review. Sci. Total Environ. 2018, 613, 1117–1129. [Google Scholar] [CrossRef]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Wang, J.; Baldick, R. Research on resilience of power systems under natural disasters—A review. IEEE Trans. Power Syst. 2015, 31, 1604–1613. [Google Scholar] [CrossRef]
- Chowdhury, E.K.; Khan, I.I.; Dhar, B.K. Catastrophic impact of COVID-19 on the global stock markets and economic activities. Bus. Soc. Rev. 2022, 127, 437–460. [Google Scholar] [CrossRef]
- Tuna, F. A Political assessment of the effect of Russian-Ukrainian war on the energy markets. J. Financ. Econ. Bank. 2022, 3, 73–76. [Google Scholar]
- Wang, Y.; Rousis, A.O.; Strbac, G. Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids. Appl. Energy 2022, 305, 117921. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, T.; Ollis, T.B.; Li, X.; Li, F.; Tomsovic, K. Resilient distribution system leveraging distributed generation and microgrids: A review. IET Energy Syst. Integr. 2020, 2, 289–304. [Google Scholar] [CrossRef]
- Ismael, S.M.; Aleem, S.H.A.; Abdelaziz, A.Y.; Zobaa, A.F. State-of-the-art of hosting capacity in modern power systems with distributed generation. Renew. Energy 2019, 130, 1002–1020. [Google Scholar] [CrossRef]
- Ridhosari, B.; Rahman, A. Carbon footprint assessment at Universitas Pertamina from the scope of electricity, transportation, and waste generation: Toward a green campus and promotion of environmental sustainability. J. Clean. Prod. 2020, 246, 119172. [Google Scholar] [CrossRef]
- Riesco-Avila, J.M.; Vera-Rozo, J.R.; Rodríguez-Valderrama, D.A.; Pardo-Cely, D.M.; Ramón-Valencia, B. Effects of Heating Rate and Temperature on the Yield of Thermal Pyrolysis of a Random Waste Plastic Mixture. Sustainability 2022, 14, 9026. [Google Scholar] [CrossRef]
- Roldán-San Antonio, J.E.; Martín-Hernández, E.; Briones, R.; Martín, M. Process design and scale-up study for the production of polyol-based biopolymers from sawdust. Sustain. Prod. Consum. 2021, 27, 462–470. [Google Scholar] [CrossRef]
- Owens, S.E. Land-use planning for energy efficiency. Appl. Energy 1992, 43, 81–114. [Google Scholar] [CrossRef]
- Mancarella, P. Distributed multi-generation options to increase environmental efficiency in smart cities. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Wheelabrator, Saugus. Available online: https://www.wtienergy.com/plant-locations/energy-from-waste/wheelabrator-saugus (accessed on 10 December 2022).
- Sysav, Sweden. Available online: https://www.sysav.se/en/The-Waste-to-Energy-plant/ (accessed on 10 December 2022).
- Suginami, Japan. Available online: https://www.union.tokyo23-seisou.lg.jp/kojo/suginami/documents/suginami_er2021.pdf (accessed on 10 December 2022).
- Hsinchut, Taiwan. Available online: https://www.hccrip.com.tw/about-2 (accessed on 10 December 2022).
- Taitung, Taiwan. Available online: https://www.yung-fu.com.tw/data-27466 (accessed on 10 December 2022).
- Chicco, G.; Mancarella, P. Distributed multi-generation: A comprehensive view. Renew. Sustain. Energy Rev. 2009, 13, 535–551. [Google Scholar] [CrossRef]
- Soto, E.A.; Bosman, L.B.; Wollega, E.; Leon-Salas, W.D. Analysis of Grid Disturbances Caused by Massive Integration of Utility Level Solar Power Systems. Eng 2022, 3, 236–253. [Google Scholar] [CrossRef]
- Wright, S.; Frost, M.; Wong, A.; Parton, K.A. Australian Renewable-Energy Microgrids: A Humble Past, a Turbulent Present, a Propitious Future. Sustainability 2022, 14, 2585. [Google Scholar] [CrossRef]
- Tomlin, A.S. Air Quality and Climate Impacts of Biomass Use as an Energy Source: A Review. Energy Fuels 2021, 35, 14213–14240. [Google Scholar] [CrossRef]
Plastic Abbr. | PET | HDPE | PVC | LDPE | PP | PS |
---|---|---|---|---|---|---|
Plastic Products | Plastic bottles | Milk bottles | Plastic wrap | Plastic bags | Woven bags | Styrofoam |
Oil yield (%) | 37 | 74 | 38 | 86 | 81 | 77 |
Solid residue (%) | 24 | 5 | 18 | 3 | 2 | 4 |
WPO |
Test Items | Unit | Test Methods | Test Value | Premium Diesel |
---|---|---|---|---|
Sulfur | ppm | ASTM D5453 | 7.2 | <50 |
Cetane number | none | ASTM D976 | 53 | >48 |
Density 15 °C | g/ml | ASTM D4052 | 0.8369 | 0.828 |
PAH | % wt | ASTM D6591 | 3.92 | <11 |
Flash point | °C | ASTM D93 | 63.0 | >52 |
Kinematic viscosity/40 °C | mm2/s | ASTM D445 | 2.88 | 2.0~4.5 |
Distillation 95% | °C | ASTM D86 | 371.4 | <360 |
Gross heat of combustion | MJ/kg | ASTM D240 | 19.35 | 44.9 |
Input Mixture | Main Ingredients | Unbroken Volume (m3) | WPO (Tons) | Solid Residue/Carbon Black (Tons) |
---|---|---|---|---|
WmP | Mainly in packaging bags | 18 | 7.9 | 0.3 |
90% PP, PS, LDEP, and PVC | ||||
WmA | Mainly branches and leaves, rice straw, fruit drop, branch | 35 | 4.1 | 2.4 |
SRF | RDF-5 | 13 | 1.5 | 7.7 |
Domestic, industrial, agricultural, and forestry solid wastes |
Power Plant | Year and Type, Operation Equipment | Processing Capacity (Tons/Day) | N1 Energy Generation (kWh/Day) | N1 Energy Productivity (kWh/Tons) |
---|---|---|---|---|
Wheelabrator, Saugus, USA | 1975, centralized, cogeneration | 1500 | 752,548 | 501 |
Sysav, Sweden | 2008, centralized, cogeneration | 1726 | 739,714 | 429 |
Suginami, Japan | 2017, metropolitan, cogeneration | 464 | 308,096 | 664 |
Hsinchu, Taiwan | 2000, metropolitan, cogeneration | 900 | 360,000 | 400 |
Taitung, Taiwan | 2022, centralized, cogeneration | 300 | 157,000 | 523 |
Integrated energy module, this study | Small, mobile oilification-power equipment | 4 | N2 6031 | N2 1508 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, Y.-C.; Ho, C.-H.; Chen, L.-Y.; Ma, S.-C.; Liu, T.-I.; Shen, Y.-C. Using a Low-Temperature Pyrolysis Device for Polymeric Waste to Implement a Distributed Energy System. Sustainability 2023, 15, 1580. https://doi.org/10.3390/su15021580
Hung Y-C, Ho C-H, Chen L-Y, Ma S-C, Liu T-I, Shen Y-C. Using a Low-Temperature Pyrolysis Device for Polymeric Waste to Implement a Distributed Energy System. Sustainability. 2023; 15(2):1580. https://doi.org/10.3390/su15021580
Chicago/Turabian StyleHung, Ying-Che, Chien-Hua Ho, Liang-Yü Chen, Shih-Chieh Ma, Te-I Liu, and Yi-Chen Shen. 2023. "Using a Low-Temperature Pyrolysis Device for Polymeric Waste to Implement a Distributed Energy System" Sustainability 15, no. 2: 1580. https://doi.org/10.3390/su15021580
APA StyleHung, Y. -C., Ho, C. -H., Chen, L. -Y., Ma, S. -C., Liu, T. -I., & Shen, Y. -C. (2023). Using a Low-Temperature Pyrolysis Device for Polymeric Waste to Implement a Distributed Energy System. Sustainability, 15(2), 1580. https://doi.org/10.3390/su15021580