MagWasteVal Project—Towards Sustainability of Mining Waste
Abstract
:1. Introduction
2. Materials and Methods
Materials
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laurence, D. Establishing a sustainable mining operation: An overview. J. Clean. Prod. 2011, 19, 278–284. [Google Scholar] [CrossRef]
- Hilson, G.; Murck, B. Sustainable development in the mining industry: Clarifying the corporate perspective. Resour. Policy 2000, 26, 227–238. [Google Scholar] [CrossRef]
- European Union. National/Regional Innovation Strategies for Smart Specialisation (RIS3). Available online: https://ec.europa.eu/regional_policy/sources/docgener/informat/2014/smart_specialisation_en.pdf (accessed on 20 November 2022).
- Kogut-Jaworska, M.; Ociepa-Kicińska, E. Smart specialisation as a strategy for implementing the regional innovation development policy—Poland case study. Sustainability 2020, 12, 7986. [Google Scholar] [CrossRef]
- Pagona, E.; Tzamos, E.; Grieco, G.; Zouboulis, A.; Mitrakas, M. Characterization and evaluation of magnesite ore mining by-products of Gerakini mines (Chalkidiki, N. Greece). Sci. Total Environ. 2020, 732, 139279. [Google Scholar] [CrossRef] [PubMed]
- Tzamos, E.; Bussolesi, M.; Grieco, G.; Marescotti, P.; Crispini, L.; Kasinos, A.; Storni, N.; Simeonidis, K.; Zouboulis, A. Mineralogy and geochemistry of ultramafic rocks from Rachoni magnesite mine, Gerakini (Chalkidiki, Northern Greece). Minerals 2020, 10, 934. [Google Scholar] [CrossRef]
- Cheng, T.W.; Ding, Y.C.; Chiu, J.P. A study of synthetic forsterite refractory materials using waste serpentine cutting. Miner. Eng. 2002, 15, 271–275. [Google Scholar] [CrossRef]
- Emrullahoglu Abi, C.B.; Gürel, S.B.; Kilinç, D.; Emrullahoglu, F. Production of forsterite from serpentine-Effects of magnesium chloride hexahydrate addition. Adv. Powder Technol. 2015, 26, 947–953. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Pagona, E.; Zouboulis, A.; Mitrakas, M. Exploitation of the fine rejected run of mine (ROM 0–4 mm) material to produce refractories in combination with the mining by-products of magnesite mine. Mater. Chem. Phys. 2022, 292, 126743. [Google Scholar] [CrossRef]
- Pagona, E.; Kalaitzidou, K.; Zouboulis, A.; Mitrakas, M. Effects of additives on the physical properties of magnesite ore mining by-products for the production of refractories. Miner. Eng. 2021, 174, 107247. [Google Scholar] [CrossRef]
- Pagona, E.; Kalaitzidou, K.; Zouboulis, A.; Mitrakas, M. Estimation and addition of MgO dose for upgrading the refractory characteristics of magnesite ore mining wastes/by-products. Waste Biomass Valor. 2022, 13, 4057–4072. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Pagona, E.; Stratigousis, P.; Ntampou, X.; Zaspalis, V.; Zouboulis, A.; Mitrakas, M. Hematite nanoparticles addition to serpentine/pyroxenes by-products of magnesite mining enrichment process for the production of refractories. Appl. Sci. 2022, 12, 2094. [Google Scholar] [CrossRef]
- Pagona, E.; Kalaitzidou, K.; Zaspalis, V.; Zouboulis, A.; Mitrakas, M. Effects of MgO and Fe2O3 Addition for Upgrading the Refractory Characteristics of Magnesite Ore Mining Waste/By-Products. Clean Technol. 2022, 4, 1103–1126. [Google Scholar] [CrossRef]
- Baragaño, D.; José, J.L.; Forján, R. Short-term experiment for the in situ stabilization of a polluted soil using mining and biomass waste. J. Environ. Manag. 2021, 296, 113179. [Google Scholar] [CrossRef]
- Jąderko-Skubis, K.; Kruczek, M.; Pichlak, M. Potential of using selected industrial waste streams in loop-closing of material flows—The Example of the Silesian Voivodeship in Poland. Sustainability 2022, 14, 4801. [Google Scholar] [CrossRef]
- Woźniak, J.; Pactwa, K. Overview of Polish Mining wastes with circular economy model and its comparison with other wastes. Sustainability 2018, 10, 3994. [Google Scholar] [CrossRef] [Green Version]
- Borja, W.; El Boudour El Idrissi, H.; Mouiya, M.; Sbi, S.; Daafi, Y.; Tamraoui, Y.; Alami, J. Phosphate waste rocks recycling in ceramic wall tiles: Technical performances. Ceram. Int. 2022, 48, 30031–30040. [Google Scholar] [CrossRef]
- Kulczycka, J.; Dziobek, E. Challenges in managing waste from extractive industries during the transition to a circular economy model in Poland. Mater. Proc. 2021, 5, 42. [Google Scholar] [CrossRef]
- Calandra, P.; Quaranta, S.; Apolo Miranda Figueira, B.; Caputo, P.; Porto, M.; Oliviero Rossi, C. Mining wastes to improve bitumen performances: An example of circular economy. J. Colloid Interface Sci. 2022, 614, 277–287. [Google Scholar] [CrossRef]
- Marchamalo, J.; Sotelo, J.; Carrilho, D. ERA-MIN: A decade since the inception of the EU led effort to support the International Raw Materials Research Community. Mater. Proc. 2021, 5, 110. [Google Scholar] [CrossRef]
- Ranjbari, M.; Saidani, M.; Shams Esfandabadi, Z.; Peng, W.; Lam, S.S.; Aghbashlo, M.; Quatraro, F.; Tabatabaei, M. Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. J. Clean. Prod. 2021, 314, 128009. [Google Scholar] [CrossRef]
- Muan, A.; Osborn, E.F. Phase Equilibria at Liquidus Temperatures in the System MgO-FeO-Fe2O3-SiO2. J. Am. Ceram. Soc. 1956, 39, 121–140. [Google Scholar] [CrossRef]
- Anonymous. ASTM ASTM C20-00 Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. ASTM Int. 2017.
- Rodríguez Gomez, C.; Das Roy, T.K.; Shaji, S.; Castillo Rodríguez, G.A.; García Quiñonez, L.; Rodríguez, E.; González, J.O.; Aguilar-Martínez, J.A. Effect of addition of Al2O3 and Fe2O3 nanoparticles on the microstructural and physicochemical evolution of dense magnesia composite. Ceram. Int. 2015, 41, 7751–7758. [Google Scholar] [CrossRef]
- Nemat, S.; Ramezani, A.; Emani, S.M. Possible use of waste serpentine from Abdasht chromite mines into refractory and ceramic industries. Ceram. Int. 2016, 42, 18479–18483. [Google Scholar] [CrossRef]
- Nemat, S.; Ramezani, A.; Emami, S.M. Recycling of waste serpentine for the production of forsterite refractories: The effects of various parameters on the sintering behavior. J. Aust. Ceram. Soc. 2019, 55, 425–431. [Google Scholar] [CrossRef]
- Ramezani, A.; Emami, S.M.; Nemat, S. Effect of waste serpentine on the properties of basic insulating refractories. Ceram. Int. 2018, 44, 9269–9275. [Google Scholar] [CrossRef]
- Emami, S.M.; Ramezani, A.; Nemat, S. Sintering behavior of waste serpentine from Abdasht chromite mines and Kaolin blends. Ceram. Int. 2017, 43, 15189–15193. [Google Scholar] [CrossRef]
- Abdelwahab, W.; Mekky, H.; Khalil, A.; Belal, Z. Production of spinel forsterite refractories using sheared serpentinized ultramafic rocks Um Seleimat, Egypt. J. Eng. Appl. Sci. 2019, 14, 3386–3400. [Google Scholar]
- Mymrin, V.; Presotto, P.; Alekseev, K.; Avanci, A.M.; Rolim, P.H.B.; Petukhov, V.; Taskin, A.; Gidarakos, E.; Valouma, A.; Yu, G. Application of hazardous serpentine rocks’ extraction wastes in composites with glass waste and clay-sand mix to produce environmentally clean construction materials. Constr. Build. Mater. 2020, 234, 117319. [Google Scholar] [CrossRef]
Chemical Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
MgO | SiO2 | FeO | Al2O3 | CaO | Na2O | LOI * | K2O | MnO | NiO | Cr2O3 |
wt.% | mg/kg | |||||||||
39.9 | 43.5 | 7.5 | 0.90 | 0.80 | 0.36 | 5.6 | 941 | 1527 | 2852 | 1090 |
Mineralogical Analysis (main minerals/ores phases) | ||||||||||
Olivine | Pyroxenes | Serpentine | Magnesite | |||||||
62.2 ± 4.3 | 16.4 ± 1.6 | 21.4 ± 1.6 | --- |
Chromite Ore (CO) | MgO | Al2O3 | Fe2O3 | Run-of-Mine (ROM) | Detection Limit | |
---|---|---|---|---|---|---|
wt.% | ||||||
MgO | 31.40 | 100.00 | ND * | 0.16 | 36.5 | 8 × 10−4 |
Cr2O3 | 25.80 | ND | ND | ND | 0.05 | 8 × 10−3 |
Fe2O3 | 12.90 | ND | 0.08 | 96.7 | 5.3 | 1.6 × 10−2 |
Al2O3 | 4.91 | ND | 95.1 | ND | 0.7 | 0.15 |
CaO | 0.21 | ND | 0.01 | 0.17 | 1.55 | 6 × 10−3 |
Na2O | 0.43 | ND | 0.45 | 0.18 | 0.2 | 1.7 × 10−3 |
MnO | 0.15 | ND | ND | 0.28 | 0.1 | 6 × 10−3 |
NiO | 0.14 | ND | 0.014 | 0.04 | 0.1 | 1.7 × 10−3 |
SiO2 | 22.00 | ND | ND | 0.9 | 33.5 | 0.3 |
LOI** | 2.17 | ND | 4.7 | 1.5 | 22.1 | 0.2 |
Product | FS% | AP% | BD (g/cm3) | WA% | Mechanical Strength (MPa) |
---|---|---|---|---|---|
Raw sample | 7.5 | 11.3 | 2.79 | 4.1 | 28 |
Sample + 5% ROM | 9.5 | 10.6 | 2.73 | 3.9 | 34 |
Sample + 5% Al2O3 | 8.6 | 15.6 | 2.66 | 5.9 | <5 |
Sample + 5% CO | 8.8 | 10.0 | 2.83 | 3.5 | 181 |
Sample + 5% Fe2O3 | 10.1 | 10.0 | 2.87 | 3.5 | 57 |
Sample + 5% MgO | 7.0 | 12.2 | 2.82 | 3.6 | 30 |
Sample + 5% MgO + 1% Fe2O3 | 7.8 | 11.8 | 2.80 | 3.8 | 38 |
Product | Olivine (Forsterite Ferroan) | Pyroxenes (Enstatite) | Pyroxenes (Protoenstatite) | Spinel |
---|---|---|---|---|
Raw sample | 68.2 ± 4.8 | 31.8 ± 2.7 | - | - |
Sample + 5% ROM | 73.2 ± 5.0 | 26.8 ± 2.4 | - | - |
Sample + 5% Al2O3 | 59.9 ± 3.8 | 18.0 ± 1.6 | 13.7 ± 1.3 | 8.5 ± 0.8 |
Sample + 5% CO | 69.4 ±4.5 | 23.3 ± 1.8 | - | 7.2 ± 0.6 |
Sample + 5% Fe2O3 | 64.3 ± 4.5 | - | 19.9 ± 1.5 | 15.8 ± 1.0 |
Sample + 5% MgO | 84.2 ± 5.6 | 7.7 ± 0.9 | 8.1 ± 0.6 | - |
Sample + 5% MgO + 1% Fe2O3 | 89.3 ± 5.5 | 2.1 ± 0.7 | - | 8.6 ± 0.8 |
Product of Sample + 5% Fe2O3 | FS% | AP% | BD (g/cm3) | WA% | Mechanical Strength (MPa) |
---|---|---|---|---|---|
1300 °C for 30 min | 10.1 | 10.0 | 2.87 | 3.5 | 57 |
1300 °C for 120 min | 9.4 | 10.8 | 2.84 | 3.8 | 85 |
1600 °C for 30 min | 12.8 | 9.7 | 2.91 | 3.4 | <5 |
Product of Sample + 5% Fe2O3 | Olivine (Forsterite ferroan) | Pyroxenes (Clinoenstatite) | Pyroxenes (Protoenstatite) | Spinel |
---|---|---|---|---|
1300 °C for 30 min | 64.3 ± 4.5 | - | 19.9 ± 1.5 | 15.8 ± 1.0 |
1300 °C for 120 min | 63.2 ± 4.5 | - | 21.4 ± 1.2 | 15.4 ± 1.6 |
1600 °C for 30 min | 90.6 ± 6.6 | 4.8 ± 0.6 | - | 4.6 ± 0.6 |
Waste | Advantages | Disadvantages | Reference |
---|---|---|---|
Abdasht chromite mines | Production of forsterite | Further investigation required | [25] |
Abdasht chromite mines | Production of forsterite with magnesium addition | Does not connect magnesium addition to chemical content of the waste | [26] |
Abdasht chromite mines | Production of insulating refractories with magnesium addition | Does not connect magnesium addition to chemical content of the waste and uses low percentage of the waste | [27] |
Abdasht chromite mines | Production of ceramics with kaolin addition | Lower grade upgrade | [28] |
Taiwan | Production of forsterite with magnesium addition | Does not connect magnesium addition to chemical content of the waste and the basic refractory properties were not examined | [7] |
Kütahya/Turkey Magnesite A.Ş | Forsterite refractory materials from serpentine and magnesium chloride hexahydrate | Does not connect magnesium addition to chemical content of the waste and examination until 1400 °C | [8] |
Um Seleimat area, Egypt | Production of forsterite in addition to used magnesia and calcined bauxite | Low bulk densities | [29] |
Curitiba, Brazil | Production of ceramics by serpentinite asbestos extraction dust waste (70–50 wt%) and 30–50% of traditional raw materials (mix of natural red clay and sand); some of them included also 5% of glass waste | Need further investigation for further upgrades and use of higher percentage of the waste | [30] |
Grecian Magnesite S.A. | Examination of the mining waste content (mineralogical and chemical), calculation of the optimum dose of MgO addition | Requires the experimental investigation of the findings on chemical balance | [5] |
Grecian Magnesite S.A. | Examination of the mining waste with additives: alumina, concentrate chromite-CC, chromite ore-CO and Fe2O3 | Further investigation required. Alumina is not proper | [10] |
Grecian Magnesite S.A. | Iron oxide nanoparticles favor mechanical strength of the products. The more serpentinized waste is more favored by iron oxide addition | Different effects on the mining wastes | [12] |
Grecian Magnesite S.A. | Combination of two types of waste | Products can be used for thermal treatments <1300 °C | [9] |
Grecian Magnesite S.A. | Further examination of MgO addition to the mining waste. Maximization of desired olivine phase in the product. | - | [11] |
Grecian Magnesite S.A. | Combination of MgO addition and iron oxide nanoparticles. Maximization of desired olivine phase and mechanical strength of the product up to 1600 °C | - | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaitzidou, K.; Pagona, E.; Mitrakas, M.; Zouboulis, A. MagWasteVal Project—Towards Sustainability of Mining Waste. Sustainability 2023, 15, 1648. https://doi.org/10.3390/su15021648
Kalaitzidou K, Pagona E, Mitrakas M, Zouboulis A. MagWasteVal Project—Towards Sustainability of Mining Waste. Sustainability. 2023; 15(2):1648. https://doi.org/10.3390/su15021648
Chicago/Turabian StyleKalaitzidou, Kyriaki, Evangelia Pagona, Manassis Mitrakas, and Anastasios Zouboulis. 2023. "MagWasteVal Project—Towards Sustainability of Mining Waste" Sustainability 15, no. 2: 1648. https://doi.org/10.3390/su15021648
APA StyleKalaitzidou, K., Pagona, E., Mitrakas, M., & Zouboulis, A. (2023). MagWasteVal Project—Towards Sustainability of Mining Waste. Sustainability, 15(2), 1648. https://doi.org/10.3390/su15021648