Ditching Phosphatic Fertilizers for Phosphate-Solubilizing Biofertilizers: A Step towards Sustainable Agriculture and Environmental Health
Abstract
:1. Introduction
2. Why Ditch Phosphatic Fertilizers?
2.1. The Impact of Phosphatic Fertilizer on Water Bodies and Land Resources
2.2. Health Hazards of Phosphatic Fertilizer Processing
2.3. The Global Hike in Phosphatic Fertilizer Prices
2.4. Depletion of Global Phosphate Rock Reserve
3. Phosphate Solubilizing Biofertilizers
4. So Why Shift to Phosphate Solubilizing Biofertilizers?
4.1. The Role of PSB in Cutting Crop P-Fertilizer Requirements
4.2. PSB as Phytohormone Producers
4.3. PSB as Biocontrol against Plant Pathogens
4.4. PSB as Crop Abiotic Stress Reliefers
5. Conclusions and Prospects
- ✓
- The amount of phosphatic fertilizers needed to be applied to the farmlands;
- ✓
- The purchase of chemical phosphatic fertilizers, especially helping farmers in developing countries;
- ✓
- The extent of the phosphates that leaches to the water, causing eutrophication and health hazards to both micro- and macroorganisms, including human beings;
- ✓
- Industrial phosphatic fertilizer production leading to conservation of PR reserves and prevention of the environmental catastrophe.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guiñazú, L.B.; Andrés, J.A.; Del Papa, M.F.; Pistorio, M.; Rosas, S.B. Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol. Fertil. Soils 2010, 46, 185–190. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Smil, V. Global population and the nitrogen cycle. Sci. Am. 1997, 277, 76–81. [Google Scholar] [CrossRef]
- Mahdi, S.S.; Hassan, G.; Hussain, A.; Rasool, F.-U. Phosphorus availability issue-its fixation and role of phosphate solubilizing bacteria in phosphate solubilization. Res. J. Agric. Sci. 2011, 2, 174–179. [Google Scholar]
- Jones, D.L.; Oburger, E. Solubilization of phosphorus by soil microorganisms. In Phosphorus in Action; Springer: Berlin/Heidelberg, Germany, 2011; pp. 169–198. [Google Scholar]
- Richardson, A. Soil microorganisms and phosphorus availability. In Soil Biota: Management in Sustainable Farming Systems; CSIRO Publications: East Melbourne, Australia, 1994. [Google Scholar]
- Fankem, H.; Nwaga, D.; Deubel, A.; Dieng, L.; Merbach, W.; Etoa, F.X. Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afr. J. Biotechnol. 2006, 5, 2450–2460. [Google Scholar]
- Toro, M. Phosphate solubilizing microorganisms in the rhizosphere of native plants from tropical savannas: An adaptive strategy to acid soils? In First International Meeting on Microbial Phosphate Solubilization; Springer: Dordrecht, The Netherlands, 2007; pp. 249–252. [Google Scholar]
- Pradhan, N.; Sukla, L. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr. J. Biotechnol. 2006, 5. [Google Scholar]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef] [Green Version]
- Buddhi, C.W.; Min-Ho, Y. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. Afr. J. Microbiol. Res. 2012, 6, 6600–6605. [Google Scholar]
- Boraste, A.; Vamsi, K.; Jhadav, A.; Khairnar, Y.; Gupta, N.; Trivedi, S.; Patil, P.; Gupta, G.; Gupta, M.; Mujapara, A. Biofertilizers: A novel tool for agriculture. Int. J. Microbiol. Res. 2009, 1, 23. [Google Scholar]
- Ingle, K.P.; Padole, D.A. Phosphate solubilizing microbes: An overview. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 844–852. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Zaidi, A.; Ahemad, M.; Oves, M.; Wani, P.A. Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch. Agron. Soil Sci. 2010, 56, 73–98. [Google Scholar] [CrossRef]
- Withers, P.; Haygarth, P. Agriculture, phosphorus and eutrophication: A European perspective. Soil Use Manag. 2007, 23, 1–4. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Preisner, M.; Neverova-Dziopak, E.; Kowalewski, Z. Analysis of eutrophication potential of municipal wastewater. Water Sci. Technol. 2020, 81, 1994–2003. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, A.N.; Chapra, S.C.; Wedepohl, R.; Sims, J.; Daniel, T.C.; Reddy, K.R. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 1994, 23, 437–451. [Google Scholar] [CrossRef]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and solutions. In Eutrophication: Causes, Consequences and Control; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–15. [Google Scholar]
- Snickars, M.; Weigel, B.; Bonsdorff, E. Impact of eutrophication and climate change on fish and zoobenthos in coastal waters of the Baltic Sea. Mar. Biol. 2015, 162, 141–151. [Google Scholar] [CrossRef]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of US freshwaters: Analysis of potential economic damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillier, J.; Bell, S. The ‘genius of place’: Mitigating stench in the New Palace of Westminster before the Great Stink. Lond. J. 2010, 35, 22–38. [Google Scholar] [CrossRef]
- Sharpley, A.; Daniel, T.; Sims, J.; Pote, D. Determining environmentally sound soil phosphorus levels. J. Soil Water Conserv. 1996, 51, 160–166. [Google Scholar]
- Divya, J.; Belagali, S. Impact of chemical fertilizers on water quality in selected agricultural areas of Mysore district, Karnataka, India. Int. J. Environ. Sci. 2012, 2, 1449–1458. [Google Scholar] [CrossRef] [Green Version]
- Izuno, F.T.; Sanchez, C.A.; Coale, F.; Bottcher, A.; Jones, D. Phosphorus Concentrations in Drainage Water in the Everglades Agricultural Area; 0047-2425; Wiley Online Library: Hoboken, NJ, USA, 1991. [Google Scholar]
- White, P.J.; Hammond, J.P. The sources of phosphorus in the waters of Great Britain. J. Environ. Qual. 2009, 38, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindler, D.W. The dilemma of controlling cultural eutrophication of lakes. Proc. R. Soc. B Biol. Sci. 2012, 279, 4322–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Ma, W.; Ji, Y.; Fan, M.; Oenema, O.; Zhang, F. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 2008, 80, 131–144. [Google Scholar] [CrossRef] [Green Version]
- McClellan, G.H. Mineralogy of carbonate fluorapatites. J. Geol. Soc. 1980, 137, 675–681. [Google Scholar] [CrossRef]
- Singh, J.; Kalamdhad, A.S. Effects of heavy metals on soil, plants, human health and aquatic life. Int. J. Res. Chem. Env. 2011, 1, 15–21. [Google Scholar]
- Zheljazkov, V.D.; Nielsen, N.E. Effect of heavy metals on peppermint and cornmint. Plant Soil 1996, 178, 59–66. [Google Scholar] [CrossRef]
- Zeeshan, M.; Ahmad, W.; Hussain, F.; Ahamd, W.; Numan, M.; Shah, M.; Ahmad, I. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield. J. Clean. Prod. 2020, 255, 120318. [Google Scholar] [CrossRef]
- Jiang, B.; Adebayo, A.; Jia, J.; Xing, Y.; Deng, S.; Guo, L.; Liang, Y.; Zhang, D. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. J. Hazard. Mater. 2019, 362, 187–195. [Google Scholar] [CrossRef]
- Karaca, A.; Cetin, S.C.; Turgay, O.C.; Kizilkaya, R. Effects of heavy metals on soil enzyme activities. In Soil Heavy Metals; Springer: Berlin/Heidelberg, Germany, 2010; pp. 237–262. [Google Scholar]
- Chen, G.-Q.; Chen, Y.; Zeng, G.-M.; Zhang, J.-C.; Chen, Y.-N.; Wang, L.; Zhang, W.-J. Speciation of cadmium and changes in bacterial communities in red soil following application of cadmium-polluted compost. Environ. Eng. Sci. 2010, 27, 1019–1026. [Google Scholar] [CrossRef]
- IAEA. Extent of Environmental Contamination by Naturally Occurring Radioactive Materials (NORM) and Technological Options for Mitigation; International Atomic Energy Agency: Vienna, Austria, 2004. [Google Scholar]
- Carvalho, F.P. 210Pb and 210Po in sediments and suspended matter in the Tagus estuary, Portugal. Local enhancement of natural levels by wastes from phosphate ore processing industry. Sci. Total Environ. 1995, 159, 201–214. [Google Scholar] [CrossRef]
- Hamamo, H.; Landsberger, S.; Harbottle, G.; Panno, S. Studies of radioactivity and heavy metals in phosphate fertilizer. J. Radioanal. Nucl. Chem. 1995, 194, 331–336. [Google Scholar] [CrossRef]
- Martinez, A.; Garcia, L. Anthropogenic emissions of 210Po, 210Pb, 226Ra in an estuarine environment. J. Radioanal. Nucl. Chem. 1996, 207, 357–367. [Google Scholar] [CrossRef]
- Othman, I.; Al-Masri, M. Impact of phosphate industry on the environment: A case study. Appl. Radiat. Isot. 2007, 65, 131–141. [Google Scholar] [CrossRef] [PubMed]
- El Mamoney, M.; Khater, A.E. Environmental characterization and radio-ecological impacts of non-nuclear industries on the Red Sea coast. J. Environ. Radioact. 2004, 73, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Papastefanou, C. Radiological impact from atmospheric releases of 238U and 226Ra from phosphate rock processing plants. J. Environ. Radioact. 2001, 54, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Kotak, B.G.; Kenefick, S.L.; Fritz, D.L.; Rousseaux, C.G.; Prepas, E.E.; Hrudey, S.E. Occurrence and toxicological evaluation of cyanobacterial toxins in Alberta lakes and farm dugouts. Water Res. 1993, 27, 495–506. [Google Scholar] [CrossRef]
- Carne, G.; Leconte, S.; Sirot, V.; Breysse, N.; Badot, P.-M.; Bispo, A.; Deportes, I.Z.; Dumat, C.; Rivière, G.; Crepet, A. Mass balance approach to assess the impact of cadmium decrease in mineral phosphate fertilizers on health risk: The case-study of French agricultural soils. Sci. Total Environ. 2021, 760, 143374. [Google Scholar] [CrossRef]
- Duan, K.; Zhao, B.; Zhang, S.; Li, Y.; Ma, Y.; Liu, H.; Ejaz, M.; Peng, X.; Yang, P. Toxic metals and metalloid in farmland soil and cereals in an industrial-agricultural interaction region of China: Contamination, sources and risks. Environ. Eng. Manag. J. 2022, 21, 1493–1504. [Google Scholar]
- Kauwenbergh, S. Cadmium content of phosphate rocks and fertilizers. In Proceedings of the International Fertilizer Association Technical Conference, Chennai, India, 24–27 September 2002. [Google Scholar]
- Jasinski, S. “Phosphate Rock”. In Mineral Commodity Summaries. US Geol. Surv. 2012, 124–125. [Google Scholar]
- De Ridder, M.; De Jong, S.; Polchar, J.; Lingemann, S. Risks and Opportunities in the Global Phosphate Rock Market: Robust Strategies in Times of Uncertainty. 2012. Available online: https://www.phosphorusplatform.eu/images/download/HCSS_17_12_12_Phosphate.pdf (accessed on 6 April 2022).
- World-Bank. World Bank Phosphate Rock Price Index. Available online: https://www.dataandcharts.com/world-bank-phosphate-rock-price-index/39133 (accessed on 6 April 2022).
- Mew, M. Phosphate rock costs, prices and resources interaction. Sci. Total Environ. 2016, 542, 1008–1012. [Google Scholar] [CrossRef]
- Smith, E. Fertilizer Prices are at Record Highs. Here’s What that Means for the Global Economy. Available online: https://www.cnbc.com/2022/03/22/fertilizer-prices-are-at-record-highs-heres-what-that-means.html (accessed on 17 December 2022).
- Getahun, T.; Mahlet, F. Analysis: Farmers Brace for Worse as Fertilizer Prices Rise, Planting Season Approaches. Available online: https://addisstandard.com/analysis-farmers-brace-for-the-worst-as-fertilizer-prices-rise/ (accessed on 17 December 2022).
- Ousman, G. The Impact of Fertilizer Prices on Africa. Available online: https://afripoli.org/the-impact-of-fertilizer-prices-on-africa (accessed on 17 December 2022).
- Elser, J.J.; Elser, T.J.; Carpenter, S.R.; Brock, W.A. Regime shift in fertilizer commodities indicates more turbulence ahead for food security. PLoS ONE 2014, 9, e93998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kauwenbergh, S.J. World Phosphate Rock Reserves and Resources; Ifdc: Muscle Shoals, AL, USA, 2010. [Google Scholar]
- Meadows, D.H. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind. Universe Books: New York, USA, 1972. [Google Scholar]
- De Bruijne, G.; Caldwell, I.; Rosemarin, A. Peak phosphorus–The next inconvenient truth. Brok. 2009, 15, 6–9. [Google Scholar]
- Koppelaar, R.; Weikard, H. Assessing phosphate rock depletion and phosphorus recycling options. Glob. Environ. Change 2013, 23, 1454–1466. [Google Scholar] [CrossRef]
- Walan, P.; Davidsson, S.; Johansson, S.; Höök, M. Phosphate rock production and depletion: Regional disaggregated modeling and global implications. Resour. Conserv. Recycl. 2014, 93, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Jasinski, S.M.U.S. Mineral Commodity Summaries, January 202. U.S. Geol. Surv. 2021, 703, 648–7711. [Google Scholar]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Geissler, B.; Mew, M.C.; Weber, O.; Steiner, G. Efficiency performance of the world’s leading corporations in phosphate rock mining. Resour. Conserv. Recycl. 2015, 105, 246–258. [Google Scholar] [CrossRef]
- Kang, S.C.; Ha, C.G.; Lee, T.G.; Maheshwari, D. Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr. Sci. 2002, 82, 439–442. [Google Scholar]
- Khan, M.S.; Zaidi, A.; Wani, P.A. Role of phosphate-solubilizing microorganisms in sustainable agriculture—A review. Agron. Sustain. Dev. 2007, 27, 29–43. [Google Scholar] [CrossRef]
- Illmer, P.; Schinner, F. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol. Biochem. 1992, 24, 389–395. [Google Scholar] [CrossRef]
- Motsara, M.; Bhattacharyya, P.; Srivastava, B. Biofertilizers their description and characteristics. In Biofertiliser Technology. Marketing and Usage. A Source Book-Cum-Glossary; Fertiliser Development and Consultation Organization: New Delhi, India, 1995; pp. 9–18. [Google Scholar]
- Duponnois, R.; Kisa, M.; Plenchette, C. Phosphate-solubilizing potential of the nematophagous fungus Arthrobotrys oligospora. J. Plant Nutr. Soil Sci. 2006, 169, 280–282. [Google Scholar] [CrossRef]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; SINGAL, R.; SHANKAR, A.; KUHAD, R.C.; SAXENA, R.K. A modified plate assay for screening phosphate solubilizing microorganisms. J. Gen. Appl. Microbiol. 1994, 40, 255–260. [Google Scholar] [CrossRef]
- Gaur, A. Phosphate Solubilizing Micro-Organisms as Biofertilizer; Omega Scientific Publishers: New Delhi, India, 1990. [Google Scholar]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [Green Version]
- Kucey, R. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can. J. Soil Sci. 1983, 63, 671–678. [Google Scholar] [CrossRef]
- Vazquez, P.; Holguin, G.; Puente, M.; Lopez-Cortes, A.; Bashan, Y. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fertil. Soils 2000, 30, 460–468. [Google Scholar] [CrossRef]
- Johri, J.K.; Surange, S.; Nautiyal, C.S. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr. Microbiol. 1999, 39, 89–93. [Google Scholar] [CrossRef]
- Hegyi, A.; Nguyen, T.B.K.; Posta, K. Metagenomic analysis of bacterial communities in agricultural soils from Vietnam with special attention to phosphate solubilizing bacteria. Microorganisms 2021, 9, 1796. [Google Scholar] [CrossRef]
- Dastager, S.G.; Damare, S. Marine actinobacteria showing phosphate-solubilizing efficiency in Chorao Island, Goa, India. Curr. Microbiol. 2013, 66, 421–427. [Google Scholar] [CrossRef]
- Karmakar, J.; Goswami, S.; Pramanik, K.; Maiti, T.K.; Kar, R.K.; Dey, N. Growth promoting properties of Mycobacterium and Bacillus on rice plants under induced drought. Plant Sci. Today 2021, 8, 49–57. [Google Scholar] [CrossRef]
- Nobandegani, M.B.J.; Saud, H.M.; Yun, W.M. Phylogenetic relationship of phosphate solubilizing bacteria according to 16S rRNA genes. BioMed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Yandigeri, M.S.; Yadav, A.K.; Srinivasan, R.; Kashyap, S.; Pabbi, S. Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena. Microbiology 2011, 80, 558–565. [Google Scholar] [CrossRef]
- Natesan, R.; Shanmugasundaram, S. Extracellular phosphate solubilization by the cyanobacteriumAnabaena ARM310. J. Biosci. 1989, 14, 203–208. [Google Scholar] [CrossRef]
- Velazquez, E.; Trujillo, M. Taxonomy of filamentous fungi and yeasts that solubilizes phosphate. In First International Meeting on Microbial Phosphate Solubilization; Springer: Dordrecht, The Netherlands, 2007; pp. 107–109. [Google Scholar]
- Al-Falih, A.M. Phosphate solubilization in vitro by some soil yeasts. Qatar Univ. Sci. J. 2005, 25, 119–125. [Google Scholar]
- Musarrat, J.; Khan, M. Factors affecting phosphate-solubilizing activity of microbes: Current status. In Phosphate Solubilizing Microorganisms; Springer: Berlin/Heidelberg, Germany, 2014; pp. 63–85. [Google Scholar]
- Sowmya, S.; Rekha, P.; Yashodhara, I.; Karunakara, N.; Arun, A. Uranium tolerant phosphate solubilizing bacteria isolated from Gogi, a proposed uranium mining site in South India. Appl. Geochem. 2020, 114, 104523. [Google Scholar] [CrossRef]
- Zheng, B.-X.; Zhang, D.-P.; Wang, Y.; Hao, X.-L.; Wadaan, M.A.; Hozzein, W.N.; Peñuelas, J.; Zhu, Y.-G.; Yang, X.-R. Responses to soil pH gradients of inorganic phosphate solubilizing bacteria community. Sci. Rep. 2019, 9, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faried, A.-S.M.; Mohamed, H.; El-Dsouky, M.; El-Rewainy, H.M. Isolation and characterization of phosphate solubilizing actinomycetes from rhizosphere soil. AJAS 2019, 49, 125–137. [Google Scholar]
- Gizaw, B.; Tsegay, Z.; Tefera, G.; Aynalem, E.; Wassie, M.; Abatneh, E. Phosphate solubilizing fungi isolated and characterized from Teff rhizosphere soil collected from North Showa zone, Ethiopia. Afr. J. Microbiol. Res. 2017, 11, 687–696. [Google Scholar]
- Wafula, E.N.; Murunga, S.; Nalianya Wafula, E.; Murunga, S.; Wafula, E. Isolation and Identification of Phosphate Solubilizing and Nitrogen-Fixing Bacteria from Lake Ol’Bolossat Sediments, Kenya. Mod. Appl. Sci. 2020, 14. [Google Scholar] [CrossRef]
- Christian, V.N.; Mame, F.N.; Saliou, F.; Tatiana, K.; Antoine, L.Q.; Digane, D. Isolation and characterization of potential phosphate solubilizing bacteria in two regions of Senegal. Afr. J. Microbiol. Res. 2019, 13, 609–618. [Google Scholar]
- Zhang, Y.; Chen, F.-S.; Wu, X.-Q.; Luan, F.-G.; Zhang, L.-P.; Fang, X.-M.; Wan, S.-Z.; Hu, X.-F.; Ye, J.-R. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PloS ONE 2018, 13, e0199625. [Google Scholar] [CrossRef] [Green Version]
- Walpola, B.C.; Yoon, M.-H. Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr. J. Microbiol. Res. 2013, 7, 266–275. [Google Scholar]
- Arulselvi, T.; Kanimozhi, G.; Panneerselvam, A. Isolation and characterization of phosphate solubilizing fungi from the soil sample of Muthupet mangroves. Int. J. Sci. Res. Sci. Technol. 2018, 4, 30–37. [Google Scholar]
- Alikhani, H.; Saleh-Rastin, N.; Antoun, H. Phosphate solubilization activity of rhizobia native to Iranian soils. In First International Meeting on Microbial Phosphate Solubilization; Springer: Dordrecht, The Netherlands, 2007; pp. 35–41. [Google Scholar]
- Islam, M.; Sano, A.; Majumder, M.; Hossain, M.; Sakagami, J. Isolation and molecular characterization of phosphate solubilizing filamentous fungi from subtropical soils in Okinawa. Appl. Ecol. Environ. Res. 2019, 17, 9145–9157. [Google Scholar] [CrossRef]
- Matias, S.R.; Pagano, M.C.; Muzzi, F.C.; Oliveira, C.A.; Carneiro, A.A.; Horta, S.N.; Scotti, M.R. Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. Eur. J. Soil Biol. 2009, 45, 259–266. [Google Scholar] [CrossRef]
- Ateş, Ö.; Çakmakçi, R.; Yalçin, G.; Taşpinar, K.; Alveroğlu, V. Isolation and Characterization of Phosphate Solubilizing Bacteria and Effect of Growth and Nutrient Uptake of Maize Under Pot and Field Conditions. Commun. Soil Sci. Plant Anal. 2022, 53, 2114–2124. [Google Scholar] [CrossRef]
- Alice, M.M.; Elizabeth, A.E.; Diane, E.S.; Gwen, C.; Arthur, P.A.; Darrel, S.; Cindy, H.N. Isolation and characterization of Chilembwe and Sinda rock phosphate solubilizing soil microorganisms. Afr. J. Microbiol. Res. 2014, 8, 3191–3203. [Google Scholar] [CrossRef]
- Bi, Y.; Xiao, L.; Liu, R. Response of arbuscular mycorrhizal fungi and phosphorus solubilizing bacteria to remediation abandoned solid waste of coal mine. Int. J. Coal Sci. Technol. 2019, 6, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.E.; Ward, G.M. Estimates of animal methane emissions. Environ. Monit. Assess. 1996, 42, 133–141. [Google Scholar] [CrossRef]
- Kebreab, E.; Clark, K.; Wagner-Riddle, C.; France, J. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Can. J. Anim. Sci. 2006, 86, 135–157. [Google Scholar] [CrossRef]
- Güneş, A.; Ataoğlu, N.; Turan, M.; Eşitken, A.; Ketterings, Q.M. Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J. Plant Nutr. Soil Sci. 2009, 172, 385–392. [Google Scholar] [CrossRef]
- Savci, S. Investigation of effect of chemical fertilizers on environment. Apcbee Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Liu, P.; Li, Y.; Ma, L.; Alva, A.; Dou, Z.; Chen, Q.; Zhang, F. Phosphorus in China’s intensive vegetable production systems: Overfertilization, soil enrichment, and environmental implications. J. Environ. Qual. 2013, 42, 982–989. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Zhang, H.; Wei, G.; Li, Z. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiol. 2020, 20, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdani, M.; Bahmanyar, M.A.; Pirdashti, H.; Esmaili, M.A. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad. Sci. Eng. Technol. 2009, 49, 90–92. [Google Scholar]
- Harris, J.N.; New, P.B.; Martin, P.M. Laboratory tests can predict beneficial effects of phosphate-solubilising bacteria on plants. Soil Biol. Biochem. 2006, 38, 1521–1526. [Google Scholar] [CrossRef]
- Saharan, B.; Nehra, V. Plant growth promoting rhizobacteria: A critical review. Life Sci. Med. Res. 2011, 21, 30. [Google Scholar]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Mukherjee, S.; Pandey, V.; Parvez, A.; Qi, X.; Hussain, T. Bacillus as a Versatile Tool for Crop Improvement and Agro-Industry. In Bacilli in Agrobiotechnology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 429–452. [Google Scholar]
- Probanza, A.; Mateos, J.; Lucas Garcia, J.; Ramos, B.; De Felipe, M.; Gutierrez Manero, F. Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization, and mycorrhizal infection. Microb. Ecol. 2001, 41, 140–148. [Google Scholar] [CrossRef]
- Hakim, S.; Naqqash, T.; Nawaz, M.S.; Laraib, I.; Siddique, M.J.; Zia, R.; Mirza, M.S.; Imran, A. Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Front. Sustain. Food Syst. 2021, 5, 16. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, M.; Das, A.; Pati, B.; Ghosh, A. Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids. Arch. Microbiol. 2009, 191, 389–393. [Google Scholar] [CrossRef]
- Ajilogba, C.F.; Babalola, O.O.; Ahmad, F. Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Stud. Ethno-Med. 2013, 7, 205–216. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Othman, R.; Rahman, Z.A.; Meon, S.; Ismail, M.R. Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. Afr. J. Biotechnol. 2012, 11, 2711–2719. [Google Scholar]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Rane, M.R.; Sarode, P.D.; Chaudhari, B.L.; Chincholkar, S.B. Exploring antagonistic metabolites of established biocontrol agent of marine origin. Appl. Biochem. Biotechnol. 2008, 151, 665–675. [Google Scholar] [CrossRef]
- Albelda-Berenguer, M.; Monachon, M.; Joseph, E. Siderophores: From natural roles to potential applications. Adv. Appl. Microbiol. 2019, 106, 193–225. [Google Scholar]
- Sureshbabu, K.; Amaresan, N.; Kumar, K. Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 661–683. [Google Scholar] [CrossRef]
- Sharma, A.; Johri, B. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res. 2003, 158, 243–248. [Google Scholar] [CrossRef]
- Frankowski, J.; Lorito, M.; Scala, F.; Schmid, R.; Berg, G.; Bahl, H. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 2001, 176, 421–426. [Google Scholar] [CrossRef]
- Burns, R.G.; Dick, R.P. Enzymes in the Environment: Activity, Ecology, and Applications; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Bodhankar, S.; Grover, M.; Hemanth, S.; Reddy, G.; Rasul, S.; Yadav, S.K.; Desai, S.; Mallappa, M.; Mandapaka, M.; Srinivasarao, C. Maize seed endophytic bacteria: Dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech 2017, 7, 232. [Google Scholar] [CrossRef]
- Öztopuz, Ö.; Pekin, G.; Park, R.D.; Eltem, R. Isolation and evaluation of new antagonist Bacillus strains for the control of pathogenic and mycotoxigenic fungi of fig orchards. Appl. Biochem. Biotechnol. 2018, 186, 692–711. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, N.; Vassileva, M.; Nikolaeva, I. Simultaneous P-solubilizing and biocontrol activity of microorganisms: Potentials and future trends. Appl. Microbiol. Biotechnol. 2006, 71, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Dey, G.; Banerjee, P.; Sharma, R.K.; Maity, J.P.; Etesami, H.; Shaw, A.K.; Huang, Y.-H.; Huang, H.-B.; Chen, C.-Y. Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—A review. Agronomy 2021, 11, 1552. [Google Scholar] [CrossRef]
- Ahemad, M. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: A review. 3 Biotech 2015, 5, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billah, M.; Khan, M.; Bano, A.; Hassan, T.U.; Munir, A.; Gurmani, A.R. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol. J. 2019, 36, 904–916. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, V.; Kumar, A.; Sayyed, R.; Hesham, A.E.-L.; Dhaliwal, H.S.; Saxena, A.K. Drought-tolerant phosphorus-solubilizing microbes: Biodiversity and biotechnological applications for alleviation of drought stress in plants. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 255–308. [Google Scholar]
- Yuan, Z.; Yi, H.; Wang, T.; Zhang, Y.; Zhu, X.; Yao, J. Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environ. Sci. Pollut. Res. 2017, 24, 21877–21884. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, T.; Chi, X.; Wang, M.; Chen, N.; Chen, M.; Pan, L.; Qi, P. Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil. Geomicrobiol. J. 2020, 37, 110–118. [Google Scholar] [CrossRef]
- Zolfaghari, R.; Rezaei, K.; Fayyaz, P.; Naghiha, R.; Namvar, Z. The effect of indigenous phosphate-solubilizing bacteria on Quercus brantii seedlings under water stress. J. Sustain. For. 2021, 40, 733–747. [Google Scholar] [CrossRef]
- Shintu, P.; Jayaram, K. Phosphate solubilising bacteria (Bacillus polymyxa)-An effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Trop. Plant Res. 2015, 2, 17–22. [Google Scholar]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Sheikh, I.; Kumar, V.; Dhaliwal, H.S.; Saxena, A.K. Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ. Sustain. 2020, 3, 23–34. [Google Scholar] [CrossRef]
- Vidya, P.; Shintu, P.; Jayaram, K. Impact of phopshate solubilizing bacteria (Bacillus polymixa) on drought tolerance of green gram [Vigna radiata (L.) Wilczek]. Ann. Plant Sci. 2016, 5, 1318–1323. [Google Scholar]
Country/Region | Reserve | Mine Production | ||||
---|---|---|---|---|---|---|
2019 | 2020 estimation | |||||
Billion t | Global Share (%) | Million t | Global Share (%) | Million t | Global Share (%) | |
Morocco and WS | 50 | 70.42 | 35.5 | 15.92 | 37 | 16.30 |
China | 3.2 | 4.51 | 95 | 42.60 | 90 | 39.65 |
Egypt | 2.8 | 3.94 | 5 | 2.24 | 5 | 2.20 |
Algeria | 2.2 | 3.10 | 1.3 | 0.58 | 1.3 | 0.57 |
Syria | 1.8 | 2.54 | 2 | 0.90 | 0.36 | 0.16 |
Brazil | 1.6 | 2.25 | 4.7 | 2.11 | 5.5 | 2.42 |
South Africa | 1.4 | 1.97 | 2.1 | 0.94 | 2.1 | 0.93 |
Saudi Arabia | 1.4 | 1.97 | 6.5 | 2.91 | 6.5 | 2.86 |
Australia | 1.1 | 1.55 | 2.7 | 1.21 | 2.7 | 1.19 |
United States | 1 | 1.41 | 23.3 | 10.45 | 24 | 10.57 |
Finland | 1 | 1.41 | 0.995 | 0.45 | 1 | 0.44 |
Jordan | 0.8 | 1.13 | 9.22 | 4.13 | 9.2 | 4.05 |
Russia | 0.6 | 0.85 | 13.1 | 5.87 | 13 | 5.73 |
Kazakhstan | 0.26 | 0.37 | 1.5 | 0.67 | 1.5 | 0.66 |
Peru | 0.21 | 0.30 | 4 | 1.79 | 4 | 1.76 |
Uzbekistan | 0.1 | 0.14 | 0.9 | 0.40 | 0.9 | 0.40 |
Tunisia | 0.1 | 0.14 | 4.11 | 1.84 | 4 | 1.76 |
Israel | 0.057 | 0.08 | 2.81 | 1.26 | 2.8 | 1.23 |
Senegal | 0.05 | 0.07 | 3.42 | 1.53 | 3.5 | 1.54 |
India | 0.046 | 0.06 | 1.48 | 0.66 | 1.5 | 0.66 |
Vietnam | 0.03 | 0.04 | 4.65 | 2.09 | 4.7 | 2.07 |
Togo | 0.03 | 0.04 | 0.8 | 0.36 | 0.8 | 0.35 |
Mexico | 0.03 | 0.04 | 0.558 | 0.25 | 0.6 | 0.26 |
Other countries | 0.84 | 1.18 | 1.14 | 0.51 | 1.1 | 0.48 |
World (total) | 71 | 223 | 227 |
Genera of Isolated PSB | Type of PSB | Area/Region | Target Crop/ Rhizosphere | Number of Strains Isolated | Reference |
---|---|---|---|---|---|
Pseudomonas | PSBa | Cameroon/Africa | palm tree | 3 | Fankem, et al. [7] |
Actinomyces | PSBa | Egypt/Africa | Wheat, faba bean and clover | 9 | Faried, et al. [87] |
Trichosporon, Rhodotorula, Cryptococcus, Zygoascus, Penicillium, Neosartorya, Candida | PSF | Ethiopia/Africa | Teff | 7 | Gizaw, et al. [88] |
Bacillus, Brevibacterium, Arthrobacter, Fictibacillus | PSBa | Kenya/Africa | - | 34 | Wafula, et al. [89] |
Bacillus, Staphylococcus, Microbacterium, Burkholderia | PSBa | Senegal/Africa | - | 12 | Christian, et al. [90] |
Talaromyces, Aspergillus | PSF | China/Asia | Bamboo | 2 | Zhang, et al. [91] |
Pantoea, Burkholderia | PSBa | S. Korea/Asia | Tomato | 2 | Walpola and Yoon [92] |
Aspergillus | PSF | India/Asia | Mangrove plants | 2 | Arulselvi, et al. [93] |
Rhizobium | PSBa | Iran/Asia | - | 198 | Alikhani, et al. [94] |
Aspergillus, Penicillium, Talaromyces | PSF | Japan/Asia | - | 16 | Islam, et al. [95] |
Enterobacter, Klebsiella | PSBa | Colombia/S. America | Radish | 2 | Lara, et al. [91] |
Fusarium, Aspergillus | PSF | Brazil/ S. America | - | 2 | Matias, et al. [96] |
Serratia, Pseudomonas | PSBa | Turkiye/Europe | Maize | 2 | Ateş, et al. [97] |
Entrobacter, Borkholderia, Arthrobacter, Beijerinckia, curtobacterium | PSBa | USA/N. America | Soybean | 20 | Alice, et al. [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendimu, A.; Yoseph, T.; Ayalew, T. Ditching Phosphatic Fertilizers for Phosphate-Solubilizing Biofertilizers: A Step towards Sustainable Agriculture and Environmental Health. Sustainability 2023, 15, 1713. https://doi.org/10.3390/su15021713
Wendimu A, Yoseph T, Ayalew T. Ditching Phosphatic Fertilizers for Phosphate-Solubilizing Biofertilizers: A Step towards Sustainable Agriculture and Environmental Health. Sustainability. 2023; 15(2):1713. https://doi.org/10.3390/su15021713
Chicago/Turabian StyleWendimu, Adishiwot, Tarekegn Yoseph, and Tewodros Ayalew. 2023. "Ditching Phosphatic Fertilizers for Phosphate-Solubilizing Biofertilizers: A Step towards Sustainable Agriculture and Environmental Health" Sustainability 15, no. 2: 1713. https://doi.org/10.3390/su15021713
APA StyleWendimu, A., Yoseph, T., & Ayalew, T. (2023). Ditching Phosphatic Fertilizers for Phosphate-Solubilizing Biofertilizers: A Step towards Sustainable Agriculture and Environmental Health. Sustainability, 15(2), 1713. https://doi.org/10.3390/su15021713