Assessing the Impact of Road Network on Urban Landscape Ecological Risk Based on Corridor Cutting Degree Model in Fuzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. The Development of Ecological Risk Assessment Framework Based on Landscape Pattern
- (1)
- Landscape disturbance index
- (2)
- Landscape vulnerability index
- (3)
- Landscape ecological risk index
2.3.2. Corridor Cutting Degree Model Based on Roadway Impact Zones
2.3.3. Spatial Correlation Analysis
2.3.4. Analysis of the Influencing Factors behind the Driving Force
3. Results
3.1. Corridor Cutting Effect Based on Roadway Impact Zones
3.2. Impact of Road Network on Ecological Risk in the Landscape
3.2.1. Spatial and Temporal Variation of Ecological Risk in the Landscape
3.2.2. Spatial Correlation of Ecological Risk in the Landscape
3.2.3. Significant Road Network Characteristics Analysis
3.3. Identification of Key Drivers
4. Discussion
4.1. Impact of Road Cutting Effect on Ecological Risk in Urban Landscape
4.2. Integrated Transportation and Ecological Restoration Planning Strategy
- (1)
- Road Engineering Construction and Operation
- (2)
- Natural resource protection and resilient development
- (3)
- Slope ecosystem restoration
4.3. Limitations and Prospects of the Study
5. Conclusions
- (1)
- The corridor cutting effect of roads on landscape types increases with increased road network area, and the intermediate cutting effect of the road network is the most significant. Woodland, cultivated land and grassland are the land types with high corridor cutting degree index;
- (2)
- In the past 20 years, the area of the sub-high and high ecological risk areas in Fuzhou continued to increase, increasing by 9.47% and 7.63%, respectively. The ecological risk in the traffic intensive areas was generally high, and the spatial distribution pattern was mainly high-high and low-low;
- (3)
- The bivariate Moran’s I of landscape ecological risk and shortest distance can reach up to −0.37 at most, and the bivariate Moran’s I of landscape ecological risk and CCI can reach up to 0.24 at most. The shortest distance and CCI are the two factors that affect the spatial variation of landscape ecological risk the most;
- (4)
- The interactive influence of land type and CCI, land type, and shortest distance has a greater impact on landscape ecological risk than the synergy of the other two factors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Cutting Mode | Time | Land Use Type | |||||||
---|---|---|---|---|---|---|---|---|---|
Woodland | Grassland | Cultivated Land | Water Body | Wetland | Building Land | Unused Land | |||
Cutting area (%) | Edge cutting | 2000 | 46.34 | 6.42 | 36.99 | 3.18 | 0.76 | 5.93 | 0.39 |
2010 | 52.09 | 6.47 | 32.12 | 3.06 | 0.92 | 5.02 | 0.32 | ||
2020 | 55.58 | 6.38 | 26.35 | 3.32 | 0.80 | 7.34 | 0.24 | ||
Intermediate cutting | 2000 | 21.57 | 6.06 | 49.16 | 5.66 | 1.44 | 14.81 | 1.32 | |
2010 | 27.74 | 6.56 | 43.40 | 4.64 | 1.06 | 15.66 | 0.95 | ||
2020 | 33.61 | 5.95 | 35.24 | 5.51 | 0.65 | 18.45 | 0.59 | ||
Complete cutting | 2000 | 10.62 | 3.92 | 31.72 | 12.91 | 2.53 | 34.28 | 4.02 | |
2010 | 13.91 | 4.13 | 31.94 | 10.53 | 1.75 | 33.96 | 3.78 | ||
2020 | 15.85 | 6.52 | 26.94 | 13.53 | 1.27 | 33.43 | 2.45 | ||
The adjacent side length (%) | Edge cutting | 2000 | 46.35 | 17.09 | 26.46 | 3.23 | 0.84 | 4.47 | 1.56 |
2010 | 49.04 | 17.22 | 24.92 | 3.09 | 0.93 | 3.51 | 1.29 | ||
2020 | 49.53 | 17.62 | 23.52 | 2.79 | 0.81 | 4.65 | 1.08 | ||
Intermediate cutting | 2000 | 22.02 | 19.86 | 32.89 | 6.62 | 1.50 | 11.74 | 5.36 | |
2010 | 25.91 | 21.20 | 29.93 | 6.00 | 1.07 | 11.71 | 4.20 | ||
2020 | 30.24 | 20.66 | 28.36 | 4.95 | 0.68 | 12.13 | 2.98 | ||
Complete cutting | 2000 | 8.69 | 10.52 | 17.67 | 17.50 | 3.29 | 28.54 | 13.79 | |
2010 | 11.91 | 11.96 | 19.13 | 14.55 | 2.36 | 25.50 | 14.59 | ||
2020 | 16.46 | 19.03 | 18.77 | 13.77 | 1.88 | 20.26 | 9.83 | ||
CCI (%) | 2000 | 10.57 | 39.98 | 36.71 | 4.77 | 1.34 | 5.43 | 1.19 | |
2010 | 12.12 | 37.35 | 38.45 | 4.26 | 1.31 | 5.62 | 0.90 | ||
2020 | 17.39 | 33.81 | 38.91 | 3.63 | 1.16 | 4.94 | 0.15 |
References
- Zhao, G.; Zheng, X.; Yuan, Z.; Zhang, L. Spatial and Temporal Characteristics of Road Networks and Urban Expansion. Land 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Pan, L.; Wang, Q.; Chen, P.; Yan, C.; Liu, L. Research on Urban Ecological Network Under the Threat of Road Networks—A Case Study of Wuhan. Int. J. Geogr. Inf. Sci. 2019, 8, 342. [Google Scholar] [CrossRef] [Green Version]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Fan, K.; Li, Y.; Shao, J. Regional Eco-risk Analysis of Highway: A Case Study of Yu-Yi Highway in Chongqing. J. Chongqing Norm. Univ. 2013, 30, 28–34. [Google Scholar]
- Zhang, J.; Feng, Z.; Jiang, L.; Yang, Y.; Liu, X. Effect of Road Disturbance on Landscape Pattern in the Lancang River Valley. J. Nat. Resour. 2013, 28, 969–980. [Google Scholar]
- Peng, J.; Dang, W.; Liu, Y.; Zong, M.; Hu, X. Review on landscape ecological risk assessment. Acta Ecol. Sin. 2015, 70, 664–677. [Google Scholar]
- Forbes, V.; Calow, P. Developing predictive systems models to address complexity and relevance for ecological risk assessment. Integr. Environ. Assess. Manag. 2013, 9, E75–E80. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, S.; Chen, B.; Xia, C.; Sui, R. Ecological risk assessment and spatial threshold analysis of wetlands in the Sanjiang Plain. Acta Ecol. Sin. 2022, 42, 6595–6606. [Google Scholar]
- Xu, K.; Wang, J.; Chi, Y.; Liu, M.; Lu, H. Spatial optimization and sustainable use of land based on an integrated ecological risk in the Yun-Gui plateau region. Acta Ecol. Sin. 2016, 36, 821–827. [Google Scholar]
- Kang, Z.; Zhang, Z.; Wei, H.; Liu, L.; Ning, S.; Zhao, G.; Wang, T.; Tian, H. Landscape ecological risk assessment in Manas River Basin based on land use change. Acta Ecol. Sin. 2020, 40, 6472–6485. [Google Scholar]
- Yang, L.; Deng, M.; Wang, J.; Que, H. Spatial-temporal evolution of land use and ecologocal risk in Dongting Lake Basin during 1980–2018. Acta Ecol. Sin. 2021, 41, 3929–3939. [Google Scholar]
- Chen, X.; Xie, G.; Zhang, J. Landscape ecological risk assessment of land use changes in the coastal area of Haikou City in the past 30 years. Acta Ecol. Sin. 2021, 41, 975–986. [Google Scholar]
- Zhang, Y.; Zhang, F.; Zhou, M.; Li, X.; Ren, Y.; Wang, J. Landscape ecological risk assessment and its spatio-temporal variations in Ebinur Lake region of inland arid area. Chin. J. Appl. Ecol. 2016, 27, 233–242. [Google Scholar]
- Qu, C.; Chen, W.; Bi, J.; Huang, L.; Li, F. Ecological risk assessment of pesticide residues in Taihu Lake wetland, China. Ecol. Modell. 2011, 222, 287–292. [Google Scholar] [CrossRef]
- Sun, D.; Xue, Z.; Han, X.; Zhao, Y.; Sun, W.; Zhang, K. Polluting Characteristics and Ecological Risk Assessment of Heavy Metals in Cultivated Land Around a Mining Area in Northern Hebei Province. J. Ecol. Rural Environ. 2020, 36, 242–249. [Google Scholar]
- Li, Y.; Lin, J.; Sun, X. An early warning method on ecological risk and its application to improve landscape ecological security pattern regulation. Res. Geogr. 2017, 36, 485–494. [Google Scholar]
- Li, L.; Feng, R.; Xi, J. Ecological Risk Assessment and Protection Zone Identification for Linear Cultural Heritage: A Case Study of the Ming Great Wall. Int. J. Environ. Res. Public Health 2021, 18, 11605. [Google Scholar] [CrossRef]
- Zhen, J.; Yin, S.; Liu, G.; Te, R.; Su, R. Landscape pattern change and ecological risk assessment on the grassland culture relics area—A case of Yuanshangdu. J. Arid. Land. Res. Environ. 2014, 28, 159–165. [Google Scholar]
- Dong, T.; Xu, W.; Zheng, H.; Xiao, Y.; Kong, L.; Ouyang, Z. A Framework for Regional Ecological Risk Warning Based on Ecosystem Service Approach: A Case Study in Ganzi, China. Sustainability 2018, 10, 2699. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Du, H.; Wang, Y.; Chen, Y.; Ma, L.; Dong, T. Watershed landscape ecological risk assessment and landscape pattern optimization: Take Fujiang River Basin as an example. Hum. Ecol. Risk Assess. 2021, 27, 2254–2276. [Google Scholar] [CrossRef]
- Ai, J.; Yu, K.; Zeng, Z.; Yang, L.; Liu, Y.; Liu, J. Assessing the dynamic landscape ecological risk and its driving forces in an island city based on optimal spatial scales: Haitan Island, China. Ecol. Indic. 2022, 137, 108771. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Z.; Cui, B.; Gan, S. Effects of road on landscape and its ecological risk assessment: A case study of Lancangjiang River valley. Chin. J. Ecol. 2005, 24, 897–901. [Google Scholar]
- Forman, R. Estimate of the area affected ecologically by the road system in the United States. Conserv. Biol. 2000, 14, 31–35. [Google Scholar] [CrossRef]
- Li, S.; Xu, Y.; Zhou, Q.; Wang, L. Statistical Analysis on the Relationship between Road Network and Ecosystem Fragmentation in China. Prog. Geogr. 2004, 23, 78–85, 110. [Google Scholar]
- Coffin, A. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Zhao, Q.; Yang, J. Effects of road network on landscape ecological risk: A case study of Red River watershed. Chin. J. Ecol. 2010, 29, 2223–2228. [Google Scholar]
- Cai, X.; Wu, Z.; Cheng, J. Analysis of road network pattern and landscape fragmentation based on kernel density estimation. Chin. J. Ecol. 2012, 31, 158–164. [Google Scholar]
- Karlson, M.; Mortberg, U. A spatial ecological assessment of fragmentation and disturbance effects of the Swedish road network. Landsc. Urban Plan. 2015, 134, 53–65. [Google Scholar] [CrossRef]
- Wang, D.; Qiu, P.; Fang, Y. Scale effect of Li-Xiang Railway construction impact on landscape pattern and its ecological risk. Chin. J. Appl. Ecol. 2015, 26, 2493–2503. [Google Scholar]
- Liu, Z.; Zhang, G.; Fu, F. Assessing landscape ecological risk based on landscape pattern and services in Guangzhou during 1990–2015. Acta Ecol. Sin. 2020, 40, 3295–3302. [Google Scholar]
- Yu, J.; Tang, B.; Chen, Y.; Zhang, L.; Nie, Y.; Deng, W. Landscape ecological risk assessment and ecological security pattern construction in landscape resource-based city: A case study of Zhangjiajie City. Acta Ecol. Sin. 2022, 42, 1290–1299. [Google Scholar]
- Sun, L.; Zhou, D.; Cen, G.; Ma, J.; Dang, R.; Ni, F.; Zhang, J. Landscape ecological risk assessment and driving factors of the Shule River Basin based on the geographic detector model. Arid. Land. Geo. 2021, 44, 1384–1395. [Google Scholar]
- Shi, H.; Shi, T.; Yang, Z.; Wang, Z.; Han, F.; Wang, C. Effect of Roads on Ecological Corridors Used for Wildlife Movement in a Natural Heritage Site. Sustainability 2018, 10, 2725. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Qi, Y.; Liu, P.; Len, D.; Fu, Y.; Zhang, Z. Experience and Enlightenment of Beautiful Bay Construction in the Coastal Zone of Fuzhou Binhai New Area. Environ. Prot. 2021, 49, 24–29. [Google Scholar]
- Wang, J.; Bing, L.; Yin, Y.; Xi, F.; Ma, M.; Zhang, W.; Niu, L.; Zhang, L. Accounting for the cost of ecological degradation in Fuzhou City, China. Chin. J. Appl. Ecol. 2021, 32, 3781–3792. [Google Scholar]
- Bao, X.; Dai, W.; Liu, S.; Chen, S. Spatial differentiation and influencing factors of rural territorial multi-functions in urban-rural integration area: A case study of Eastern Fuzhou. J. Nat. Resour. 2022, 37, 2688–2702. [Google Scholar] [CrossRef]
- Lai, S.; Sha, J.; Eladawy, A.; Li, X.; Wang, J.; Kurbanov, E.; Lin, Z.; Wu, L.; Han, R.; Su, Y. Evaluation of ecological security and ecological maintenance based on pressure-state-response (PSR) model, case study: Fuzhou city, China. Hum. Ecol. Risk Assess. 2022, 28, 734–761. [Google Scholar] [CrossRef]
- Xue, L.; Zhu, B.; Wu, Y.; Wei, G.; Liao, S.; Yang, C.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic projection of ecological risk in the Manas River basin based on terrain gradients. Sci. Total Environ. 2019, 653, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, X.; Zhao, T.; Zhang, M.; Nian, L.; Li, X. Landscape ecological risk assessment of Qilian Mountain National Park based on landscape pattern. Ecol. Sci. 2022, 41, 99–107. [Google Scholar]
- Li, L.; Wang, R.; Zhang, Z.; Zhu, X. Ecoligical risk assessment based on land use changes in Jiaodong Peninsula, China. J. Shandong Norm. Univ. 2022, 37, 137–145. [Google Scholar]
- Igondova, E.; Pavlickova, K.; Majzlan, O. The ecological impact assessment of a proposed road development (the Slovak approach). Environ. Impact Assess. Rev. 2016, 59, 43–54. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, L.; Li, S.; Sun, Z.; Yang, M.; Zhang, D.; Li, C.; Mao, R.; Li, Z.; Zhang, L. Effects of roads on the abundance and habitat of Tibetan wild ass and Ti-betan gazelle in the Yellow River Source Zone of Sanjiangyuan National Park. Acta Ecol. Sin. 2022, 42, 34–48. [Google Scholar]
- Liu, S.; Wen, M.; Cui, B.; Fu, W.; Yang, M. Definition and Spatial Differentiation of Road-effect Zone: A Case Study in Longitudinal Range-Gorge Region. Prog. Geogr. 2008, 27, 122–128. [Google Scholar]
- Ginebreda, A.; Sabater-Liesa, L.; Rico, A.; Focks, A.; Barcelo, D. Reconciling monitoring and modeling: An appraisal of river monitoring networks based on a spatial autocorrelation approach—Emerging pollutants in the Danube River as a case study. Sci. Total Environ. 2018, 618, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Liu, S.; An, N.; Yin, Y.; Wang, J.; Qiu, Y. Landscape Pattern in Da’an City of Jilin Province Based on Landscape Indices and Local Spatial Autocorrelation Analysis. J. Nat. Resour. 2015, 30, 1860–1871. [Google Scholar]
- Wang, X.; Feng, Y.; Li, Y.; Wu, B.; Chen, S.; Li, X.; Wang, X.; Mo, Y.; Song, B. Spatial variability of soil physiochemical properties and their autocorrelations at village-region in karst mountainous area, Guizhou Province. Acta Ecol. Sin. 2015, 35, 2926–2936. [Google Scholar]
- Shen, Z.; Zeng, J. Spatial relationship of urban development to land surface temperature in three cities of southern Fujian. Acta Ecol. Sin. 2021, 76, 566–583. [Google Scholar]
- Liang, S.; Fang, H. Quantitative analysis of driving factors in soil erosion using geographic detectors in Qiantang River catchment, Southeast China. J. Soils Sediments 2021, 21, 134–147. [Google Scholar] [CrossRef]
- Ren, B.; Wang, Q.; Zhang, R.; Zhou, X.; Wu, X.; Zhang, Q. Assessment of Ecosystem Services: Spatio-Temporal Analysis and the Spatial Response of Influencing Factors in Hainan Province. Sustainability 2022, 14, 9145. [Google Scholar] [CrossRef]
- Bi, K.; Niu, Z.; Huang, N.; Kou, P. Effects of road network on landscape ecological risk: A case study of “China and Indochina Peninsula economic corridor”. J. Univ. Chin. Acad. Sci. 2019, 36, 347–353. [Google Scholar]
- Zong, Y. The corridor effects in urban ecological landscape planning—A case study on Beijing. Acta Ecol. Sin. 1999, 19, 3–8. [Google Scholar]
- Torok, P.; Brudvig, L.; Kollmann, J.; Price, J.; Tothmeresz, B. The present and future of grassland restoration. Restor. Ecol. 2021, 29, e13378. [Google Scholar] [CrossRef]
- Yang, X.; Lei, S.; Xu, J.; He, X.; Cheng, W. Influence of roads on the fragmentation of grassland landscape. J. Arid. Land. Res. Environ. 2021, 35, 149–156. [Google Scholar]
- Lu, Q.; Liu, G.; Yan, B.; Zhao, D. Research on the impact of road network on landscape pattern and landscape ecological risk: A case study of Ruijin-Xingguo-Yudu region. Chin. J. Ecol. 2022, 41, 2236–2244. [Google Scholar]
- Chen, X.; Zeng, X.; Zhao, C.; Qiu, R.; Zhang, L.; Hou, X.; Hu, X. The ecological effect of road network based on remote sensing ecological index: A case study of Fuzhou City, Fujian Province. Acta Ecol. Sin. 2021, 41, 4732–4745. [Google Scholar]
- Liu, J.; Chen, F.; Zhu, J.; Qiu, X. Study on Ecosystem Suitability Stressed by Road Projects. Res. Soil. Water. Conserv. 2009, 16, 10–15, 21. [Google Scholar]
- Zheng, C.; Zhang, Q.; Li, D.; Li, Z.; Zhao, H. Ecological Impact Assessment of Road Construction in Wetland of China—A Case Study of Highway Projects in Northeastern Area. J. Highw. Transp. Res. Dev. 2017, 34, 153–158. [Google Scholar]
- Zhang, Y.; Zhang, B.; Peng, L.; Zhao, L.; Liu, S. Research on land-use change and driving factors in Fuzhou City from 2005 to 2020. J. Fuzhou. Univ. 2022, 50, 408–416. [Google Scholar]
- Zhu, Y.; Yao, X.; Chen, W.; He, Z.; Chen, L.; Yang, L.; Chen, S.; Chi, T. Evaluation of the quality of human settlement in downtown Fuzhou based on multi-source data. Chin. J. Appl. Ecol. 2020, 31, 2721–2730. [Google Scholar]
- Zhu, Z.; Guan, Z.; Xu, G.; Tong, K.; Chen, X. Application of Centipedegrass (Eremochloa ophiuroides) as Pioneer Plants in Ecological Restoration of Road Slope. J. Northwest For. Univ. 2017, 32, 263–268. [Google Scholar]
Basis of Judgement | Interaction Relation |
---|---|
Nonlinear weakening | |
Single-factor nonlinear weakening | |
Bifactor enhancement | |
Two-factor independence | |
Nonlinear enhancement |
Cutting Mode | Time (Year) | Land Use Type | |||||||
---|---|---|---|---|---|---|---|---|---|
Woodland | Grassland | Cultivated Land | Water Body | Wetland | Building Land | Unused Land | |||
Cutting area (km2) | Edge cutting | 2000 | 245.40 | 33.99 | 195.88 | 16.83 | 4.00 | 31.38 | 2.09 |
2010 | 288.93 | 35.90 | 178.15 | 16.99 | 5.09 | 27.87 | 1.76 | ||
2020 | 329.84 | 37.87 | 156.35 | 19.72 | 4.72 | 43.53 | 1.41 | ||
Intermediate cutting | 2000 | 197.57 | 55.48 | 450.33 | 51.81 | 13.21 | 135.63 | 12.05 | |
2010 | 382.22 | 90.32 | 597.87 | 63.94 | 14.54 | 215.73 | 13.02 | ||
2020 | 625.23 | 110.65 | 655.45 | 102.58 | 12.00 | 343.22 | 10.97 | ||
Complete cutting | 2000 | 7.18 | 2.65 | 21.45 | 8.73 | 1.71 | 23.18 | 2.72 | |
2010 | 10.50 | 3.12 | 24.11 | 7.95 | 1.32 | 25.63 | 2.85 | ||
2020 | 30.50 | 12.55 | 51.83 | 26.03 | 2.45 | 64.31 | 4.71 | ||
The adjacent side length(km) | Edge cutting | 2000 | 5502.42 | 2028.96 | 3140.70 | 383.16 | 100.26 | 530.52 | 185.16 |
2010 | 6150.72 | 2159.46 | 3124.80 | 387.72 | 116.88 | 439.98 | 161.82 | ||
2020 | 6383.04 | 2270.70 | 3030.90 | 359.76 | 104.76 | 599.82 | 138.90 | ||
Intermediate cutting | 2000 | 3387.12 | 3054.48 | 5058.36 | 1018.20 | 230.76 | 1805.28 | 824.64 | |
2010 | 5849.40 | 4785.24 | 6756.06 | 1354.38 | 240.54 | 2642.64 | 947.58 | ||
2020 | 8344.62 | 5701.62 | 7824.78 | 1367.10 | 188.64 | 3346.68 | 821.34 | ||
Complete cutting | 2000 | 134.70 | 163.02 | 274.02 | 271.38 | 51.00 | 442.44 | 213.78 | |
2010 | 197.10 | 198.00 | 316.68 | 240.90 | 39.00 | 422.04 | 241.50 | ||
2020 | 605.04 | 699.54 | 689.70 | 506.22 | 69.06 | 744.60 | 361.26 | ||
CCI | 2000 | 30,893.48 | 116,802.03 | 107,266.61 | 13,946.28 | 3922.013 | 15,857.29 | 3491.29 | |
2010 | 50,569.35 | 155,852.72 | 160,449.51 | 17,765.98 | 5450.517 | 23,461.65 | 3751.99 | ||
2020 | 100,620.51 | 195,586.41 | 225,109.60 | 21,020.34 | 6704.392 | 28,550.62 | 889.46 |
Ecological Risk Grade | Year 2000 | Year 2010 | Year 2020 | |||
---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Low ecological risk | 332.66 | 2.91 | 280.97 | 2.46 | 318.24 | 2.78 |
Sub-low ecological risk | 3860.75 | 33.75 | 2344.09 | 20.49 | 2915.52 | 25.49 |
Medium ecological risk | 4329.85 | 37.85 | 4277.11 | 37.39 | 3333.28 | 29.14 |
Sub-high ecological risk | 2468.22 | 21.58 | 3422.95 | 29.92 | 3552.01 | 31.05 |
High ecological risk | 446.95 | 3.91 | 1113.32 | 9.73 | 1319.39 | 11.53 |
Time (Year) | Moran’s I | p | Z |
---|---|---|---|
2000 | 0.53 | 0.001 | 51.23 |
2010 | 0.56 | 0.001 | 52.54 |
2020 | 0.57 | 0.001 | 52.50 |
Independent Variable | Time (Year) | Landscape Ecological Risk Index | ||
---|---|---|---|---|
Moran’s I | p | Z | ||
Road density (i) | 2000 | 0.17 | 0.001 | 20.94 |
2010 | 0.22 | 0.001 | 27.49 | |
2020 | 0.19 | 0.001 | 23.71 | |
CCI (ii) | 2000 | 0.16 | 0.001 | 20.01 |
2010 | 0.24 | 0.001 | 28.09 | |
2020 | 0.21 | 0.001 | 24.16 | |
Road grade (iii) | 2000 | 0.17 | 0.001 | 20.81 |
2010 | 0.18 | 0.001 | 22.44 | |
2020 | 0.17 | 0.001 | 21.18 | |
Shortest distance (iv) | 2000 | −0.32 | 0.001 | −36.99 |
2010 | −0.35 | 0.001 | −40.73 | |
2020 | −0.37 | 0.001 | −41.97 |
Time (Year) | Analysis Results | Driving Factors | |||||||
---|---|---|---|---|---|---|---|---|---|
Land Type | Elevation | Slope | Relief | Road Density | Road Grade | CCI | Shortest Distance | ||
2000 | Q value | 0.09 | 0.14 | 0.07 | 0.08 | 0.09 | 0.10 | 0.11 | 0.12 |
2010 | Q value | 0.18 | 0.23 | 0.13 | 0.14 | 0.17 | 0.18 | 0.20 | 0.19 |
2020 | Q value | 0.11 | 0.12 | 0.07 | 0.08 | 0.12 | 0.12 | 0.15 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; You, N.; Wang, L.; Lan, C. Assessing the Impact of Road Network on Urban Landscape Ecological Risk Based on Corridor Cutting Degree Model in Fuzhou, China. Sustainability 2023, 15, 1724. https://doi.org/10.3390/su15021724
Yan Z, You N, Wang L, Lan C. Assessing the Impact of Road Network on Urban Landscape Ecological Risk Based on Corridor Cutting Degree Model in Fuzhou, China. Sustainability. 2023; 15(2):1724. https://doi.org/10.3390/su15021724
Chicago/Turabian StyleYan, Zichun, Ninglong You, Lu Wang, and Chengwei Lan. 2023. "Assessing the Impact of Road Network on Urban Landscape Ecological Risk Based on Corridor Cutting Degree Model in Fuzhou, China" Sustainability 15, no. 2: 1724. https://doi.org/10.3390/su15021724
APA StyleYan, Z., You, N., Wang, L., & Lan, C. (2023). Assessing the Impact of Road Network on Urban Landscape Ecological Risk Based on Corridor Cutting Degree Model in Fuzhou, China. Sustainability, 15(2), 1724. https://doi.org/10.3390/su15021724