Wave Energy in Brittany (France)—Resource Assessment and WEC Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hindcast Database and Exploitation
2.3. Wave Energy Converter Systems
2.3.1. WEC in Offshore Locations
2.3.2. WEC in Intermediate Water Depths
2.3.3. WEC in Nearshore Waters
2.4. Performance Indicators and Resource Metrics
2.4.1. Model Performance Indicators
2.4.2. Pre-Production Metrics
2.4.3. Post-Production Metrics
3. Results and Discussion
3.1. Evaluation of the Wave Hindcast Database
3.2. Spatio-Temporal Variability of Available Wave Energy
3.2.1. Spatial Distribution of Energetic Patterns
3.2.2. Wave Energy Variation during 1994–2020
3.3. WEC Performances
3.3.1. Averaged Performances
3.3.2. Annual and Monthly Variabilities in WEC Performances
4. Conclusions
- With great exposure to North-Atlantic incoming waves, the western extent of Brittany showed increased values of the available wave energy resource, which contrasted with the reduced resource both in the north-eastern region at the entrance of the English Channel and in the south-eastern area. We exhibited furthermore a decrease in the wave resource between offshore and nearshore waters with respect to depth- and current-induced refraction, and energy dissipation by bottom friction. This contributed to pronounced spatial variability in the wave energy flux in shallow waters with values of up to 20 kW m−1 in the exposed locations to less than 5 kW m−1 behind islands or headlands.
- We exhibited increased temporal variability in the available wave power in energetic offshore locations, resulting in pronounced evolutions of the yearly averaged resource. Our investigation revealed furthermore a contrasting spatial distribution between (i) the northern region with slightly reduced monthly variability and (ii) the western and southern areas with slightly increased variations in the monthly available wave power.
- We identified the most promising sites for the implementation of WEC power systems, confirming the interest in western Brittany for offshore exploitation near the isles of Ushant and Sein and off the Crozon Peninsula. In water depths of 40 and 20 m, complementary locations were also exhibited (i) in the bay of Audierne, (ii) along the northern coast of western Brittany, and (iii) south of the SEM-REV site in the south-eastern areas of Brittany.
- We obtained the first ranking of WEC performances from a series of post-production metrics. The results obtained exhibited the effectiveness of Oceantec in water depths of 60 m. Wave Dragon appeared to be the device with the highest performances in water depths of 40 m, whereas Oyster and WaveStar C6 showed the highest scorings in water depths of 20 m. We analysed the correlation between devices’ performances and the shape of the associated power matrices. The results obtained revealed finally that the ranking between WEC power systems remained nearly the same at the different locations considered around Brittany, especially in offshore waters.
- Complementing the evaluation based on averaged quantities, we characterised the temporal variability of energy output. Thus, in offshore locations with water depths of 60 m, a clear correlation was exhibited between reduced intermittency in energy production and increased values of the capacity factor. We noticed, however, that a reduced variability in the available resource may be correlated with an increased variability in energy production, especially in areas characterised by reduced wave conditions. This complementary evaluation finally provided further insights about the selection of WEC power systems, thus confirming the interest of WaveStar C6 for an implementation in water depths of 20 m.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunn, K.; Stock-Williams, C. Quantifying the Global Wave Power Resource. Renew. Energy 2012, 44, 296–304. [Google Scholar] [CrossRef]
- Mattarolo, G.; Lafon, F.; Benoit, M. Wave Energy Resource off the French Coasts: The ANEMOC Database Applied to the Energy Yield Evaluation of Wave Energy Converters. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; p. 9. [Google Scholar]
- Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S.; et al. Wave Energy in Europe: Current Status and Perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405–431. [Google Scholar] [CrossRef]
- Falcão, A.F.d.O. Wave Energy Utilization: A Review of the Technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Guillou, N.; Lavidas, G.; Chapalain, G. Wave Energy Resource Assessment for Exploitation—A Review. J. Mar. Sci. Eng. 2020, 8, 705. [Google Scholar] [CrossRef]
- IEC. Marine Energy—Wave, Tidal and Other Water Current Converters—Part 101: Wave Energy Resource Assessment and Characterization; International Electrotechnical Commission/Technical Specification: Geneva, Switzerland, 2014. [Google Scholar]
- IMAREST. Metocean Procedures Guide for Offshore Renewables; Institute of Marine Engineering, Science & Technology (Offshore Renewables Special Interest Group): London, UK, 2018. [Google Scholar]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A Recent Increase in Global Wave Power as a Consequence of Oceanic Warming. Nat. Commun. 2019, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.W.; Li, C.Y. Variation of the Wave Energy and Significant Wave Height in the China Sea and Adjacent Waters. Renew. Sustain. Energy Rev. 2015, 43, 381–387. [Google Scholar] [CrossRef]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters, 1st ed.; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-86028-4. [Google Scholar]
- Atan, R.; Goggins, J.; Nash, S. Galway Bay—The 1/4 Scale Wave Energy Test Site? A Detailed Wave Energy Resource Assessment and Investigation of Scaling Factors. Renew. Energy 2018, 119, 217–234. [Google Scholar] [CrossRef]
- Gallagher, S.; Tiron, R.; Whelan, E.; Gleeson, E.; Dias, F.; McGrath, R. The Nearshore Wind and Wave Energy Potential of Ireland: A High Resolution Assessment of Availability and Accessibility. Renew. Energy 2016, 88, 494–516. [Google Scholar] [CrossRef]
- Guillou, N.; Neill, S.P.; Thiébot, J. Spatio-Temporal Variability of Tidal-Stream Energy in North-Western Europe. Phil. Trans. R. Soc. A. 2020, 378, 20190493. [Google Scholar] [CrossRef]
- Saruwatari, A.; Ingram, D.M.; Cradden, L. Wave–Current Interaction Effects on Marine Energy Converters. Ocean. Eng. 2013, 73, 106–118. [Google Scholar] [CrossRef]
- Guillou, N. Modelling Effects of Tidal Currents on Waves at a Tidal Stream Energy Site. Renew. Energy 2017, 114, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Pontes, M.T.; Athanassoulis, G.A.; Barstow, S.; Cavaleri, L.; Holmes, B.; Mollison, D.; Oliveira-Pires, H. An Atlas of the Wave-Energy Resource in Europe. J. Offshore Mech. Arct. Eng. 1996, 118, 307–309. [Google Scholar] [CrossRef]
- Rusu, L.; Onea, F. Assessment of the Performances of Various Wave Energy Converters along the European Continental Coasts. Energy 2015, 82, 889–904. [Google Scholar] [CrossRef]
- Silva, D.; Rusu, E.; Soares, C. Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore. Energies 2013, 6, 1344–1364. [Google Scholar] [CrossRef] [Green Version]
- Mota, P.; Pinto, J.P. Wave Energy Potential along the Western Portuguese Coast. Renew. Energy 2014, 71, 8–17. [Google Scholar] [CrossRef]
- Sierra, J.P.; White, A.; Mösso, C.; Mestres, M. Assessment of the Intra-Annual and Inter-Annual Variability of the Wave Energy Resource in the Bay of Biscay (France). Energy 2017, 141, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Kalogeri, C.; Galanis, G.; Spyrou, C.; Diamantis, D.; Baladima, F.; Koukoula, M.; Kallos, G. Assessing the European Offshore Wind and Wave Energy Resource for Combined Exploitation. Renew. Energy 2017, 101, 244–264. [Google Scholar] [CrossRef]
- Gonçalves, M.; Martinho, P.; Guedes Soares, C. A 33-Year Hindcast on Wave Energy Assessment in the Western French Coast. Energy 2018, 165, 790–801. [Google Scholar] [CrossRef]
- Neill, S.P.; Hashemi, M.R. Wave Power Variability over the Northwest European Shelf Seas. Appl. Energy 2013, 106, 31–46. [Google Scholar] [CrossRef]
- Lavidas, G.; Venugopal, V.; Friedrich, D. Wave Energy Extraction in Scotland through an Improved Nearshore Wave Atlas. Int. J. Mar. Energy 2017, 17, 64–83. [Google Scholar] [CrossRef]
- Lavidas, G. Selection Index for Wave Energy Deployments (SIWED): A near-Deterministic Index for Wave Energy Converters. Energy 2020, 196, 117131. [Google Scholar] [CrossRef]
- Fairley, I.; Smith, H.C.M.; Robertson, B.; Abusara, M.; Masters, I. Spatio-Temporal Variation in Wave Power and Implications for Electricity Supply. Renew. Energy 2017, 114, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, M.; Martinho, P.; Guedes Soares, C. Wave Energy Conditions in the Western French Coast. Renew. Energy 2014, 62, 155–163. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G. Numerical Modelling of Nearshore Wave Energy Resource in the Sea of Iroise. Renew. Energy 2015, 83, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Guillou, N. Evaluation of Wave Energy Potential in the Sea of Iroise with Two Spectral Models. Ocean. Eng. 2015, 106, 141–151. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G. Annual and Seasonal Variabilities in the Performances of Wave Energy Converters. Energy 2018, 165, 812–823. [Google Scholar] [CrossRef] [Green Version]
- Majidi, A.G.; Bingölbali, B.; Akpınar, A.; Rusu, E. Wave Power Performance of Wave Energy Converters at High-Energy Areas of a Semi-Enclosed Sea. Energy 2021, 220, 119705. [Google Scholar] [CrossRef]
- Majidi, A.; Bingölbali, B.; Akpınar, A.; Iglesias, G.; Jafali, H. Downscaling Wave Energy Converters for Optimum Performance in Low-Energy Seas. Renew. Energy 2021, 168, 705–722. [Google Scholar] [CrossRef]
- Majidi Nezhad, M.; Groppi, D.; Rosa, F.; Piras, G.; Cumo, F.; Garcia, D.A. Nearshore Wave Energy Converters Comparison and Mediterranean Small Island Grid Integration. Sustain. Energy Technol. Assess. 2018, 30, 68–76. [Google Scholar] [CrossRef]
- Accensi, M.; Alday Gonzalez, M.F.; Maisondieu, C.; Raillard, N.; Darbynian, D.; Old, C.; Sellar, B.; Thilleul, O.; Perignon, Y.; Payne, G.; et al. ResourceCODE Framework: A High-Resolution Wave Parameter Dataset for the European Shelf and Analysis Toolbox. In Proceedings of the EWTEC 2021—14th European Wave and Tidal Energy Conference, Plymouth, UK, 5–9 September 2021. [Google Scholar]
- SHOM. Courants de Marée—Mer d’Iroise de l’île Vierge à La Pointe de Penmarc’h; Service Hydrographique et Océanographique de la Marine: Paris, France, 2016. [Google Scholar]
- Guillou, N.; Neill, S.P.; Robins, P.E. Characterising the Tidal Stream Power Resource around France Using a High-Resolution Harmonic Database. Renew. Energy 2018, 123, 706–718. [Google Scholar] [CrossRef]
- Ardhuin, F.; Roland, A.; Dumas, F.; Bennis, A.-C.; Sentchev, A.; Forget, P.; Wolf, J.; Girard, F.; Osuna, P.; Benoit, M. Numerical Wave Modeling in Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind. J. Phys. Oceanogr. 2012, 42, 2101–2120. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G.; Sergent, P. Wave Energy Resource Assessment for Small-Scale WEC near a Harbour. JMSE 2022, 10, 1081. [Google Scholar] [CrossRef]
- Pineau-Guillou, L. Validation des Atlas de Composantes Harmoniques de Hauteurs et Courants de Marée; MARC: Paris, France, 2013; p. 89. [Google Scholar]
- Carrere, L.; Lyard, F.; Cancet, M.; Guillot, A. FES 2014, a New Tidal Model on the Global Ocean with Enhanced Accuracy in Shallow Seas and in the Arctic Region. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 12–17 April 2015; p. 5481. [Google Scholar]
- Accensi, M.; Alday, M.; Maisondieu, C. RESOURCECODE—Resource Characterization to Reduce the Cost of Energy through Coordinated Data Enterprise—Wave Hindcast Database User Manual; ResourceCode: Montreal, QC, Canada, 2022; p. 46. [Google Scholar]
- SHOM. MNT Bathymétrique de Façade; Service Hydrographique et Océanographique de la Marine: Paris, France, 2015. [Google Scholar]
- Guillou, N. Rôles de l’hétérogénéité Des Sédiments de Fond et Des Interactions Houle-Courant Sur L’hydrodynamique et La Dynamique Sédimentaire En Zone Subtidale—Applications En Manche Orientale et à La Pointe de La Bretagne; Université de Bretagne Occidentale: Brest, France, 2007. [Google Scholar]
- Babarit, A.; Hals, J.; Muliawan, M.J.; Kurniawan, A.; Moan, T.; Krokstad, J. Numerical Benchmarking Study of a Selection of Wave Energy Converters. Renew. Energy 2012, 41, 44–63. [Google Scholar] [CrossRef]
- Bozzi, S.; Besio, G.; Passoni, G. Wave Power Technologies for the Mediterranean Offshore: Scaling and Performance Analysis. Coast. Eng. 2018, 136, 130–146. [Google Scholar] [CrossRef]
- Veigas, M.; López, M.; Romillo, P.; Carballo, R.; Castro, A.; Iglesias, G. A Proposed Wave Farm on the Galician Coast. Energy Convers. Manag. 2015, 99, 102–111. [Google Scholar] [CrossRef]
- Patel, R.P.; Nagababu, G.; Kachhwaha, S.S.; Kumar, S.V.A.; Seemanth, M. Combined Wind and Wave Resource Assessment and Energy Extraction along the Indian Coast. Renew. Energy 2022, 195, 931–945. [Google Scholar] [CrossRef]
- Dalton, G.J.; Alcorn, R.; Lewis, T. Case Study Feasibility Analysis of the Pelamis Wave Energy Convertor in Ireland, Portugal and North America. Renew. Energy 2010, 35, 443–455. [Google Scholar] [CrossRef]
- Maki, T.; Vuorinen, M.; Mucha, T. WaveRoller—One of the Leading Technologies for Wave Energy Conversion. In Proceedings of the 4th International Conference on Ocean Energy (ICOE), Halifax, NS, Canada, 6 November 2014. [Google Scholar]
- Marquis, L.; Kramer, M.; Kringelum, J.; Chozas, J.F.; Helstrup, N.E. Introduction of Wavestar Wave Energy Converters at the Danish Offshore Wind Power Plant Horns Rev 2. In Proceedings of the ICOE Conference, Dublin, Ireland, 17–19 October 2012. [Google Scholar]
- Salcedo, F.; Ruiz-Minguela, P.; Rodriguez, R.; Ricci, P.; Santos, M. OCEANTEC: Sea Trials of a Quarter Scale Prototype. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; p. 6. [Google Scholar]
- Lo Re, C.; Manno, G.; Basile, M.; Ciraolo, G. The Opportunity of Using Wave Energy Converters in a Mediterranean Hot Spot. Renew. Energy 2022, 196, 1095–1114. [Google Scholar] [CrossRef]
- Cameron, L.; Doherty, K.; Doherty, R.; Henry, A.; Van’t Hoff, J.; Kaye, D.; Naylor, D.; Bourdier, S.; Whittaker, T. Design of the Next Generation of the Oyster Wave Energy Converter. In Proceedings of the 3rd International Conference on Ocean Energy, Bilbao, Spain, 6–8 October 2010. [Google Scholar]
- Guillou, N. Wave-Energy Dissipation by Bottom Friction in the English Channel. Ocean. Eng. 2014, 82, 29. [Google Scholar] [CrossRef]
- Kalourazi, M.Y.; Siadatmousavi, S.M.; Yeganeh-Bakhtiary, A.; Jose, F. WAVEWATCH-III Source Terms Evaluation for Optimizing Hurricane Wave Modeling: A Case Study of Hurricane Ivan. Oceanologia 2021, 63, 194–213. [Google Scholar] [CrossRef]
- Umesh, P.A.; Behera, M.R. Performance Evaluation of Input-Dissipation Parameterizations in WAVEWATCH III and Comparison of Wave Hindcast with Nested WAVEWATCH III-SWAN in the Indian Seas. Ocean. Eng. 2020, 202, 106959. [Google Scholar] [CrossRef]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Performance Evaluation of Wavewatch III in the Mediterranean Sea. Ocean. Model. 2015, 90, 82–94. [Google Scholar] [CrossRef]
- Hanna, S.R.; Heinold, D. Development and Application of a Simple Method for Evaluating Air Quality; American Petroleum Institute, Health and Environmental Affairs Dept.: Washington, DC, USA, 1985. [Google Scholar]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-Based Wave Model Validations. Ocean. Model. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- Akpınar, A.; Bingölbali, B.; Van Vledder, G.P. Long-Term Analysis of Wave Power Potential in the Black Sea, Based on 31-Year SWAN Simulations. Ocean. Eng. 2017, 130, 482–497. [Google Scholar] [CrossRef]
- Cornett, A. A Global Wave Energy Resource Assessment. In Proceedings of the International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, 6 July 2008. [Google Scholar]
- Guillou, N.; Chapalain, G. Assessment of Wave Power Variability and Exploitation with a Long-Term Hindcast Database. Renew. Energy 2020, 154, 1272–1282. [Google Scholar] [CrossRef]
- Zheng, C.W.; Wang, Q.; Li, C.Y. An Overview of Medium- to Long-Term Predictions of Global Wave Energy Resources. Renew. Sustain. Energy Rev. 2017, 79, 1492–1502. [Google Scholar] [CrossRef]
- Gao, Q.; Khan, S.S.; Sergiienko, N.; Ertugrul, N.; Hemer, M.; Negnevitsky, M.; Ding, B. Assessment of Wind and Wave Power Characteristic and Potential for Hybrid Exploration in Australia. Renew. Sustain. Energy Rev. 2022, 168, 112747. [Google Scholar] [CrossRef]
- Diaconu, S.; Rusu, E. Evaluation of Various WEC Devices in the Romanian Nearshore. In Proceedings of the International Conference on Energy and Environment Technologies and Equipement (EEETE’13), Brasov, Romania, 1–3 June 2013. [Google Scholar]
- Folley, M.; Whittaker, T.J.T. Analysis of the Nearshore Wave Energy Resource. Renew. Energy 2009, 34, 1709–1715. [Google Scholar] [CrossRef]
- ISO. Petroleum and Natural Gas Industries—Specific Requirements for Offshore Structures—Part 1: Metocean Design and Operating Considerations; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- Kamranzad, B.; Etemad-Shahidi, A.; Chegini, V. Developing an Optimum Hotspot Identifier for Wave Energy Extracting in the Northern Persian Gulf. Renew. Energy 2017, 114, 59–71. [Google Scholar] [CrossRef]
- Carballo, R.; Sánchez, M.; Ramos, V.; Fraguela, J.A.; Iglesias, G. The Intra-Annual Variability in the Performance of Wave Energy Converters: A Comparative Study in N Galicia (Spain). Energy 2015, 82, 138–146. [Google Scholar] [CrossRef]
Database/Model | Application Area | Time Period Considered | Spatial Resolution | Output Time Step | WEC Performance | References |
---|---|---|---|---|---|---|
WAM | NW European seas | 7 years (1987–1994) | 3° | 6 h | no | [16] |
ERA interim | NW European seas | 11 years (2003–2013) | 0.75° | 6 h | yes | [17] |
ERAS 5 | Northern Portugal | 71 years (1950–2020) | 0.5° | 3 h | no | [18] |
WW3 | Portugal | 15 years (1995–2010) | 0.5° | 6 h | yes | [19] |
WAM (HIPOCAS) | Bay of Biscay (France) | 58 years (1958–2015) | 0.25° | 3 h | yes | [20] |
WAM (MARINA) | NW European seas | 10 years (2001–2010) | 5 km | 1 h | no | [21] |
SWAN | Western French coast | 33 years (1979–2011) | 0.05/0.1° (~5 km) | - | no | [22] |
SWAN | NW European seas | 7 years (2005–2011) | 1/24° (~4.5 km) | 3 h | no | [23] |
SWAN | Scotland (UK) | 11 years (2004–2014) | 0.025° (~2.8 km) | 3 h | yes | [24] |
SWAN | North Sea | 38 years (1980–2017) | 0.025° | 1 h | yes | [25] |
SWAN | Southwestern UK | 10 years (1998–2007) | 1 km | - | yes | [26] |
SWAN | Western French coast | 3 years (1998–2000) | 880 m | - | no | [27] |
SWAN | Portugal | 3 years (2009–2011) | 880 m | - | yes | [18] |
SWAN/TOMAWAC | Western Brittany (France) | 8 years (2004–2011) | 300 m | 3 h | no | [28,29] |
SWAN | Western Brittany (France) | 8 years (2004–2011) | 300 m | 3 h | yes | [30] |
SWAN | Eastern Ireland | 12 years (2004–2015) | 300 m | - | no | [11] |
WW3 | Coast of Ireland | 14 years (2000–2013) | 225 m | - | no | [12] |
Wave Buoys | Longitude | Latitude | Water Depths | Measurement Periods Considered |
---|---|---|---|---|
W1 (02202) | 2.443° W | 48.892° N | 38 m | 30/11/2005 → 31/12/2005 |
W2 (02204) | 2.889° W | 49.026° N | 50 m | 10/01/2019 → 30/12/2019 |
W3 (02922) | 4.072° W | 48.728° N | 30 m | 01/01/2020 → 31/12/2020 |
W4 (02911) | 4.968° W | 48.290° N | 60 m | 01/01/2012 → 31/12/2012 |
W5 (02915) | 4.920° W | 48.006° N | 45 m | 02/10/2012 → 31/12/2012 |
W6 (02914) | 4.450° W | 47.650° N | 105 m | 20/01/2010 → 27/02/2010 |
W7 (05602) | 3.285° W | 47.285° N | 45 m | 01/01/2016 → 31/12/2016 |
W8 (04403) | 2.787° W | 47.239° N | 30 m | 01/01/2017 → 31/12/2017 |
WEC System | Rated Power (kW) | Description | Installation Depth (m) | Characteristics of Power Matrix | References | |
---|---|---|---|---|---|---|
Offshore waters (60 m) | AquaBuOY | 250 | absorber | 50–70 | Hm0 × Tp | [45] |
AWS | 2470 | absorber | >50 | Hm0 × Te | [46] | |
Oceantec | 500 | absorber | 50–100 | Hm0 × Te | [47] | |
Pelamis | 750 | attenuator | 50–70 | Hm0 × Te | [48] | |
Seabased AB (Bref-HB) | 15 | absorber | 40–100 | Hm0 × Tp | [44] | |
WaveBob (F-2HB) | 1000 | absorber | >50 | Hm0 × Tp | [44] | |
Intermediate waters (40 m) | Oyster 2 (B-OF) | 3332 | oscillating converter | <50 | Hm0 × Tp | [44] |
Wave Dragon | 7000 | terminator | 25–40 | Hm0 × Tp | [18] | |
WaveStar (B-HBA) | 2709 | oscillating converter | 30–50 | Hm0 × Tp | [44] | |
Nearshore waters (20 m) | Oyster | 290 | oscillating converter | 10–25 | Hm0 × Te | [18] |
CETO (Bref-SHB) | 260 | attenuator | 20 | Hm0 × Tp | [44] | |
WaveRoller | 1000 | oscillating | 10–25 | Hm0 × Te | [49] | |
WaveStar C6 | 600 | attenuator | <20 | Hm0 × Tp | [50] |
Wave Buoy | Hm0 | Te | ||||
---|---|---|---|---|---|---|
MAE | NBI | HH | MAE | NBI | HH | |
W1 (02202) | 0.19 m | 0.11 | 0.16 | 0.6 s | 0.002 | 0.10 |
W2 (02204) | 0.20 m | 0.06 | 0.12 | 0.6 s | −0.003 | 0.10 |
W3 (02922) | 0.21 m | 0.10 | 0.15 | 0.6 s | −0.018 | 0.09 |
W4 (02911) | 0.29 m | 0.13 | 0.15 | 0.5 s | 0.001 | 0.07 |
W5 (02915) | 0.45 m | 0.16 | 0.19 | 0.6 s | 0.027 | 0.08 |
W6 (02914) | 0.29 m | 0.10 | 0.13 | 0.6 s | 0.019 | 0.08 |
W7 (05602) | 0.19 m | 0.03 | 0.11 | 0.5 s | 0.012 | 0.08 |
W8 (04403) | 0.17 m | 0.09 | 0.17 | 0.6 s | 0.024 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillou, N.; Lavidas, G.; Kamranzad, B. Wave Energy in Brittany (France)—Resource Assessment and WEC Performances. Sustainability 2023, 15, 1725. https://doi.org/10.3390/su15021725
Guillou N, Lavidas G, Kamranzad B. Wave Energy in Brittany (France)—Resource Assessment and WEC Performances. Sustainability. 2023; 15(2):1725. https://doi.org/10.3390/su15021725
Chicago/Turabian StyleGuillou, Nicolas, George Lavidas, and Bahareh Kamranzad. 2023. "Wave Energy in Brittany (France)—Resource Assessment and WEC Performances" Sustainability 15, no. 2: 1725. https://doi.org/10.3390/su15021725
APA StyleGuillou, N., Lavidas, G., & Kamranzad, B. (2023). Wave Energy in Brittany (France)—Resource Assessment and WEC Performances. Sustainability, 15(2), 1725. https://doi.org/10.3390/su15021725