How Does Digital Economy Promote the Geographical Agglomeration of Manufacturing Industry?
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Analysis and Research Hypothesis
4. Model, Variables and Data Resources
4.1. Model Construction
4.2. Variables
4.2.1. Explained Variables
4.2.2. Explanatory Variables
4.2.3. Mediating Variables
4.2.4. Control Variables
4.3. Data Resources
5. Results and Discussion
5.1. Baseline Regression Analysis
5.2. Robustness Test and Endogenous Treatment
5.3. Heterogeneity Analysis
5.3.1. Enterprise Heterogeneity
5.3.2. Regional Heterogeneity
5.4. Mediating Effect Analysis
5.5. Moderating Effect Analysis
5.6. Futher Discussion
6. Conclusions and Recommendations
6.1. Conclusions
6.2. Recommendations
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, P.; Zhang, L.; Tarbert, H.; Yan, Z. Analysis on Spatio-Temporal Characteristics and Influencing Factors of Industrial Green Innovation Efficiency–From the Perspective of Innovation Value Chain. Sustainability 2022, 14, 34–42. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Yao, P. Industrial Policy and High-quality Development of Manufacturing Industry. Scie Sci. 2020, 8, 1381–1389. [Google Scholar]
- Bertinelli, L.; Decrop, J. Geographical agglomeration: Ellison and Glaeser’s index applied to the case of Belgian manufacturing industry. Reg. Stud. 2005, 39, 567–583. [Google Scholar] [CrossRef]
- Mukkala, K. Agglomeration economies in the Finnish manufacturing sector. Appl. Econ. 2004, 36, 2419–2427. [Google Scholar] [CrossRef] [Green Version]
- Marrocu, E.; Paci, R.; Usai, S. Productivity Growth in the Old and New Europe: The Role of Agglomeration Externalities. J. Reg. Sci. 2013, 53, 418–442. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.K.; Wang, S.J. Analysis and Theoretical Reflection on China’s “Excessive Deindustrialization”. China Indus. Econ. 2019, 1, 5–22. [Google Scholar]
- He, C.F.; Hu, X.Q. Evolution of China’s Industrial Geography since 1978’s Reform and Opening-up. Acta Geog. Sin. 2019, 10, 1962–1979. [Google Scholar]
- Wang, L.H.; Jiang, H.; Dong, Z.Q. Will industrial intelligence reshape the geographical pattern of enterprises. China Ind. Econ. 2022, 2, 2137–2155. [Google Scholar]
- Domnina, S.V.; Podkopaev, O.A.; Salynina, S.U. The Digital Economy: Challenges and Opportunities for Economic Development in Russia’s Regions. In Current Achievements, Challenges and Digital Chances of Knowledge Based Economy; Springer: Cham, Switzerland, 2021; Volume 133, pp. 149–157. [Google Scholar]
- Ma, J.; Li, Z. Measuring China’s urban digital economy. Natl. Account. Rev. 2022, 4, 329–361. [Google Scholar] [CrossRef]
- Hu, W.; Chen, X.D.; Chen, Z. Theoretical model and interaction mechanism of informatization, industrialization and manufacturing agglomeration. Regional Econ. Rev. 2021, 5, 54–72. [Google Scholar]
- Li, Z.; Chen, H.; Mo, B. Can digital finance promote urban innovation? Evidence from China. Borsa Istanb. Rev. 2022, in press. [Google Scholar] [CrossRef]
- Forman, C.; van Zeebroeck, N. Digital technology adoption and knowledge flows within firms: Can the Internet overcome geographic and technological distance? Res. Policy. 2019, 48, 103697. [Google Scholar] [CrossRef]
- Ferreira, J.J.M.; Fernandes, C.I.; Ferreira, F.A.F. To be or not to be digital, that is the question: Firm innovation and performance. J. Bus. Res. 2019, 101, 583–590. [Google Scholar] [CrossRef]
- Li, Z.; Yang, C.; Huang, Z. How does the fintech sector react to signals from central bank digital currencies? Financ. Res. Lett. 2022, 50, 103308. [Google Scholar] [CrossRef]
- Arendt, Ł. The Digital Economy, ICT and Economic Growth in the CEE Countries. Olszt. Econ. J. 2015, 10, 247–262. [Google Scholar] [CrossRef]
- Qu, Y.; Cai, F.; Did Zhang, X.B. “Flying Goose Mode” Happen? An Analysis of China’s Manufacturing Industry from 1998 to 2008. Economics 2013, 12, 757–776. [Google Scholar]
- Mao, Z.G.; Wu, Y.M. Distribution pattern, formation motivation and development path of manufacturing industry in western China. J. Quan. Tech. Econ. 2019, 3, 3–19. [Google Scholar]
- Huang, Y.J.; Sun, W. Spatio-temporal evolution characteristics and difference analysis of manufacturing agglomeration in Beijing-Tianjin-Hebei region. Prog. Geog. 2021, 12, 2011–2024. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. The Geographic Concentration of Industry: Does Natural Advantage Explain Agglomeration? Am. Econ. Rev. 1999, 89, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A. Principles of Economics; MacMillan: New York, NY, USA, 1920. [Google Scholar]
- Krugman, P.R. Geography and Trade; MIT Press: Cambridge, UK, 1991. [Google Scholar]
- Lv, D.G.; Geng, Q.; Jian, Z.; Lu, R. Market Size, Labor Cost and Location Choice of Heterogeneous Firms: An Explanation of the Puzzle of Regional Economic Disparity and Productivity Gap in China. Econ. Res. 2019, 2, 36–53. [Google Scholar]
- Jofre-Monseny, J.; Marín-López, R.; Viladecans-Marsal, E. The mechanisms of agglomeration: Evidence from the effect of inter-industry relations on the location of new firms. J. Urban Econ. 2011, 70, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Hou, Y.L. Industrial Intelligence and Industrial Gradient Transfer: A Re-examination of “Geese Array Theory”. J. World Econ. 2021, 7, 29–54. [Google Scholar]
- An, T.L.; Yang, C. Internet Reshaping China’s Economic Geography: Micro Mechanism and Macro Effect. Econ. Res. 2020, 2, 4–19. [Google Scholar]
- Hong, J.; Fu, S. Information and Communication Technologies and Geographic Concentration of Manufacturing Industries: Evidence from China. Mpra Pap. 2008, 48, 2339–2354. [Google Scholar] [CrossRef] [Green Version]
- Ioannides, Y.M.; Overman, H.G.; Rossi-Hansberg, E.; Schmidheiny, K. The effect of information and communication technologies on urban structure. Econ. Policy 2008, 23, 202–242. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.D. Scientifically predict the impact of informatization on urban spatial form. People’s Forum 2021, 9, 74–81. [Google Scholar]
- Döring, T.; Schnellenbach, J. What do we know about geographical knowledge spillovers and regional growth? A survey of the literature. Reg. Stud. 2006, 403, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Stephens, M.; Poorthuis, A. Follow Thy Neighbor: Connecting the Social and the Spatial Networks on Twitter Computers. Envi. Urb. Syst. 2015, 53, 87–95. [Google Scholar] [CrossRef]
- Panahi, S.; Watson, J.; Partridge, H. Towards Tacit Knowledge Sharing Over Social Web Tools. J. Knowl. Manag. 2013, 17, 3379–3397. [Google Scholar] [CrossRef] [Green Version]
- Hanson, G.H. Market potential, increasing returns and geographic concentration. J. Int. Econ. 2005, 1, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Hennart, J.F. A transaction costs theory of equity joint ventures. Strateg. Manag. J. 1988, 9, 361–374. [Google Scholar] [CrossRef]
- Gao, T. Regional industrial growth: Evidence from Chinese industries. Regi. Scie Urb. Econ. 2004, 34, 101–124. [Google Scholar] [CrossRef]
- Masahisa, F.J.; Krugman, V. Spatial Economics: Urban Regions and International Trade; China Renmin University Press: Beijing, China, 2013. [Google Scholar]
- Cao, Y.P. Internet Popularization, Knowledge Spillover and Spatial Economic Agglomeration: Theoretical Mechanism and Empirical Test. J. Shanxi Univ. Fin. Econ. 2020, 42, 27–41. [Google Scholar]
- Giuliani, E. Towards an understanding of knowledge spillovers in industrial clusters. Appl. Econ. Lett. 2007, 14, 87–90. [Google Scholar] [CrossRef]
- Deng, H.J. Trade liberalization, factor distribution and manufacturing agglomeration. Econ. Res. 2009, 11, 118–129. [Google Scholar]
- Kang, J.J.; Xu, W.; Ning, Y.M. Analysis of spatial agglomeration of manufacture industry based on localization, urbanization and globalization: A case study of Yangtze River Delta region. Geog. Sci. 2021, 41, 1773–1782. [Google Scholar]
- Rialti, R.; Zollo, L.; Ferraris, A.; Alon, I. Big data analytics capabilities and performance: Evidence from a moderated multi-mediation model. Technol. Forecast Soc. 2019, 149, 119781. [Google Scholar] [CrossRef]
- Fan, J.Y.; Feng, M.; Li, F.W. Industrial Agglomeration and Enterprise Total Factor Productivity. J. World Econ. 2014, 5, 51–73. [Google Scholar]
- OECD. Measuring the Digital Economy: A New Perspective; OECD Publishing: Paris, France, 2014. [Google Scholar]
- China Academy of Information and Communications Technology. G20 Countries Digital Economy Development Research Report; China Academy of Information and Communications Technology Publishing: Beijing, China, 2018. [Google Scholar]
- Hui, N.; Yang, X. Driven by Digital Economy and High-quality Development of China’s Manufacturing Industry. J. Shaanxi Norm. Univ. 2022, 51, 133–147. [Google Scholar]
- Huang, Q.H.; Yu, Y.Z.; Zhang, S.L. Internet development and manufacturing productivity improvement. China Indu. Econ. 2019, 5, 5–23. [Google Scholar]
- Collis, D.J.; Montgomery, C.A. Corporate Strategy: Resources and the Scope of the Firm; Irwin: Chicago, IL, USA, 1997. [Google Scholar]
- Harris, C.D. The market as a factor in the localization of industry in the United States. Ann. Assoc. Am. Geogr. 1954, 44, 315–348. [Google Scholar]
- Jaffe, A.B.; Trajtenberg, M.; Fogarty, M. Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors. Am. Econ. Rev. 2000, 90, 215–218. [Google Scholar] [CrossRef]
- Wang, X.L.; Fan, G. The changing trend and influencing factors of regional disparity in China. Econ. Res. J. 2004, 1, 33–44. [Google Scholar]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital Economy, Entrepreneurial Activity and High-quality Development: Empirical Evidence from Chinese Cities. J. Manag World. 2020, 36, 65–76. [Google Scholar]
- Guo, J.T.; Luo, P.L. Does Internet promote China’s total factor productivity? J. Manag World. 2016, 10, 34–49. [Google Scholar]
- Goldsmith-Pinkham, P.; Sorkin, I.; Swift, H. Bartik Instruments: What, When, why, and how. Am. Econ. Rev. 2020, 110, 2586–2624. [Google Scholar] [CrossRef]
- Xu, M.R.; Li, Z.F.; He, C.F.; Li, W. The Impact of “Internet +” on China’s Manufacturing Employment. World Geog. Stu. 2021, 30, 577–588. [Google Scholar]
- Liu, Y.; Failler, P.; Ding, Y. Enterprise financialization and technological innovation: Mechanism and heterogeneity. PLoS ONE 2022, 17, e0275461. [Google Scholar] [CrossRef]
- Kong, L.C. Layout characteristics and spatial remodeling of China’s manufacturing industry. Economist. 2019, 4, 41–48. [Google Scholar]
- Wei, J.H.; Gu, N.H.; Wei, D.M. Industrial robots and the regional development gap of China’s manufacturing industry: Late-development advantage or first-mover advantage? Econ. Manag. Res. 2021, 1, 59–71. [Google Scholar]
- Audretsch, D.B.; Feldman, M.P. R&D Spillovers and the Geography of Innovation and Production. Am. Econ. Rev. 1996, 86, 630–640. [Google Scholar]
- Moretti, E. Workers’ Education, Spillovers, and Productivity: Evidence from Plant-Level Production Functions. Am. Econ. Rev. 2004, 94, 656–690. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Wang, P.; Sun, B. Can the Internet narrow regional economic disparities? Reg. Stud. 2022, 56, 324–337. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Liao, G. Business cycles and energy intensity. Evidence from emerging economies. Borsa Istanbul Review 2022, 22, 560–570. [Google Scholar] [CrossRef]
Level I Indicators | Secondary Indicators | Unit |
---|---|---|
digital infrastructure | Length of long-distance optical cable line per square kilometer | km/km2 |
Internet broadband access port per 100 people | PCs | |
Mobile telephone exchange capacity per household | % | |
digital development scale | Express business volume per capita | PCs |
Total amount of telecommunication business per capita | Yuan | |
digital application degree | proportion of mobile phone users | % |
Internet penetration rate | % | |
Proportion of personnel in information transmission, software and information technology services | % |
Variables | Number of Samples | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnagg_m | 24,615 | 0.310 | 0.590 | −1.507 | 0.934 |
lndig | 24,615 | 0.026 | 0.057 | 0.000 | 0.328 |
lncost | 24,605 | 4.543 | 0.164 | 4.037 | 5.297 |
lnmp | 20,889 | 7.548 | 1.298 | 4.339 | 9.668 |
lnkno | 15,751 | 5.399 | 2.048 | −1.061 | 9.409 |
lnage | 24,599 | 2.744 | 0.419 | 1.099 | 3.526 |
lnlev | 24,613 | 1.040 | 0.606 | 0.057 | 2.829 |
lnliq | 24,613 | 0.615 | 0.740 | −0.947 | 2.726 |
lncash | 24,609 | −0.465 | 1.081 | −3.283 | 2.334 |
lnpgdp | 21,011 | 11.070 | 0.752 | 8.977 | 12.150 |
lnfin | 19,748 | 18.910 | 1.534 | 15.560 | 21.590 |
lnhum | 18,618 | 0.779 | 0.886 | −1.531 | 2.334 |
lnmark | 21,188 | 2.367 | 0.319 | 1.386 | 2.890 |
lnfdi | 20,590 | −5.822 | 0.957 | −9.083 | −4.360 |
lngov | 18,095 | 7.209 | 0.389 | 5.746 | 10.060 |
Variables | (1) | (2) | (3) |
---|---|---|---|
Lnagg_m | Lnagg_m | Lnagg_m | |
lndig | 0.1351 *** | 0.1332 *** | 0.1162 *** |
(0.0460) | (0.0459) | (0.0386) | |
lnage | −0.0794 ** | −0.1524 *** | |
(0.0366) | (0.0398) | ||
lnlev | 0.0016 | −0.0031 | |
(0.0108) | (0.0108) | ||
lnliq | −0.0152 | −0.0177 | |
(0.0122) | (0.0129) | ||
lncash | 0.0010 | 0.0048 | |
(0.0057) | (0.0062) | ||
lnpgdp | −0.0932 *** | ||
(0.0331) | |||
lnfin | −0.1296 *** | ||
(0.0268) | |||
lnhum | −0.1152 *** | ||
(0.0179) | |||
lnmark | 0.0417 | ||
(0.0794) | |||
lnfdi | −0.0098 * | ||
(0.0059) | |||
lngov | 0.0089 | ||
(0.0117) | |||
_cons | 0.3068 *** | 0.5325 *** | 4.0441 *** |
(0.0012) | (0.1007) | (0.5573) | |
individual, time, industry and province | Control | Control | Control |
Number of samples | 24,264 | 24,242 | 15,978 |
0.9322 | 0.9324 | 0.9536 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Lnagg_m2 | Lnagg_m2 | Lnagg_m | Lnagg_m | |
lndig | 0.0790 ** | 0.0448 * | 0.1453 *** | |
(0.0320) | (0.0235) | (0.0455) | ||
lndig2 | 0.0199 ** | |||
(0.0095) | ||||
_cons | 0.0753 *** | 2.5074 *** | 2.2814 *** | 2.1974 *** |
(0.0008) | (0.3690) | (0.5290) | (0.5973) | |
Controls | Uncontrol | Control | Control | Control |
individual, time, industry and province | Control | Control | Control | Control |
Number of samples | 24,264 | 15,978 | 12,431 | 13,251 |
0.9140 | 0.9418 | 0.9702 | 0.9019 |
Variables | IV (One Period Lag) | IV (Bartik) | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
First stage IV | 0.4367 *** (0.0077) | 0.1765 *** (0.0088) | ||
lndig | 0.2761 *** (0.0640) | 0.7239 *** (0.1696) | ||
Controls | Control | Control | Control | Control |
individual, time, industry and province | Control | Control | Control | Control |
Kleibergen-Paap rk LM statistic | 2931.461 *** | 49.976 *** | ||
Cragg-Donald Wald F statistic | 3228.07 | 456.274 | ||
Number of samples | 14,608 | 14,608 | 14,879 | 14,879 |
0.0527 | 0.0279 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Large-Sized | Small and Medium-Sized | High-Tech | Low-Tech | |
lndig | 0.1175 *** | 0.0889 | 0.0926 ** | 0.1061 |
(0.0389) | (0.1093) | (0.0438) | (0.0699) | |
_cons | 4.1102 *** | 3.3794 *** | 2.9915 *** | 5.6657 *** |
(0.6356) | (1.0921) | (0.5998) | (1.0325) | |
Controls | Control | Control | Control | Control |
individual, time, industry and province | Control | Control | Control | Control |
Number of samples | 12,984 | 2994 | 10,008 | 5886 |
0.9507 | 0.9652 | 0.9634 | 0.9341 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
East | Central and Western | Hu Huanyong Line East | Hu Huanyong Line West | Large Cities | Small and Medium Cities | |
lndig | 0.0056 | 0.4217 *** | 0.1063 *** | 0.4085 * | 0.0041 | 0.1583 *** |
(0.0316) | (0.1200) | (0.0391) | (0.2149) | (0.0472) | (0.0564) | |
_cons | 2.5676 *** | 3.2528 *** | 3.9269 *** | 1.6970 | 5.0245 *** | 1.2156 |
(0.5588) | (1.0480) | (0.6388) | (1.6191) | (0.6180) | (0.8298) | |
Controls | Control | Control | Control | Control | Control | Control |
individual, time, industry and province | Control | Control | Control | Control | Control | Control |
Number of samples | 10,642 | 5336 | 15,351 | 627 | 7861 | 8117 |
0.9755 | 0.8499 | 0.9549 | 0.7961 | 0.9726 | 0.8830 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Lncost | Lnagg_m | Lnmp | Lnagg_m | Lnkno | Lnagg_m | |
lndig | −0.1314 * | 0.0762 ** | 0.0249 ** | 0.1126 *** | 0.8581 *** | 0.1138 *** |
(0.0762) | (0.0311) | (0.0109) | (0.0269) | (0.1576) | (0.0394) | |
lncost | −0.0173 *** | |||||
(0.0037) | ||||||
lnmp | 0.1400*** | |||||
(0.0207) | ||||||
lnkno | 0.0028 * | |||||
(0.0038) | ||||||
_cons | −0.6970 | 4.2781 *** | −3.8358 *** | 4.5925 *** | −10.2578 *** | 3.6834 *** |
(0.6233) | (0.2546) | (0.0969) | (0.2516) | (1.7318) | (0.2589) | |
Controls | Control | Control | Control | Control | Control | Control |
individual, time, industry and province | Control | Control | Control | Control | Control | Control |
Number of samples | 13,893 | 13,893 | 15,916 | 15,916 | 10,422 | 13,722 |
0.7628 | 0.9479 | 0.9980 | 0.9539 | 0.8360 | 0.9548 |
Variables | (1) | (2) | (3) |
---|---|---|---|
Lnagg_m | Lnagg_m | Lnagg_m | |
lndig | 0.5615 ** | −0.8748 | 0.0386 |
(0.2463) | (0.6314) | (0.0364) | |
lnfdi | −0.0229 | −0.0100 * | −0.0100 * |
(0.0121) | (0.0059) | (0.0059) | |
lngov | 0.0091 | 0.0114 | 0.0121 |
(0.0117) | (0.0239) | (0.0117) | |
lnhum | −0.1142 *** | −0.1143 *** | −0.2312 |
(0.0179) | (0.0181) | (0.0360) | |
c.lndig#c.lnfdi | 0.0790 * | ||
(0.0425) | |||
c.lndig#c.lngov | 0.1355 * | ||
(0.0846) | |||
c.lndig#c.lnhum | 0.0917 ** | ||
(0.0467) | |||
_cons | 4.0041 *** | 4.0992 *** | 4.0089 *** |
(0.5603) | (0.5624) | (0.5580) | |
Controls | Control | Control | Control |
individual, time, industry and province | Control | Control | Control |
Number of samples | 15,978 | 15,978 | 15,978 |
0.9537 | 0.9537 | 0.9537 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, M.; Chen, H.; Yu, D. How Does Digital Economy Promote the Geographical Agglomeration of Manufacturing Industry? Sustainability 2023, 15, 1727. https://doi.org/10.3390/su15021727
Wang M, Zhang M, Chen H, Yu D. How Does Digital Economy Promote the Geographical Agglomeration of Manufacturing Industry? Sustainability. 2023; 15(2):1727. https://doi.org/10.3390/su15021727
Chicago/Turabian StyleWang, Meijuan, Mingzhi Zhang, Haiqian Chen, and Donghua Yu. 2023. "How Does Digital Economy Promote the Geographical Agglomeration of Manufacturing Industry?" Sustainability 15, no. 2: 1727. https://doi.org/10.3390/su15021727
APA StyleWang, M., Zhang, M., Chen, H., & Yu, D. (2023). How Does Digital Economy Promote the Geographical Agglomeration of Manufacturing Industry? Sustainability, 15(2), 1727. https://doi.org/10.3390/su15021727