Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program
Abstract
:1. Introduction
2. Background and Literature
2.1. Significance and Progress of China’s Low–Carbon Pilot Program
2.2. Situation and Strike of the Population Issue in China
2.3. Relevant Research and Contribution of This Study
3. Methods
3.1. Research Hypotheses
3.2. Research Model
3.3. Variables Selection
3.3.1. Dependent Variables
- Natural Logarithm of Population (LNPOP): This is the dependent variable in the study representing the population size in each city.
3.3.2. Independent Variables
- low–carbon Pilot Status (did): This binary variable indicates whether a city is part of the LCP program or not. Its value is set as follows:
- •
- For LCP cities, is set to 1 in the initial year they are chosen as LCP cities and remains 1 for all subsequent years, while it is set to 0 for all other years.
- •
- For non–LCP cities, remains at 0 across all years.
3.3.3. Control Variables
- Economic Development (PGDP): The natural logarithm of GDP per capita serves as an indicator of economic development for the cities under consideration. This variable encapsulates the economic prosperity of the cities and its influence on the population dynamics.
- Industrial Structure (Industry): The relative prominence of secondary industry–compared to the agricultural and service sectors–significantly impacts energy consumption and carbon emissions [94]. To quantify this impact, this study employs the natural logarithm of the proportion of industrial production value in GDP as a measure of industrial structure.
- Finance Development (Finance): The level of financial industry development is an influential factor in urban growth and development. The ratio of year–end bank deposit balance to GDP in the city is utilized as a measure of financial industry development.
- Natural Population Growth (Npop): The natural logarithm of the annual population growth rate captures inherent population dynamics.
3.3.4. Intermediary Variables
- Foreign Investment (FI): The actual amount of foreign investment within a city serves as an indicator of its capacity to attract external investment. This variable reflects the city’s appeal to foreign investors and its potential economic opportunities.
- Income per Capita (PI): The average salary of employees within a city is utilized as a proxy for residents’ living standards. This variable gauges the financial well–being of the city’s population.
- Exhaust Emission Reduction (EER): An average reduction across various emissions, including industrial SO2 emissions, industrial emissions, and industrial smoke and dust emissions, serves as an approximation of the overall exhaust emission reduction attributed to the LCP program.
3.4. Data Collection and Descriptive Statistics
4. Results
4.1. Baseline Test
- PGDP (Economic Development): A positive relationship between PGDP and population growth is observed. The potential reason is that, backed by adequate financial resources, higher PGDP levels may enhance a local government’s capacity to bolster the city’s infrastructure.
- (Natural Population Growth): A positive effect of on population growth is also evident, aligning with expectations. This outcome is intuitive, as a city with an inherent population growth trend is more likely to continue attracting and accommodating new residents.
- (Industrial Structure) and (Finance Development): These two variables do not demonstrate statistical significance in relation to population growth. This implies that the structure of industries within a city and the extent of financial sector development may not exert a significant impact on population growth.
4.2. Robustness Checks
4.2.1. Parallel Trend Test
4.2.2. Placebo Test
4.2.3. Lagged Control Variables Test
4.2.4. Intensity DID Test
4.2.5. PSM-DID Test
4.3. Mediating Effect Analysis
4.4. Heterogeneity Analysis
4.4.1. Locality Heterogeneity in Cities
4.4.2. Heterogeneity Analysis of GDP Per Capita
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tao, J.; Wei, W.; Jiang, L. Matching as an econometric evaluation estimator: Evidence from evaluating a Job training programme. Rev. Econ. Stud. 1997, 4, 605–654. [Google Scholar]
- Wang, X.; Wei, W.; Ge, J.; Wu, B.; Bu, W.; Li, J.; Yao, M.; Guan, Q. Embodied rare earths flow between industrial sectors in China: A complex network approach. Resour. Conserv. Recycl. 2017, 161, 104510. [Google Scholar] [CrossRef]
- Zheng, J.; Ma, G.; Wei, J.; Wei, W.; He, Y.; Jiao, Y.; Han, X. Evolutionary process of household waste separation behavior based on social networks. Resour. Conserv. Recycl. 2020, 125, 105009. [Google Scholar] [CrossRef]
- Tan, S.; Yang, J.; Yan, J.; Lee, C.; Hashim, H.; Chen, B. A holistic low carbon city indicator framework for sustainable development. Appl. Energy 2017, 185, 1919–1930. [Google Scholar] [CrossRef]
- Duren, R.M.; Miller, C.E. Measuring the carbon emissions of megacities. Nat. Clim. Chang. 2012, 8, 560–562. [Google Scholar] [CrossRef]
- Salvia, M.; Reckien, D.; Pietrapertosa, F.; Eckersley, P.; Spyridaki, N.A.; Krook- Riekkola, A.; Olazabal, M.; Hurtado, S.D.G.; Simoes, S.G.; Geneletti, D. Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renew. Sustain. Energy Rev. 2021, 135, 110253. [Google Scholar] [CrossRef]
- Wei, W.; Cai, W.; Guo, Y.; Bai, C.; Yang, L. Decoupling relationship between energy consumption and economic growth in China’s provinces from the perspective of resource security. Resour. Policy 2020, 68, 101693. [Google Scholar]
- Liu, Z.; Cai, B. High-Resolution Carbon Emissions Data for Chinese Cities; The Belfer Center for Science and International Affairs, Harvard University: Cambridge, MA, USA, 2018; pp. 1–29. [Google Scholar]
- He, G.; Liu, T.; Zhou, M. Straw burning, PM2.5, and death: Evidence from China. J. Dev. Econ. 2020, 154, 102468. [Google Scholar] [CrossRef]
- Jiang, M.; Li, J.; Wei, W.; Miao, J.; Zhang, P.; Qian, H.; Yan, J. Using existing infrastructure to realize low-cost and flexible photovoltaic power generation in areas with high-power demand in China. iScience 2020, 12, 101867. [Google Scholar] [CrossRef]
- Luo, F.; Guo, Y.; Yao, M.; Cai, W.; Wang, M.; Wei, W. Carbon emissions and driving forces of China’s power sector: Input-output model based on the disaggregated power sector. J. Clean. Prod. 2020, 268, 121925. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, P.; Yao, M.; Xue, M.; Miao, J.; Liu, B.; Wang, F. Multi-scope electricity-related carbon emissions accounting: A case study of Shanghai. J. Clean. Prod. 2019, 252, 119789. [Google Scholar] [CrossRef]
- Khanna, N.; Fridley, D.; Hong, L. China’s pilot low–carbon city initiative: A comparative assessment of national goals and local plans. Sustain. Cities Soc. 2014, 12, 110–121. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. How will the greening policy contribute to China’s greenhouse gas emission mitigation? A non-parametric forecast. Environ. Res. 2021, 195, 110779. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, M. The impact of urbanisation on energy consumption: A 30-year review in China. Urban Clim. 2018, 24, 940–953. [Google Scholar] [CrossRef]
- Liu, J.; Deng, X. Impacts and mitigation of climate change on Chinese cities. Current Opin. Environ. Sustain. 2011, 3, 188–192. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, W.; Yao, M.; Wang, Z.; Yang, L.; Wei, W. Urban carbon emissions associated with electricity consumption in Beijing and the driving factors. Appl. Energy 2020, 275, 115425. [Google Scholar] [CrossRef]
- Low Carbon City Initiative. Available online: https://en.wwfchina.org/en/what_we_do/climate___energy/mitigation/lcci (accessed on 7 July 2023).
- For the First Time Since the 1960s, China’s Population is Shrinking. Available online: https://www.economist.com/china/2023/01/17/for-the-first-time-since-the-1960s-chinas-population-is-shrinking?utm_medium=cpc.adword.pd&utm_source=google&utm_campaign=a.io_apac_freetrial&utm_content=conversion.non-brand.anonymous.apac_sg_en_free-trial_na_non-brand_google_subs_pmax_other_na_na&gclid=CjwKCAjwmbqoBhAgEiwACIjzEB0E-4XQMuXTyBytdrhjOchTaoTpETC3PJumRcG8rL5k9wGIfZxRjBoC-gkQAvD_BwE (accessed on 23 September 2023).
- Zhao, Z.Y.; Gao, L.; Zuo, J. How national policies facilitate low carbon city development: A China study. J. Clean. Prod. 2019, 234, 743–754. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, Z.; Liu, Q.; Xie, R.; Zeng, X. Can a low–carbon development path achieve win-win development: Evidence from China’s low–carbon pilot policy. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1199–1219. [Google Scholar] [CrossRef]
- Shen, L.; Wu, Y.; Shuai, C.; Lu, W.; Chau, K.; Chen, X. Analysis on the evolution of low carbon city from process characteristic perspective. J. Clean. Prod. 2018, 187, 348–360. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Q.; He, J.; Qi, Y. Developing low–carbon cities through pilots. Clim. Policy 2015, 15, 81–103. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Liu, S. The policy outcomes of low–carbon city construction on urban green development: Evidence from a quasi-natural experiment conducted in China. Sustain. Cities Soc. 2021, 66, 102699. [Google Scholar] [CrossRef]
- Fu, Y.; He, C.; Luo, L. Does the low–carbon city policy make a difference? Empirical evidence of the pilot scheme in China with DEA and PSM-DID. Ecol. Indicat. 2021, 122, 107238. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, N. low–carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China. Energy Econ. 2021, 96, 105125. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Chen, T.; Zeng, Z.; Heng, C.K. low–carbon city and its future research trends: A bibliometric analysis and systematic review. Sustain. Cities Soc. 2023, 90, 104381. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, J. The role of population agglomeration played in China’s carbon intensity: A city-level analysis. Energy Econ. 2022, 114, 106276. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X. Birth policy changes and the sustainability of social medical insurance funds: Implications for green growth. Econ. Chang. Restruct. 2023, 56, 2205–2225. [Google Scholar] [CrossRef]
- Marois, G.; Gietel-Basten, S.; Lutz, W. China’s low fertility may not hinder future prosperity. Proc. Natl. Acad. Sci. usa 2021, 118, e2108900118. [Google Scholar] [CrossRef]
- Lyu, J.; Liu, T.; Cai, B.; Qi, Y.; Zhang, X. Heterogeneous effects of China’s low–carbon city pilots policy. J. Environ. Manag. 2023, 344, 118329. [Google Scholar] [CrossRef]
- Syahza, A.; Asmit, B. Regional economic empowerment through oil palm economic institutional development. Qual. Int. J. 2019, 30, 1256–1278. [Google Scholar] [CrossRef]
- Liu, T.; Song, Q.; Lu, J.; Qi, Y. An integrated approach to evaluating the coupling coordination degree between low–carbon development and air quality in Chinese cities. Adv. Clim. Chang. Res. 2021, 12, 710–722. [Google Scholar] [CrossRef]
- National Economy Withstood Pressure and Reached a New Level in 2022. Available online: www.stats.gov.cn/english/PressRelease/202301/t20230117_1892094.html (accessed on 8 August 2023).
- World Population Prospects 2022. Available online: https://population.un.org/wpp/DefinitionOfProjectionScenarios (accessed on 5 August 2023).
- Bu, D. Empirical Analysis of the Impact of Local Government Talent Policy on Regional Enterprise Innovation and Development under the Background of “Competition for Talents”. Master’s Thesis, Shanghai University of Finance and Economics, Shanghai, China, 18 June 2022. (In Chinese). [Google Scholar]
- Liu, Y.; Xiao, H.; Lv, Y.; Zhang, N. The effect of new-type urbanization on energy consumption in China: A spatial econometric analysis. J. Clean. Prod. 2017, 163, S299–S305. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Y.; Wu, Y.; Zhou, N.; Feng, W. Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China. Energy Policy 2016, 88, 204–215. [Google Scholar] [CrossRef]
- Lo, K. China’s low–carbon city initiatives: The implementation gap and the limits of the target responsibility system. Habitat Int. 2014, 42, 236–244. [Google Scholar] [CrossRef]
- Liu, W.; Qin, B. low–carbon city initiatives in China: A review from the policy paradigm perspective. Cities 2016, 51, 131–138. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, C.; Zhang, J.; Guo, H.; Zhou, N.; Zhao, D. Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China. Appl. Energy 2019, 251, 113369. [Google Scholar] [CrossRef]
- Fan, Y.; Ji, Y.; Li, D.; Li, Y. Study on evaluation index system of low–carbon city. In Proceedings of the International Conference on Materials for Renewable Energy & Environment, Shanghai, China, 20–22 May 2011. [Google Scholar]
- Dong, L.; Gu, F.; Fujita, T.; Hayashi, Y.; Gao, J.; France, N. Uncovering opportunity of low–carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China. Energy Policy 2014, 65, 388–397. [Google Scholar] [CrossRef]
- Gao, G.; Chen, S.; Yang, J. Carbon emission allocation standards in China: A case study of shanghai city. Energy Strategy Rev. 2010, 7, 55–62. [Google Scholar] [CrossRef]
- Chen, H.; Yang, L.; Chen, W. Modelling national, provincial and city-level low–carbon energy transformation pathways. Energy Policy 2020, 137, 111096. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, P.; Wei, Y.; Li, Y.; Zhao, H. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model–a case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Hanna, R.; Oliva, P. The effect of pollution on labor supply: Evidence from a natural experiment in Mexico City. J. Publ. Econ. 2015, 122, 68–79. [Google Scholar] [CrossRef]
- Cheng, J.; Yi, J.; Dai, S.; Xiong, Y. Can low–carbon city construction facilitate green growth? Evidence from China’s pilot low–carbon city initiative. J. Clean. Prod. 2019, 231, 1158–1170. [Google Scholar] [CrossRef]
- Song, M.; Zhao, X.; Shang, Y. The impact of low–carbon city construction on ecological efficiency: Empirical evidence from quasi-natural experiments. Resour. Conserv. Recycl. 2020, 157, 104777. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Ma, C.; Shen, B. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy 2010, 100, 18–28. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Song, Q.; Qi, Y. low–carbon governance in China—Case study of low carbon industry park pilot. J. Clean. Prod. 2018, 174, 837–846. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, N.; Liu, T.; Siehr, S.A.; Qi, Y. Investigation of a “coupling model” of coordination between low–carbon development and urbanization in China. Energy Policy 2018, 121, 346–354. [Google Scholar] [CrossRef]
- Gehrsitz, M. The effect of low emission zones on air pollution and infant health. J. Environ. Econ. Manag. 2017, 83, 121–144. [Google Scholar] [CrossRef]
- Song, H.; Sun, Y.; Chen, D. Assessment for the effect of government air pollution control policy: Empirical evidence from “low–carbon City” construction in China. J. Manag. World 2019, 35, 95–108+195. (In Chinese) [Google Scholar]
- Margaryan, S. Low emission zones and population health. J. Health Econ. 2021, 76, 102402. [Google Scholar] [CrossRef]
- Xia, C.Y.; Li, Y.; Ye, Y.M.; Shi, Z.; Liu, J.M. Decomposed driving factors of carbon emissions and scenario analyses of low–carbon transformation in 2020 and 2030 for Zhejiang province. Energies 2017, 10, 1747. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Li, S.; Fang, C.; Feng, K. Socioeconomic driving forces and scenario simulation of CO2 emissions for a fast-developing region in China. J. Clean. Prod. 2019, 216, 217–229. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H. Does low–carbon pilot city policy induce low–carbon choices in residents’ living: Holistic and single dual perspective. J. Environ. Manag. 2022, 324, 116353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bian, X.; Tan, W.; Song, J. The indirect energy consumption and CO2 emission caused by household consumption in China: An analysis based on the input–output method. J. Clean. Prod. 2017, 163, 69–83. [Google Scholar] [CrossRef]
- David, M.; Sinclair-Desgagné, B. Environmental regulation and the eco-industry. J. Regul. Econ. 2005, 28, 141–155. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.R.; Shimamoto, K. Industrial characteristics, environmental regulations and air pollution: An analysis of the UK manufacturing sector. J. Environ. Econ. Manag. 2005, 50, 121–143. [Google Scholar] [CrossRef]
- Rogge, K.S.; Schneider, M.; Hoffmann, V.H. The innovation impact of the EU Emission Trading System–findings of company case studies in the German power sector. Ecol. Econ. 2011, 70, 513–523. [Google Scholar] [CrossRef]
- Greenstone, M.; List, J.A.; Syverson, C. The Effects of Environmental Regulation on the Competitiveness of US Manufacturing; Working Papers; National Bureau of Economic Research: Cambridge, MA, USA, 2011. [Google Scholar]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Chung, S. Environmental regulation and investment: Evidence from South Korea. J. Dev. Econ. 2014, 108, 222–236. [Google Scholar] [CrossRef]
- Cai, X.; Lu, Y.; Wu, M.; Yu, L.H. Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China. J. Dev. Econ. 2016, 123, 73–85. [Google Scholar] [CrossRef]
- Rubashkina, Y.; Galeotti, M.; Verdolini, E. Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors. Energy Policy 2015, 83, 288–300. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, B. The influence of Chinese environmental regulation on corporation innovation and competitiveness. J. Clean. Prod. 2016, 112, 1528–1536. [Google Scholar] [CrossRef]
- Skoczkowski, T.; Bielecki, S.; Weglarz, A.; Wlodarczak, M.; Gutowski, P. Impact assessment of climate policy on Poland’s power sector. Mitig. Adapt. Strat. Glob. Chang. 2018, 23, 1303–1349. [Google Scholar] [CrossRef] [PubMed]
- Raymond, W.; Mairesse, J.; Mohnen, P.; Palm, F. Dynamic models of R & D, innovation and productivity: Panel data evidence for Dutch and French manufacturing. Eur. Econ. Rev. 2015, 78, 285–306. [Google Scholar]
- Ge, J.L.; Fu, Y.; Xie, R.; Liu, Y.; Mo, W.Y. The effect of GVC embeddedness on productivity improvement: From the perspective of R&D and government subsidy. Technol. Forecast. Soc. 2018, 135, 22–31. [Google Scholar]
- Ravenstein, E.G. The laws of migration. J. Stat. Soc. Lond. 1885, 48, 167–235. [Google Scholar] [CrossRef]
- Lee, E.S. A theory of migration. Demography 1966, 3, 47–57. [Google Scholar] [CrossRef]
- Chen, H.; Guo, W.; Feng, W.; Wei, W.; Liu, H.; Feng, Y.; Gong, W. The impact of low–carbon city pilot policy on the total factor productivity of listed enterprises in China. Resour. Conserv. Recycl. 2021, 169, 105457. [Google Scholar] [CrossRef]
- Wang, F.; Ge, X. Can low–carbon transition impact employment–empirical evidence from low–carbon city pilot policy. China Indust. Econ. 2022, 5, 81–99. (In Chinese) [Google Scholar]
- Mulia, R.; Widayati, A.; Agung, P.; Zulkarnain, M.T. Low carbon emission development strategies for Jambi, Indonesia: Simulation and trade-off analysis using the FALLOW model. Mitig. Adapt. Strat. Glob. Chang. 2014, 19, 773–788. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Chen, X. Happiness in the air: How does a dirty sky affect mental health and subjective well-being? J. Environ. Econ. Manag. 2017, 85, 81–94. [Google Scholar] [CrossRef]
- Xie, Y.; Dai, H.; Zhang, Y.; Wu, Y.; Hanaoka, T.; Masui, T. Comparison of health and economic impacts of PM2.5 and ozone pollution in China. Environ. Int. 2019, 130, 104881. [Google Scholar] [CrossRef]
- Ao, C.; Dong, Y.; Kuo, P. Industrialization, indoor and ambient air quality, and elderly mental health. China Econ. Rev. 2021, 69, 101676. [Google Scholar] [CrossRef]
- Lichter, A.; Pestel, N.; Sommer, E. Productivity effects of air pollution: Evidence from professional soccer. Lab. Econ. 2017, 48, 54–66. [Google Scholar] [CrossRef]
- Chang, T.Y.; Graff Zivin, J.; Gross, T.; Neidell, M. The effect of pollution on worker productivity: Evidence from call center workers in China. Am. Econ. J. Appl. Econ. 2019, 11, 151–172. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, D. Impact of air pollution on labor productivity: Evidence from prison factory data. China Econ. Quart. Int. 2021, 1, 148–159. [Google Scholar] [CrossRef]
- He, J.; Liu, H.; Salvo, A. Severe air pollution and labor productivity: Evidence from industrial towns in China. Am. Econ. J. Appl. Econ. 2019, 11, 173–201. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C.; Sun, C.; Yang, M. Does stringent environmental regulation lead to a carbon haven effect? Evidence from carbon-intensive industries in China. Energy Econ. 2020, 86, 104631. [Google Scholar] [CrossRef]
- Yu, H.; Liao, L.; Qu, S.; Fang, D.; Luo, L.; Xiong, G. Environmental regulation and corporate tax avoidance: A quasi-natural experiments study based on China’s new environmental protection law. Am. Econ. J. Appl. Econ. 2021, 296, 113160. [Google Scholar]
- Zhang, M.; Liu, X.; Sun, X.; Wang, W. The influence of multiple environmental regulations on haze pollution: Evidence from China. Atmos. Pollut. Res. 2020, 11, 170–179. [Google Scholar] [CrossRef]
- Fu, S.; Ma, Z.; Ni, B.; Peng, J.; Zhang, L.; Fu, Q. Research on the spatial differences of pollution-intensive industry transfer under the environmental regulation in China. Ecol. Indicat. 2021, 129, 107921. [Google Scholar] [CrossRef]
- Yao, L.; Li, X.; Zheng, R.; Zhang, Y. The impact of air pollution perception on urban settlement intentions of young talent in China. Int. J. Environ. Res. Public Health 2022, 19, 1080. [Google Scholar] [CrossRef]
- Liu, W.; Yu, H.; Jia, L.; Shan, S. Does the Construction of low–carbon Cities Enhance the National Health Quality? Contemp. Financ. Econ. 2022, 11, 16–26. (In Chinese) [Google Scholar]
- Li, B.; Huang, J.; Zhang, Y. The impacts of air pollution on immigrants’ settlement intention in China. Environ. Sci. Pollut. Res. 2023, 30, 46587–46603. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Wu, Z.; Wu, H.; Pang, X.; Qin, K.; Wang, B.; Ding, S.; Chen, D.; Chen, J. Tracking long-term population exposure risks to PM2.5 and ozone in urban agglomerations of China 2015–2021. Sci. Total Environ. 2023, 854, 158599. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Oliva, P.; Zhang, P. The effect of air pollution on migration: Evidence from China. J. Dev. Econ. 2022, 156, 102833. [Google Scholar] [CrossRef]
- He, G.; Fan, M.; Zhou, M. The effect of air pollution on mortality in China: Evidence from the 2008 Beijing Olympic Games. J. Environ. Econ. Manag. 2016, 79, 18–39. [Google Scholar] [CrossRef]
- Jiang, J.; Ye, B.; Xie, D.; Tang, J. Provincial-level carbon emission drivers and emission reduction strategies in China: Combining multi-layer LMDI decomposition with hierarchical clustering. J. Clean. Prod. 2017, 169, 178–190. [Google Scholar] [CrossRef]
- Beck, T.; Levine, R.; Levkov, A. Big bad banks? The winners and losers from bank deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Jacobson, L.S.; LaLonde, R.J.; Sullivan, D.G. Earnings losses of displaced workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar]
- Li, P.; Lu, Y.; Wang, J. Does flattening government improve economic performance: Evidence from China. J. Dev. Econ. 2016, 123, 18–37. [Google Scholar] [CrossRef]
- Wang, S.; Yang, D.Y. Policy Experimentation in China: The Political Economy of Policy Learning; NBER Working Papers No. 29402; NBER: Cambridge, MA, USA, 2021. [Google Scholar]
- Zhuang, G. Policy design logic of low–carbon city pilots in China. China Popul. Res. Environ. 2020, 30, 19–28. [Google Scholar]
- Li, G.; He, Q.; Shao, S.; Cao, J. Environmental non-governmental organizations and urban environmental governance: Evidence from China. J. Environ. Manag. 2018, 206, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef] [PubMed]
- Henrekeson, M. Wagner’s Law—A spurious relationship? Public Financ. 1993, 48, 406–415. [Google Scholar]
Variable | Full Sample | Treatment Group | Control Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Obs | Mean | Min | Max | Obs | Mean | Min | Max | Obs | Mean | Min | Max | |||
LNPOP | 3482 | 5.980 | 3.807 | 8.912 | 828 | 6.036 | 3.807 | 6.579 | 2654 | 5.962 | 3.807 | 8.912 | ||
did | 3482 | 0.123 | 0 | 1 | 828 | 0.518 | 0 | 1 | 2654 | 0 | 0 | 0 | ||
LNPGDP | 3482 | 10.58 | 9.150 | 12.13 | 828 | 10.91 | 9.150 | 12.13 | 2654 | 10.48 | 9.150 | 12.13 | ||
Industry | 3482 | 47.86 | 19.90 | 73.23 | 828 | 46.93 | 19.90 | 73.23 | 2654 | 48.15 | 19.90 | 73.23 | ||
Finance | 3482 | 1.206 | 0.296 | 5.013 | 828 | 1.772 | 0.674 | 5.013 | 2654 | 1.029 | 0.296 | 5.013 | ||
Npop | 3482 | 5.947 | −8.700 | 22.50 | 828 | 5.665 | −8.700 | 22.50 | 2654 | 6.035 | −8.700 | 22.50 |
Variable | Without Control Variables | With Control Variables |
---|---|---|
did | 0.2015 *** | 0.1911 *** |
(0.0215) | (0.0219) | |
LNPGDP | - | 0.4196 *** |
(0.0535) | ||
Industry | - | −0.0030 |
(0.0019) | ||
Finance | - | −0.0047 |
(0.0107) | ||
Npop | - | 0.0040 *** |
(0.0013) | ||
Constant | 5.9547 *** | 1.6382 *** |
(0.0063) | (0.5172) | |
Year FE | Yes | Yes |
City FE | Yes | Yes |
N | 3482 | 3482 |
0.7353 | 0.7489 | |
F | 87.4706 | 33.0228 |
Variable | Lagged Control Variables | Intensity DID | PSM-DID |
---|---|---|---|
did | 0.1867 *** | 0.062 *** | 0.1993 *** |
(0.0258) | (4.10) | (0.0292) | |
LNPGDP | 0.3160 *** | 0.000 *** | 0.4334 *** |
(0.0765) | (18.71) | (0.0813) | |
Industry | −0.0002 | −0.005 *** | −0.0066 * |
(0.0025) | (−4.75) | (0.0035) | |
Finance | −0.0218 | −0.051 *** | −0.0360 |
(0.0185) | (−4.10) | (0.0253) | |
Npop | 0.0012 | 0.001 | 0.0085 ** |
(0.0014) | (0.63) | (0.0033) | |
Constant | 2.6662 *** | 6.083 *** | 1.6355 ** |
(0.7405) | (105.85) | (0.8008) | |
Year FE | Yes | Yes | Yes |
City FE | Yes | Yes | Yes |
N | 2860 | 3482 | 1408 |
0.7158 | 0.719 | 0.7624 | |
F | 17.9609 | 25.66 | 20.5695 |
Variable | Unmatched | Mean | %Bias | t-Test | ||
---|---|---|---|---|---|---|
Matched | Treated | Control | t | p > |t| | ||
LNPGDP | U | 10.984 | 10.484 | 85.1 | 6.08 | 0.000 |
M | 10.956 | 11.014 | −9.9 | −0.58 | 0.562 | |
Industry | U | 46.121 | 47.385 | −18.0 | −1.27 | 0.204 |
M | 46.836 | 48.835 | −21.1 | −1.20 | 0.233 | |
Finance | U | 1.7817 | 1.107 | 76.8 | 5.40 | 0.000 |
M | 1.6775 | 1.6403 | 4.2 | 0.21 | 0.833 | |
Npop | U | 5.5674 | 6.2557 | −13.9 | −0.95 | 0.341 |
M | 5.4009 | 4.4747 | 18.7 | 1.07 | 0.285 |
Sample | Ps R2 | LR chi2 | p > chi2 | Mean bias | Med bias | B | R | %Var |
---|---|---|---|---|---|---|---|---|
Unmatched | 0.157 | 52.49 | 0.000 | 48.4 | 47.4 | 105.3 * | 0.95 | 25 |
Matched | 0.017 | 3.17 | 0.530 | 13.5 | 14.3 | 30.9 * | 0.67 | 75 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
LNPOP | FI | LNPOP | PI | LNPOP | WaE | LNPOP | |
did | 0.1911 *** | 0.0962 *** | 0.1487 *** | 0.0041 | 0.1920 *** | 0.6496 *** | 0.1746 *** |
(0.0219) | (0.0092) | (0.0227) | (0.0030) | (0.0219) | (0.0726) | (0.0220) | |
FI | 0.4406 *** | ||||||
(0.0912) | |||||||
PI | −0.2228 * | ||||||
(0.1139) | |||||||
WaE | 0.0254 *** | ||||||
(0.0097) | |||||||
Constant | 1.6382 *** | 1.3848 *** | 1.0281 * | 2.3833 *** | 2.1693 *** | 6.2596 *** | 1.4795 *** |
(0.5172) | (0.1000) | (0.5461) | (0.0286) | (0.5869) | (0.6449) | (0.5203) | |
Control variable effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3482 | 3482 | 3482 | 3482 | 3482 | 3482 | 3482 |
0.7489 | 0.5709 | 0.7550 | 0.1971 | 0.7491 | 0.7235 | 0.7497 | |
F | 33.0228 | 37.6536 | 28.5416 | 3.8605 | 28.9146 | 34.5960 | 27.8587 |
Variable | LNPOP |
---|---|
Eastern_did | 0.1468 *** |
(0.0555) | |
Middle_did | 0.1177 ** |
(0.0548) | |
Western_did | 0.0947 * |
(0.0563) | |
LNPOP | 0.4233 *** |
(0.0539) | |
Industry | −0.0029 |
(0.0019) | |
Finance | −0.0053 |
(0.0107) | |
Npop | 0.0039 *** |
(0.0013) | |
Constant | 1.5965 *** |
(0.5204) | |
Year FE | Yes |
City FE | Yes |
N | 3180 |
0.7495 | |
F | 45.8228 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
High GDPPC | Mid GDPPC | Low GDPPC | |||
Lny | Lny | Lny | TC | ||
did | 0.140 *** | 0.252 *** | 0.130 *** | c_did | 0.182 *** |
(6.05) | (2.89) | (3.49) | (5.40) | ||
LNPGDP | 0.298 *** | 0.491 *** | 0.250 *** | c_group | −0.094 |
(6.06) | (6.91) | (5.02) | (−0.30) | ||
Industry | −0.000 | −0.001 | −0.004 ** | c_did × c_group | −0.021 |
(−0.06) | (−0.26) | (−2.45) | (−0.60) | ||
Finance | −0.008 | −0.058 | 0.001 | LNPGDP | significant |
(−0.45) | (−1.45) | (0.07) | Industry | non significant | |
Npop | 0.002 | 0.006 | 0.004 *** | Finance | non significant |
(1.04) | (1.34) | (2.80) | Npop | significant | |
Year FE | Yes | Yes | Yes | Constant | significant |
City FE | Yes | Yes | Yes | Yes | |
Constant | 2.898 *** | 1.029 | 3.414 *** | Yes | |
(5.76) | (1.50) | (7.75) | Observations | 3482 | |
R-squared | 0.878 | 0.720 | 0.514 | R-squared | 0.109 |
0.862 | 0.684 | 0.449 | 0.00340 | ||
F | 56.80 | 20.16 | 7.908 | F | 20.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Liu, C. Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program. Sustainability 2023, 15, 14751. https://doi.org/10.3390/su152014751
Chen G, Liu C. Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program. Sustainability. 2023; 15(20):14751. https://doi.org/10.3390/su152014751
Chicago/Turabian StyleChen, Guorong, and Changyan Liu. 2023. "Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program" Sustainability 15, no. 20: 14751. https://doi.org/10.3390/su152014751
APA StyleChen, G., & Liu, C. (2023). Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program. Sustainability, 15(20), 14751. https://doi.org/10.3390/su152014751