Residential Space Organization of the Inner Mongolia Earth Dwellings around the Yellow River Basin
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Case Selection
3.2. Overview of the Data Collected
3.2.1. Residential Space Classification
Classified by Plan Structure
Classified by Basic Functional Space
3.2.2. The Surface Characteristic of Residential Space
3.3. Methods
3.3.1. Residential Space Division
3.3.2. Parameters and Method
Parameters
- K: Number of spaces in the system
- DK: is the relative Asymmetry of space from a Diamond-Shaped graph.
- a = Max RRA
- b = Mean RRA
- c = Min RRA
- t = a + b + c.
- Val(b) is the number of connections to a node b.
Research Method
4. Data Analysis
4.1. Analysis of Planar Overall Parameters
4.2. Correlation Analysis between Basic Functional Space and Other Space
4.3. Integration Analysis of Different Functional Spaces
4.4. Control Value Analysis of Different Functional Spaces
5. Discussion
6. Conclusions
- Regional topographical conditions manifest in the selection of plan spatial structures, where flatter terrains tend to have more bays. However, topography did not significantly impact the choice of basic functional space categories.
- Regional geological conditions influence the construction form of residential buildings. Still, the samples included in the study, such as Yao-style and house-style dwellings, did not exhibit differences in spatial structures.
- (1)
- The type of basic functional space has a more decisive influence on spatial organization than spatial structure. The β type and the planar organization containing the β type are the most concentrated.
- (2)
- Within the layout of sleeping-type plans, the basic functional space serves as the central organizing element. In contrast, in non-sleeping-type plans, other functional areas are closer to the center of the layout. Different types of basic functional spaces positively correlate with the organization of other functional areas.
- (3)
- When considering the basic functional space as a whole, they exhibit the highest frequency of occurrence for the i value; within independent spaces, H has the highest frequency of the i value, making it the most conveniently connected space with other regions and making it the most convenient spaces to connect with other areas.
- (4)
- Basic functional spaces exert significant control over surrounding spaces in most layouts, serving as the central living area of the plan.
- (5)
- As H serves as both the central element of spatial organization and easily becomes the hub of daily activities, it indicates that the stove holds significant importance in the layout of local residential spaces while used as heating facilities or heating equipment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Plan Type | Code | Year | Dwelling Type | Topography | Basic Functional Space Type | |
---|---|---|---|---|---|---|
a | A4 | 1900 | House | Plain | α | |
K2 | 1900 | House | Hill | α | ||
B6 | 1960 | House | Hill | α | ||
B10 | 1960 | House | Mountain | α | ||
L35 | 1980 | House | Plain | α | ||
L30 | 1980 | House | Plain | * | ||
b | b1 | - | - | - | - | - |
b2 | J4 | 1950 | House | Hill | α | |
J5 | 1950 | House | Hill | α | ||
B9 | 1960 | House | Mountain | α + β | ||
L9 | 1970 | House | Plain | α | ||
L11 | 1980 | House | Plain | β | ||
L24 | 1980 | House | Plain | β | ||
J2 | 1980 | House | Plain | β + γ | ||
L16 | 1980 | House | Plain | * | ||
L23 | 1980 | House | Plain | * | ||
b3 | L42 | 1970 | House | Plain | β + γ | |
L19 | 1980 | House | Plain | β | ||
L28 | 1980 | House | Plain | β | ||
L37 | 1980 | House | Plain | β | ||
L4 | 1980 | House | Mountain | * | ||
L36 | 1980 | House | Mountain | * | ||
b2 + b3 | L25 | 1980 | House | Plain | β | |
L13 | 1980 | House | Plain | γ | ||
L10 | 1980 | House | Plain | α + γ | ||
c | c1 | - | - | - | - | - |
c2 | A2 | 1900 | Yao | Plain | α | |
K3 | 1900 | House | Hill | α + β | ||
K4 | 1900 | House | Hill | α + β | ||
L1 | 1960 | House | Mountain | * | ||
L5 | 1970 | House | Plain | α | ||
L8 | 1970 | House | Plain | α | ||
L12 | 1980 | House | Plain | α | ||
A3 | 1980 | Yao | Mountain | α | ||
L22 | 1980 | House | Plain | β | ||
L26 | 1980 | House | Plain | β | ||
L33 | 1980 | House | Plain | γ | ||
L34 | 1980 | House | Plain | γ | ||
L17 | 1980 | House | Plain | β + γ | ||
L20 | 1980 | House | Plain | β + γ | ||
L29 | 1980 | House | Plain | * | ||
c3 | L40 | 1970 | House | Plain | β + γ | |
L43 | 1970 | House | Plain | β + γ | ||
L41 | 1970 | House | Plain | α + γ | ||
L18 | 1980 | House | Plain | α | ||
L6 | 1980 | House | Plain | β | ||
L14 | 1980 | House | Plain | β | ||
L7 | 1980 | House | Plain | β | ||
L31 | 1980 | House | Plain | β | ||
L32 | 1980 | House | Plain | β | ||
L21 | 1980 | House | Plain | β + γ | ||
L15 | 1980 | House | Plain | β + γ | ||
L3 | 1990 | House | Mountain | β + γ | ||
d | d3 | L38 | 1990 | House | Plain | α + γ |
General | Mean Integration | Highest Control Value | Relative Different Factor (H*) | ||||||
---|---|---|---|---|---|---|---|---|---|
Basic Functional Space Type | Code | Plan Type | Plan | Functional Space | Basic Space | Other Space | Functional Space | Functional Space | |
α | A4 | a | 0.70 | 0.94 | 1.06 | 0.7 | KA 1.06=K(c,h)1.06>S 0.7 | KA 1.06=K(c,h)1.06 | 0.91 |
K2 | a | 0.93 | 0.71 | 0.79 | 0.68 | KA 0.79=K(c,h) 0.79>LR 0.73=S 0.73>DR 0.65=K 0.65=S 0.65 | KA 0.7=K(c,h)0.7 | 0.86 | |
B6 | a | 1.01 | 0.76 | 0.77 | 0.79 | KA 0.85=K(c,h)0.85>W 0.79=S 0.79>KA’ 0.65=K(c,h)’ 0.65 | KA’0.83=K(c,h)’0.83 | 0.81 | |
B10 | a | 1.08 | 0.84 | 0.81 | 0.88 | KA 0.95=K(c,h) 0.95>H 0.88=W 0.88=S 0.88>KA’ 0.66=K’(c,h) 0.66 | KA’ 0.83=K’(c,h) 0.83 | 0.75 | |
L35 | a | 0.89 | 1.12 | 1.27 | 1.02 | KA 1.27=K(c,h) 1.27>DR 1.02=W 1.02=K 1.02 | KA 0.67=K(c,h) 0.67 | 0.96 | |
J4 | b2 | 1.16 | 0.79 | 0.79 | 0 | KA 0.85=K(c,h) 0.85>KA’ 0.73=K’(c,h) 0.73 | KA’ 0.83=K’(c,h) 0.83 | 0.74 | |
J5 | b2 | 1.17 | 0.81 | 0.86 | 0.77 | KA’ 0.86=K’(c,h) 0.86>K 0.77=S 0.77=S’ 0.77 | KA’ 0.75=K’(c,h) 0.75 | 0.79 | |
L9 | b2 | 1.46 | 1.05 | 1.38 | 0.89 | H’ 1.77>KA’ 0.99>K 0.89=W 0.89=DR’ 0.89=S’ 0.89 | H’ 0.9 | 0.75 | |
A2 | c2 | 1.13 | 0.85 | 0.82 | 0.88 | BD 0.98=S 0.98>KA1 0.82=K1(c,h) 0.82=KA2 0.82=K2(c,h) 0.82>S1 0.78=S2 0.78 | KA1 0.75=K1(c,h) 0.75=KA2 0.75=K2(c,h) 0.75 | 0.75 | |
L12 | c2 | 1.09 | 0.82 | 0.82 | 0.83 | K 1.12>DR 0.98>H1 0.82=KA1 0.82>LR1 0.78>S2 0.71=SA2 0.71>K 0.65 | K 1.2 | 0.69 | |
L5 | c2 | 1.08 | 1.04 | 0.98 | 1.06 | H 1.38>K 1.18=LR 1.18=W 1.18>H2 0.98=KA2 0.98>S2 0.94=BR2 0.94>BR1 0.84=S1 0.84 | H2 0.7=KA2 0.7 | 0.68 | |
L8 | c2 | 0.88 | 0.7 | 0.83 | 0.65 | H1’ 0.99>K1 0.83>KA1’ 0.67=BR2 0.67>H1’ 0.65>BR1’’ 0.59>KA2’ 0.51 | H1’ 0.95 | 0.77 | |
A3 | c2 | 1.22 | 0.94 | 0.96 | 0.91 | KA 1.14=K(c,h) 1.14>DR 1.07>KA1 0.87=K1(c,h) 0.87=KA2 0.87=K2(c,h) 0.87>S1 0.83=S2 0.83 | KA1 0.75=K1(c,h) 0.75=KA2 0.75=K2(c,h) 0.75 | 0.72 | |
L18 | c3 | 1.13 | 0.89 | 0.96 | 0.87 | H 1.24>H3 0.98>KA3 0.94>LR3 0.87=S3 0.87>BR2 0.81=H2 0.81=S2 0.81>W1 0.76=S1 0.76 | H3 1.2 | 0.74 | |
β | L11 | b2 | 1.17 | 0.81 | 0.94 | 0.69 | H 1.02>KA’ 0.85>K 0.73>S’ 0.64 | H 0.75 | 0.69 |
L24 | b2 | 1.28 | 0.92 | 1.05 | 0.85 | H 1.11>KA’ 0.99>W 0.89=S 0.89>DR’ 0.81=S’ 0.81 | KA’ 0.75 | 0.72 | |
L25 | b2 + b3 | 0.97 | 0.82 | 0.89 | 0.81 | K 1.01>DR 0.95=LA 0.95=W 0.95=S 0.95>S’ 0.81=LA’ 0.81>KA1 0.77>LR1 0.73=S1 0.73>K1’ 0.62=H1’ 0.62 | KA1 0.75 | 0.80 | |
L19 | b3 | 1.29 | 1.02 | 1.19 | 0.98 | KA2 1.22>H1 1.16>W 1.1=S 1.1=LA 1.1>DR2 0.95=LR2 0.95=S2 0.95>K1 0.87=S1 0.87 | H1 0.75 | 0.86 | |
L28 | b3 | 0.94 | 0.82 | 0.74 | 0.83 | H1’ 1.27>S’ 0.99=LR’ 0.99>W 0.88=S 0.88>LA1’ 0.82=S1’ 0.82=DR1’ 0.82=K1’ 0.82>BD2’ 0.81=S2’ 0.81>H1 0.74=KA2 0.74>DR1 0.7=K1 0.7=S2 0.7=LR2 0.7>BD3’ 0.68=S3’ 0.68 | H1’ 0.78 | 0.72 | |
L37 | b3 | 1.34 | 1.03 | 1.14 | 0.99 | KA1 1.33>S1 1.02=SA1 1.02=H1 1.02=DR1 1.02>K2 0.95>H 0.88 | K2 1 | 0.75 | |
L22 | c2 | 1.31 | 1 | 1.09 | 0.97 | H 1.3>K 1.14=S 1.14=W 1.14>KA1 0.87=H2 0.87=BR2 0.87=S2 0.87>DR1 0.79 | KA1 0.83 | 0.64 | |
L26 | c2 | 1.23 | 0.92 | 1.07 | 0.87 | K(c,h) 1.21>S 1.04=W 1.04>KA2 0.92>DR2 0.82=S2 0.82>S1 0.75=BD1 0.75 | KA2 0.75 | 0.68 | |
L6 | c3 | 1.17 | 0.89 | 1.07 | 0.83 | H1 1.07=KA3 1.07>W 1.01>SA1 0.83=K1 0.83=LR3 0.83=S3 0.83>S2 0.67 | H1 0.75=KA3 0.75 | 0.70 | |
L7 | c3 | 0.89 | 0.71 | 0.75 | 0.7 | DR 0.9>DR’ 0.77=TO’ 0.77>K1(c,h) 0.75=KA3 0.75>SA1 0.69=S3 0.69>BR2 0.65>K2’ 0.58=S2’ 0.58 | K1(c,h) 0.83=KA3 0.83 | 0.81 | |
L14 | c3 | 1.32 | 1.03 | 0.97 | 1.05 | H1 1.6>DR 1.1=W 1.1>KA2 0.99>K1 0.95>BD3 0.9=S3 0.9=LA3 0.9>LR2 0.87 | K1 0.83 | 0.75 | |
L31 | c3 | 1.14 | 0.86 | 0.92 | 0.84 | DR 1.01>K1 0.96>KA2 0.87>H1 0.83=W1 0.83>BR3 0.79=S3 0.79=TO3 0.79 | KA2 1 | 0.76 | |
L32 | c3 | 1.04 | 0.75 | 0.88 | 0.68 | K1 0.88=KA2 0.88>S1 0.7=DR2 0.7>S3 0.66=BR3 0.66 | K1 0.83 | 0.75 | |
γ | L13 | b2 + b3 | 1.04 | 0.82 | 0.84 | 0.82 | H1 1.38>S’ 0.84=BR’ 0.84=LR’ 0.84>LA 0.81=K1 0.81>BR1’ 0.65>KA2 0.62=LR2 0.62 | H1 0.75 | 0.82 |
L33 | c2 | 1.14 | 0.87 | 0.79 | 0.9 | H 1.01=K 1.01>H1 0.87=DR1 0.87=KA1 0.87=S1 0.87>DR2 0.79=BR2 0.79=H2 0.79 | DR2 0.25=BR2 0.25=H2 0.25 | 0.76 | |
L34 | c2 | 1.11 | 0.81 | 0.85 | 0.78 | S 0.85=S1 0.85=H1 0.85=BR1 0.85=LR1 0.85=S2 0.58 | S2 0.5 | 0.76 | |
α + β | K3 | c2 | 1.14 | 0.85 | 0.89 | 0.81 | K(c,h) 1.11>S 0.95>KA2 0.83=H2 0.83>KA1 0.78=S2 0.78>S1 0.7 | KA1 0.83 | 0.71 |
K4 | c2 | 1.17 | 0.9 | 0.94 | 0.86 | K 1.12>S 0.98>H2 0.92=KA2 0.92>S2 0.87=LR2 0.87>KA1 0.78>S1 0.71 | KA1 0.83 | 0.72 | |
α + γ | L10 | b2 + b3 | 0.86 | 0.71 | 0.72 | 0.7 | KA’ 0.84=K’(c,h) 0.84>L 0.82=S’ 0.82>DR1’ 0.68=BR1’ 0.68=SA1’ 0.68=S1’ 0.68>LR2 0.65=BR2 0.65=S2 0.65>KA1 0.63=K1 0.63 | KA’ 0.7=K’(c,h) 0.7 | 0.88 |
L41 | c3 | 1.08 | 0.8 | 0.78 | 0.81 | W 1.01>KA2 0.83=H2 0.83>S2 0.79>DR1 0.73=K1 0.73=LR3 0.73=BR3 0.73 | KA2 0.75=H2 0.75 | 0.73 | |
L38 | d3 | 1.17 | 0.91 | 0.91 | 0.9 | LA 1.2>BR3 0.92=H3 0.92=S3 0.92=LR3 0.92>KA4 0.9=H4 0.9>LR4 0.87>K1 0.83=DR1 0.83=K2 0.83=S2 0.83 | KA4 0.75=H4 0.75 | 0.73 | |
β + γ | J2 | b2 | 0.97 | 0.82 | 0.87 | 0.76 | K(c,h) 0.98>DR 0.91=BR 0.91=TO 0.91>BR’ 0.86>LR’ 0.81=H’ 0.81=S’ 0.81>KA1 0.75>LR1 0.71=S1 0.71>K1’(c,h) 0.62 | K1’(c,h) 1 | 0.81 |
L42 | b3 | 1.23 | 0.94 | 0.89 | 1 | K(c,h) 1.11=H 1.11>H2 1.02>BR2 0.88=LR2 0.88=S2 0.88>KA1 0.7 | KA1 1 | 0.71 | |
L17 | c2 | 1.31 | 1 | 0.98 | 1.01 | K(c,h) 1.3>H 1.14=S 1.14=DR 1.14>KA1 0.87=LR2 0.87=BR2 0.87=S2 0.87>LR1 0.79 | KA1 0.83 | 0.64 | |
L20 | c2 | 1.30 | 1.03 | 1.03 | 1.02 | K(c,h) 1.31>W 1.18=S 1.18=H 1.18>KA1 0.94=DR2 0.94=BR2 0.94=S2 0.94=H2 0.94>LR1 0.87=S1 0.87 | KA1 0.75 | 0.71 | |
L40 | c3 | 1.16 | 0.94 | 0.86 | 1.05 | H1 1.52>KA3 0.91>K3 0.87>BR2 0.83=DR2 0.83=S2 0.83>LR3 0.79 | K3 0.83 | 0.73 | |
L43 | c3 | 1.07 | 0.79 | 0.8 | 0.78 | KA3 0.92>K1(c,h) 0.82>DR3 0.78=S3 0.78>LR2 0.75=BR2 0.75=DR2 0.75 | K1(c,h) 1 | 0.79 | |
L21 | c3 | 0.87 | 0.72 | 0.71 | 0.72 | H1 0.85>MU’ 0.8>KA2 0.73>K1(c,h) 0.72>BR3 0.71=LR3 0.71=S3 0.71=K1’(c,h) 0.71>LR2 0.7=H1’ 0.7=KA2’ 0.7>S1’ 0.65=LR2’ 0.65 | K1(c,h) 0.83 | 0.88 | |
L3 | c3 | 0.82 | 0.66 | 0.73 | 0.62 | H1 0.76=H1’ 0.76>KA2 0.7=KA2’ 0.7>K1 0.67=K1’ 0.67>LR3 0.65=BR3 0.65=LR3’ 0.65=BR3’ 0.65>SA1 0.51=SA1’ 0.51 | K1 1.33=K1’ 1.33 | 0.84 | |
L15 | c3 | 1.03 | 0.84 | 0.9 | 0.79 | H1 1.04>DR1 0.92=KA2 0.92>LR3 0.85=H3 0.85=DR3 0.85=S3 0.85=BR3 0.85>BD2 0.75>W4 0.72=K4 0.72=S4 0.72 | KA2 0.83 | 0.81 | |
* | L30 | a | 0.56 | 0.87 | 0.87 | 0.87 | BR 0.87=K 0.87=H 0.87=S 0.87 | BR 0.2 | 0.97 |
L16 | b2 | 0.85 | 0.7 | 0.63 | 0.71 | K 0.8=W 0.8=S 0.8>S’ 0.75=K’ 0.75>S1 0.64=KA1 0.64=DR1 0.64>H1’ 0.61=KA1’ 0.61=S1’ 0.61 | S’ 0.25=K’ 0.25=S1 0.25=KA1 0.25=DR1 0.25=H1’ 0.25=KA1’ 0.25=S1’ 0.25 | 0.88 | |
L23 | b2 | 1.28 | 0.92 | 0.92 | 0.92 | K 0.92=SA 0.92=S 0.92=KA’ 0.92=DR’ 0.92=H’ 0.92=S’ 0.92 | K 0.2=SA 0.2=S 0.2=KA’ 0.2=DR’ 0.2=H’ 0.2=S’ 0.2 | 0.78 | |
L4 | b3 | 1.18 | 0.92 | 0.74 | 0.96 | H1 1.48>DR 0.99>BR2 0.74=W2 0.74>K1 0.63 | H1 1.08 | 0.73 | |
L36 | b3 | 1.31 | 1.09 | 0.88 | 1.14 | H1 2.4>K1 1.05=S1 1.05=W1 1.05=LA1 1.05>LR 1.01>BR3 0.88=ST3 0.88=BR2 0.88=ST2 0.88=S2 0.88 | H1 0.79 | 0.82 | |
L29 | c2 | 1.28 | 0.92 | 0.92 | 0.92 | S 0.92=LR 0.92=KA1 0.92=DR1 0.92=H1 0.92=MU1 0.92 | S 0.2=LR 0.2=KA1 0.2=DR1 0.2=H1 0.2=MU1 0.2 | 0.65 | |
L1 | b2 | 1.18 | 0.93 | 0.95 | 0.93 | W’ 0.95=KA’ 0.95=S’ 0.95=DR’ 0.95=H’ 0.95>K 0.88=S 0.88 | K 0.25=S 0.25 | 0.78 | |
Special | Mean Integration | Highest Control Value | Relative Different Factor (H*) | ||||||
Basic functional space type | Code | Plan type | Plan | Functional space | Basic space | Other space | Functional space | Functional space | |
α + β | B9 | c2 | 1.46 | 1.11 | 1.19 | 0.99 | K(c,h) 1.48>KA 1.27>H 0.99=W 0.99>KA’ 0.81 | K(c,h) 1.17 | 0.48 |
References
- Katriina, S.; Inger, B. Exploring the scientific discourse on cultural sustainability. Geoforum 2014, 51, 213–223. [Google Scholar] [CrossRef]
- Axelsson, R.; Angelstam, P.; Degerman, E.; Teitelbaum, S.; Andersson, K.; Elbakidze, M.; Drotz, M.K. Social and cultural sustainability: Criteria, indicators, verifier variables for measurement and maps for visualization to support planning. Ambio 2013, 42, 215–228. [Google Scholar] [CrossRef]
- Marcel, V. Encyclopedia of vernacular architecture of the world. Bijdr. Tot Taal Land Volkenkd. 2001, 157, 442–446. [Google Scholar]
- Pardo, J.M.F. Challenges and Current Research Trends for Vernacular Architecture in a Global World: A Literature Review. Buildings 2023, 13, 162. [Google Scholar] [CrossRef]
- Oliver, P. Built to Meet Needs: Cultural Issues in Vernacular Architecture; Elsevier Ltd.: Amsterdam, The Netherlands, 2007; ISBN 9780750666572. [Google Scholar]
- Oliver, P. Dwellings: The Vernacular House Worldwide; University of Texas Press: Austin, TX, USA, 1987; ISBN 0292715552. [Google Scholar]
- Zhou, T.G.; Duan, W.Q.; Mu, J.; Zhao, X.P.; Du, G.C. Statistical analysis and survey on the aseismatic performance of the raw-soil Building Status in China’s rural areas. J. Xi’an Univ. Archit. Technol. Nat. Sci. Ed. 2013, 45, 487–492. [Google Scholar] [CrossRef]
- The Forth Agricultural Census Data. Available online: http://www.stats.gov.cn/sj/pcsj/ (accessed on 5 June 2023).
- Amos, R. House Form and Culture; Prentice-Hall: Englewood Cliffs, NJ, USA, 1969; ISBN 970133956733. [Google Scholar]
- Oupu, J. The past and current situation of China’s raw earth architecture. Archit. Knowl. 1982, 1, 2–7. [Google Scholar]
- The Yellow River Basin. Available online: http://www.yrcc.gov.cn/hhyl/lydt/ (accessed on 5 June 2023).
- Fuchu, J.; Shubing, W.; Jianli, F.; Hao, Y. On Study of Lacustrine Formation and its Meaning in the Togtoh platform, Inner Mongolia. Quat. Sci. 2012, 32, 931–937. [Google Scholar]
- Yiya, W.; Fuyao, S. Urban Geography Research on Baotou City. Geogr. J. 1937, 1, 1–27. [Google Scholar]
- Inner Mongolia Architectural History Editorial Committee. Inner Mongolia Ancient Architecture; Cultural Relics Publishing House: Beijing, China, 1959. [Google Scholar]
- Dang, Y. The History of Architectural Technology from Neolithic Age to Bronze Age in Inner Mongolia. Ph.D. Thesis, Inner Mongolia Normal University, Hohhot, China, 2016. [Google Scholar]
- Tianyi, W. The Archaeological Study of Prehistoric House Sites in the Loess Plateau Region. Ph.D. Thesis, Northwest University, Xi’an, China, 2020. [Google Scholar]
- Wang, M. The Choice of Nomads: Facing the Northern Asian Nomadic Tribes of the Han Empire; Lianjing Publishing House: Taipei, Taiwan, 2009; ISBN 9789860170054. [Google Scholar]
- Suiyuan Tongzhi Hall (Ed.) Suiyuan Tongzhi; Inner Mongolia People’s Publishing House: Hohhot, China, 2007; Volume 50, pp. 17–25. [Google Scholar]
- Suiyuan Tongzhi Hall (Ed.) Suiyuan Tongzhi; Inner Mongolia People’s Publishing House: Hohhot, China, 2007; Volume 51, pp. 157–160. [Google Scholar]
- Jianfei, Z. Some Topics in Contemporary Western Architectural Space Research. Archit. J. 1996, 10, 42–45. [Google Scholar]
- Dunzhen, L. Overview of Folk Houses in China; China Architecture & Building Press: Beijing, China, 1957. [Google Scholar]
- Zhihua, C. Present State of the Native Buildings of China—An lnterview with Chen Zhihua. China Anc. City 2010, 4, 53–56. [Google Scholar]
- Xiaofeng, L. Analysis and Rethink of the Mode of Preservation and Renewal of Vernacular Building. Archit. J. 2005, 7, 8–10. [Google Scholar]
- The Japanese Society of Life Science (Ed.) Housing and Local Communities; Domesu Publisher: Tokyo, Japan, 1978. [Google Scholar]
- Hillier, B.; Julienne, H. Ideas are in things: Applying the space syntax method to discovering house genotypes. Environ. Plan. B Plan. Des. 1987, 14, 363–385. [Google Scholar] [CrossRef]
- Seo, K.W.; Mimi, Z.A.G.; Yazid, S. Relocating home activities: Spatial experiments in Malaysian apartment houses to accommodate the vernacular lifestyle. J. Asian Archit. Build. Eng. 2022, 21, 311–325. [Google Scholar] [CrossRef]
- Seo, K.W. Space puzzle in a concrete box: Finding design competence that generates the modern apartment houses in Seoul. Environ. Plan. B Urban Anal. City Sci. 2007, 34, 1071–1084. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, K.; Liu, P.; Jiang, R.; Qiu, J.; Ding, K.; Fukuda, H. Space as a sociocultural construct: Reinterpreting the traditional residences in jinqu basin, China from the perspective of space syntax. Sustainability 2021, 13, 9004. [Google Scholar] [CrossRef]
- Huang, B.X.; Chiou, S.C.; Li, W.Y. Study on courtyard residence and cultural sustainability: Reading Chinese traditional Siheyuan through Space Syntax. Sustainability 2019, 11, 1582. [Google Scholar] [CrossRef]
- Xingkang, C.K.; Ruyu, J.; Yu, C. Quantitative Comparison of Space Syntax in Regional Characteristics of Rural Architecture: A Study of Traditional Rural Houses in Jinhua and Quzhou, China. Buildings 2023, 13, 1507. [Google Scholar] [CrossRef]
- Toshihiro, H.C.; Masahiko, S.M.; Yamazaki, S.; Ito, S.; Sasaki, M.; Watari, K.; Uekita, Y. The Transition of Japanese Multi-Family Dwellings Using Space Syntax Analysis-Transition from the Private room aggregation Type to the Living room centered Type. J. Hous. Res. Found. 2007, 34, 173–184. [Google Scholar]
- Zhang, X.; Cui, T. Evolution Process of Scientific Space: Spatial Analysis of Three Groups of Laboratories in History (16th–20th Century). Buildings 2022, 12, 1909. [Google Scholar] [CrossRef]
- Arslan, A.; Uraz, T.U. Small House Spatiality: A Comparative Space Syntax Application. Open House Int. 2017, 42, 58–67. [Google Scholar] [CrossRef]
- Inner Mongolia Library. Zhao Wangyun’s Sketchbook on Saishang Chasui Simon’s Sketchbook; Inner Mongolia Yuanfang Publishing House: Hohhot, China, 2013; ISBN 9787555500339. [Google Scholar]
- Yamada, T. Mongolian Rural Village; Kinjo Publish Company: Osaka, Japan, 1943. [Google Scholar]
- Pengju, Z. Ancient Architecture of Inner Mongolia; China Architecture & Building Press: Beijing, China, 2016; ISBN 9787112181759. [Google Scholar]
- Rengui, M. Research on the Evolution of Residence of Han Nationality in Hetao Region in Inner Mongolia under the Background of Migration. Master’s Thesis, Hua Qiao University, Xiamen, China, 2018. [Google Scholar]
- Yushu, L.; Ling, Z. From Nomadicity to Sedentariness: Spatial and Social Changes in Vernacular Dwellings in Alxa League, Inner Mongolia. Archit. J. 2020, 6, 34–39. [Google Scholar] [CrossRef]
- Guo, J. The Study on the Spatial Characteristics of Courtyard Houses in Midwest Area of Inner Mongolia. Master’s Thesis, Dalian University of Technology, Dalian, China, 2018. [Google Scholar]
- Songjing, Y. Study on the Earth Dwellings in the Yellow River Basin of Inner Mongolia. Master’s Thesis, Inner Mongolia University of Science and Technology, Hohhot, China, 2019. [Google Scholar]
- Wang, V.; Yangya, X. Study on the Constituent Elements and Space Regeneration Strategy of the Adobe Dwellings—A Case of the Traditional Dwellings in Meidaiqiao Village. Urban. Archit. 2020, 35, 139–141. [Google Scholar] [CrossRef]
- Xuebin, Z.; Pengtao, L. Research on Architectural Space Forms of Raw Soil Residential Buildings of Guanglian Village in Wuyuan County, Bayannur City, Inner Mongolia. Urban Archit. Space 2022, 1, 68–71. [Google Scholar]
- Hongwei, Y.; Lipeng, T.; Feng, P. Research on Architectural Form Characteristic of Raw Soil Residential Building in Liangcheng County, Ulanqab City, Inner Mongolia: Taking Guanniuju Village as an Example. Urban. Archit. 2023, 30, 90–92. [Google Scholar]
- Hillier, B.; Julienne, H. The Social Logic of Space; Press Syndicate of the University of Cambridge: Cambridge, UK, 1984; ISBN 9780511597237. [Google Scholar]
- Manum, B.; Rusten, E.; Benze, P. AGRAPH, Software for Drawing and Calculating Space Syntax Graphs, presented at the 5. Space Syntax Symposium, Delft, June 2005. Available online: https://www.ntnu.no/ad/spacesyntax/ (accessed on 26 August 2023).
- Mustafa, F.A.; Hassan, A.S.; Baper, S.Y. Using space syntax analysis in detecting privacy: A comparative study of traditional and modern house layouts in Erbil city, Iraq. Asian Soc. Sci. 2010, 6, 157. [Google Scholar] [CrossRef]
- Michael, J.O.; Michael, J.D. The Mathematics of the Modernist Villa: Architectural Analysis Using Space Syntax and Isovists; Kim, W., Ed.; Kim Williams Books: Torino, Italy, 2018; ISBN 978-3-319-71645-9. [Google Scholar]
Prehistory (4500–1500 B.C.) | |||
Semi-Subterranean House | Ground House | ||
Latent period (400 B.C.–1650S) | Earth dwelling: Only written records | ||
Ger | |||
Adaptation period (1650S–1900S) | |||
Fix Ger | Yao | House | |
Stability period (1900S~) | |||
Yao | House |
(a) Plan structure type | |||||||||||
Type | a | b | c | d | |||||||
b1 | b2 | b3 | c1 | c2 | c3 | d3 | |||||
Plan | |||||||||||
Plan type | |||||||||||
(b) Basic functional space type | |||||||||||
Type | α | β | γ | * | |||||||
Plan | |||||||||||
Basic functional type | |||||||||||
Aisle Hall Basic functional space R: Room Kang: KA Kitchen (cooking, heating): K (c, h) H: Heating DR: Dining room BR: Bedroom |
Relative Different Factor (H*) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Plane type | a | b | b2 | b3 | b2 + b3 | c | c2 | c3 | d3 | Total |
with exterior | 0.87 | 0.78 | 0.76 | 0.76 | 0.83 | 0.74 | 0.71 | 0.77 | 0.73 | 0.78 |
without exterior | 0.94 | 0.76 | 0.73 | 0.76 | 0.8 | 0.74 | 0.71 | 0.77 | 0.75 | 0.8 |
Basic Functional Space Type | α | β | γ | α + β | α + γ | β + γ | * | Total | ||
with exterior | 0.77 | 0.73 | 0.79 | 0.6 | 0.78 | 0.76 | 0.82 | 0.75 | ||
without exterior | 0.79 | 0.75 | 0.78 | 0.65 | 0.76 | 0.74 | 0.78 | 0.75 |
Basic Functional Space Type | Number | Functional Space Mean i | Functional Space | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | K(c,h) | K | KA | BR | DR | LR | S | LA | SA | TO | W | MU | ST | |||||
General plan | α | 14 | 0.88 | 10 | 15 | 7 | 21 | 6 | 5 | 4 | 19 | - | 1 | - | 6 | - | - | Number |
1.05 | 0.88 | 0.89 | 0.86 | 0.81 | 0.92 | 0.89 | 0.81 | - | 0.71 | - | 0.92 | - | - | Mean i | ||||
β | 13 | 0.89 | 13 | 2 | 13 | 13 | 8 | 14 | 6 | 28 | 5 | 3 | 2 | 8 | - | - | Number | |
1.04 | 0.98 | 0.85 | 0.94 | 0.76 | 0.87 | 0.85 | 0.83 | 0.92 | 0.85 | 0.78 | 1.01 | - | - | Mean i | ||||
γ | 3 | 0.83 | 5 | - | 2 | 2 | 4 | 2 | 3 | 5 | 1 | - | - | - | - | - | Number | |
0.98 | - | 0.91 | 0.75 | 0.78 | 0.83 | 0.77 | 0.8 | 0.81 | - | - | - | - | - | Mean i | ||||
α + β | 2 | 0.88 | 2 | 1 | 1 | 4 | - | - | 1 | 6 | - | - | - | - | - | - | Number | |
0.88 | 1.11 | 1.12 | 0.83 | - | - | 0.87 | 0.83 | - | - | - | - | - | - | Mean i | ||||
α + γ | 3 | 0.81 | 3 | 1 | 4 | 4 | 4 | 3 | 4 | 6 | 1 | 1 | - | 2 | - | - | Number | |
0.88 | 0.84 | 0.76 | 0.8 | 0.75 | 0.75 | 0.79 | 0.78 | 1.2 | 0.68 | - | 0.92 | - | - | Mean i | ||||
β + γ | 9 | 0.86 | 13 | 8 | 4 | 11 | 12 | 8 | 15 | 14 | - | 2 | 1 | 2 | 1 | - | Number | |
0.98 | 0.95 | 0.73 | 0.8 | 0.8 | 0.89 | 0.78 | 0.85 | - | 0.51 | 0.91 | 0.95 | 0.8 | - | Mean i | ||||
* | 7 | 0.91 | 7 | - | 6 | 5 | 4 | 5 | 2 | 11 | 1 | 1 | - | 4 | 1 | 2 | Number | |
1.16 | - | 0.84 | 0.81 | 0.84 | 0.88 | 0.86 | 1.05 | 0.92 | - | 0.89 | 0.92 | 0.88 | Mean i | |||||
Special plan | α + β | 1 | 1.11 | 1 | 1 | - | 2 | - | - | - | - | - | - | - | 1 | - | - | Number |
0.99 | 1.47 | - | 1.04 | - | - | - | - | - | - | - | 0.99 | - | - | Mean i |
Basic Functional Space Type | Number | Functional Space with the Highest i | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sleeping Space | H | K(c,h) | K | KA | BR | DR | LR | S | LA | SA | TO | W | MU | ST | ||||
General plan | α | 14 | 10 | 4 (α2) | 8 (α8) | - | 8 (α8) | 1 | - | - | - | - | - | - | - | - | - | Occur number (as basic functional space) |
β | 13 | 9 | 6 (β4) | 1 (β1) | 2 (β2) | 2 (β2) | - | 2 | - | - | - | - | - | - | - | - | ||
γ | 3 | 1 | 3 | 1 | - | 1 (γ1) | - | 1 (γ1) | 1 | - | - | - | - | - | ||||
α + β | 2 | α: 0 β: 2 | - | 2 (α1,β1) | 1 (β1) | - | - | - | - | - | - | - | - | - | - | - | ||
α + γ | 3 | α: 1 γ: 0 | 1 (α1) | - | 1 (α1) | - | - | - | - | - | - | - | - | - | - | |||
β + γ | 9 | β: 7 γ: 0 | 5 (β2) | 4 (β4) | - | 1 (β1) | - | - | - | - | - | - | - | - | - | - | ||
* | 7 | - | 6 | - | 3 | 3 (3) | 1(1) | 3 | 1 | 5 | 1 | 1 | - | 2 | 1 | - | ||
Special plan | α + β | 1 | α: 0 β: 0 | - | 1 (α1) | - | - | - | - | - | - | - | - | - | - | - | - |
Basic Functional Space Type | Function Space with the Highest Control Value (CV) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | K(c,h) | K | KA | BR | DR | LR | S | LA | SA | TO | W | MU | ST | |||
General Plan | α | 4 (4α) | 9 (9α) | 10 (10α) | - | - | - | - | - | - | - | - | - | - | - | Occur number (as basic functional space) |
β | 4 (3β) | 1 (1β) | 3 (3β) | 7 (7β) | - | - | - | - | - | - | - | - | - | - | ||
γ | 2 | - | - | - | 1 (1γ) | 1 (1γ) | 1 | - | - | |||||||
α + β | 2 (2β) | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
α + γ | 2 (2α) | 1 (1α) | - | 3 (3α) | - | - | - | - | - | - | - | - | - | - | ||
β + γ | 3 (2β) | 1 (1β) | 4 (4β) | 1 | - | - | - | - | - | - | - | - | - | |||
* | 5 | - | 3 | - | - | 3 | 1 | 3 | - | 1 | - | - | 1 | - | ||
Special plan | α + β | 1 (1 α + β) | - | - | - | - | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Zhao, S.; Kong, J. Residential Space Organization of the Inner Mongolia Earth Dwellings around the Yellow River Basin. Sustainability 2023, 15, 15027. https://doi.org/10.3390/su152015027
Song J, Zhao S, Kong J. Residential Space Organization of the Inner Mongolia Earth Dwellings around the Yellow River Basin. Sustainability. 2023; 15(20):15027. https://doi.org/10.3390/su152015027
Chicago/Turabian StyleSong, Jingying, Shichen Zhao, and Jing Kong. 2023. "Residential Space Organization of the Inner Mongolia Earth Dwellings around the Yellow River Basin" Sustainability 15, no. 20: 15027. https://doi.org/10.3390/su152015027
APA StyleSong, J., Zhao, S., & Kong, J. (2023). Residential Space Organization of the Inner Mongolia Earth Dwellings around the Yellow River Basin. Sustainability, 15(20), 15027. https://doi.org/10.3390/su152015027