Study on the Response of the Summer Land Surface Temperature to Urban Morphology in Urumqi, China
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.3. LST Inversion and Grading
2.3.1. Top of Atmosphere (TOA) Spectral Radiance
2.3.2. TOA Brightness Temperature
2.3.3. Calculation of Surface-Specific Emissivity
2.3.4. Determination of Atmospheric Transmittance
2.3.5. Calculation of the Mean Atmospheric Temperature
2.3.6. LST Calculations
2.3.7. LST Classification
2.4. Selection and Calculation of Indicators
2.5. Geographically Weighted Regression Model
3. Results
3.1. Selection of Optimal Spatial Scale
3.2. Distribution Characteristics of LST and Urban Morphology Indicators
3.2.1. Characterization of the LST Spatial Distribution
3.2.2. Characteristics of the Spatial Distribution of Urban Morphology Indicators
3.3. Analysis of the Impact of Urban Morphology Indicators on LST
3.3.1. Comparison of the OLS and the GWR Model
3.3.2. Analysis Based on GWR Models
4. Discussion
4.1. Two Approaches to Optimal Spatial Scale Selection
4.2. Differential Impact of Urban Morphology Indicators on LST in Different Cities
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN-Habitat. World Cities Report 2016: Urbanization and Development-Emerging Futures. Available online: https://unhabitat.org/world-cities-report-2016 (accessed on 24 June 2023).
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Li, Y.F.; Schubert, S.; Kropp, P.J.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- He, B.J.; Ding, L.; Prasad, D. Enhancing urban ventilation performance through the development of precinct ventilation zones: A case study based on the Greater Sydney, Australia. Sustain. Cities Soc. 2019, 47, 101472. [Google Scholar] [CrossRef]
- Guo, G.H.; Zhou, X.Q.; Wu, Z.F.; Xiao, R.B.; Chen, Y.B. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou. China. Environ. Modell. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Rao, P.; Tassinari, P.; Torreggiani, D. Exploring the land-use urban heat island nexus under climate change conditions using machine learning approach: A spatio-temporal analysis of remotely sensed data. Heliyon 2023, 9, e18423. [Google Scholar] [CrossRef]
- Li, X.X.; Norford, K.L. Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban. Clim. 2016, 16, 59–74. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.C.; Lu, J.; Wang, J. Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies. Sustainability 2021, 13, 762. [Google Scholar] [CrossRef]
- Bai, X.M.; Shi, P.J.; Liu, Y.S. Realizing China’s Urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Huang, L.; Zhai, J. Divergent trends of urban thermal environmental characteristics in China. Clean. Prod. 2021, 287, 125053. [Google Scholar] [CrossRef]
- Cai, Z.; Demuzere, M.; Tang, Y.; Wan, Y.M. The characteristic and transformation of 3D urban morphology in three Chinese mega-cities. Cities 2022, 131, 103988. [Google Scholar] [CrossRef]
- Zhang, P.; Ghosh, D.; Park, S. Spatial measures and methods in sustainable urban morphology: A systematic review. Landscape Urban. Plan. 2023, 237, 104776. [Google Scholar] [CrossRef]
- Lu, Y.P.; Yue, W.Z.; Huang, Y.P. Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China. Int. J. Environ. Res. Public. Health 2021, 18, 9987. [Google Scholar] [CrossRef]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of Urban Heat Island Based on the Relationship between Land Surface Temperature and Land Use/Land Cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Hamoodi, M.N. Investigating the Effects of Armed and Political Conflicts on the Land Use/Cover Change and Surface Urban Heat Islands: A Case Study of Baghdad, Iraq. J. Indian Soc. Remote 2021, 49, 1493–1506. [Google Scholar] [CrossRef]
- Myint, S.W.; Zheng, B.J.; Talen, E.; Fan, C.; Kaplan, S.; Middel, A.; Smith, M.; Huang, H.P.; Brazel, A. Does the spatial arrangement of urban landscape matter? Examples of urban warming and cooling in Phoenix and Las Vegas. Ecosyst. Health Sust. 2015, 58, 261–280. [Google Scholar] [CrossRef]
- Kim, J.I.; Jun, M.J.; Yeo, C.H.; Kwon, K.H.; Hyun, J.Y. The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul. Sustainability 2019, 11, 7056. [Google Scholar] [CrossRef]
- Banerjee, S.; Ching, C.N.Y.; Yik, S.K.; Dzyuban, Y.; Crank, J.P.; Rachel, P.X.Y.; Chow, T.L.W. Analyzing impacts of urban morphological variables and density on outdoor microclimate for tropical cities: A review and a framework proposal for future research directions. Build. Environ. 2022, 225, 109646. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yu, W.B.; Ren, J.Y.; Xiao, X.M.; Xia, C.J.H. Relationship between urban spatial form and seasonal land surface temperature under different grid scales. Sustain. Cities Soc. 2023, 89, 104374. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.P.; Liu, X.; Zhang, B.L. Complexity of the relationship between 2D/3D urban morphology and the land surface temperature: A multiscale perspective. Environ. Sci. Pollut. R. 2021, 28, 66804–66818. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Luan, W.X.; Yang, J.; Guo, A.D.; Su, M.; Tian, C. The influences of 2D/3D urban morphology on land surface temperature at the block scale in Chinese megacities. Urban. Clim. 2023, 49, 101553. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, X.L.; Wu, F.; Luo, W.; Liu, L.; Sun, Z.Y. Urban ventilation network model: A case study of the core zone of capital function in Beijing metropolitan area. J. Clean. Prod. 2017, 168, 526–535. [Google Scholar] [CrossRef]
- He, B.J.; Ding, L.; Prasad, D. Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustain. Cities Soc. 2020, 60, 102289. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Atmospheres 2003, 109, 4688. [Google Scholar]
- Chatterjee, R.S.; Singh, N.; Thapa, S.; Sharma, D.; Kumar, D. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs. Int. J. Appl. Earth Obs. 2017, 58, 264–277. [Google Scholar] [CrossRef]
- Qin, Z.; Dall’Olmo, G.; Karnieli, A.; Berliner, P. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data. Atmospheres 2001, 106, 22655–22670. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote. Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Romote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Jin, D.D.; Gong, Z.N. Algorithms Comparison of Land Surface Temperature Retrieval from Landsat Series Data: A Case Study in Qiqihar, China. Remote Sens. Remote Sens. Technol. Appl. 2018, 33, 830–841. [Google Scholar]
- Li, B.; Wang, H.; Qin, M.; Zhang, P. Comparative study on the correlations between NDVI, NDMI and LST. Prog. Geogr. 2017, 36, 585–596. [Google Scholar]
- Hu, D.Y.; Qiao, K.; Wang, X.L.; Zhao, L.M.; Ji, G.H. Land surface temperature retrieval from Landsat 8 thermal infrared data using mono-window algorithm. Natl. Remote Sens. Bull. 2015, 19, 964–976. [Google Scholar]
- Su, H.Y.; Han, G.F.; Li, L.; Qin, H.Q. The impact of macro-scale urban form on land surface temperature: An empirical study based on climate zone, urban size and industrial structure in China. Sustain. Cities Soc. 2021, 74, 103217. [Google Scholar] [CrossRef]
- Yin, C.H.; Yuan, M.; Lu, Y.P.; Huang, Y.P.; Liu, Y.F. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total. Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Middel, A.; Turner, L.B. Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression. Landscape Ecol. 2019, 34, 681–697. [Google Scholar] [CrossRef]
- Qin, Z.H.; Zhang, M.H.; Arnon, K.; Pedro, B. Mono-window Algorithm for Retrieving Land Surface Temperature from Landsat TM6 data. Acta Geogr. Sin. 2001, 56, 456–466. [Google Scholar]
- Qin, Z.H.; Li, W.J.; Xu, B.; Zhang, W.C. The Estimation of Land Surface Emissivity for Landsat TM6. Remote Sens. Nat. Resour. 2004, 22, 28–36. [Google Scholar]
- Yu, D.; Zhou, W.J.; Tan, J.; Guo, Z.C.; Li, J. Temporal and Spatial Variation Characteristics of Land Surface Temperature in Dongting Lake Region, Hunan Province. Ecol. Environ. Sci. 2014, 23, 1799–1805. [Google Scholar]
- Guo, J.M.; Han, G.F.; Xie, Y.S.; Cai, Z.; Zhao, Y.F. Exploring the relationships between urban spatial form factors and land surface temperature in mountainous area: A case study in Chongqing city, China. Sustain. Cities Soc. 2020, 61, 102286. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, J.M.; Xu, Z.G.; Tang, G.S.; Wang, C.; Chen, J.K. Response of Urban Heat Island Effect to Morphology Characteristics of Buildings and Its Diurnal Variation. Geogr. Geo-Inf. Sci. 2022, 38, 40–46. [Google Scholar]
- Brunsdon, C.; Fotheringham, S.A.; Charlton, E.M. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationary. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Lu, B.B.; Brunsdon, C.; Charlton, M.; Harris, P. Geographically weighted regression with parameter-specific distance metrics. Int. J. Geogr. Inf. Sci. 2017, 31, 982–998. [Google Scholar] [CrossRef]
- Han, D.R.; An, H.M.; Wang, F.; Xu, X.L.; Qiao, Z.; Wang, M.; Sui, X.Y.; Liang, S.Z.; Hou, X.H.; Cai, H.Y.; et al. Understanding seasonal contributions of urban morphology to thermal environment based on boosted regression tree approach. Build. Environ. 2022, 226, 109770. [Google Scholar] [CrossRef]
- Song, X.B.; Huang, H.; Guo, J.; Xiong, M.M. Research on the impact of urban morphology on thermal environment in summer: A case of Tianjin central city. Ecol. Environ. Sci. 2021, 30, 2165–2174. [Google Scholar]
- Song, X.B.; Li, G.; Liang, D.P.; Huang, H.; Guo, J. Relationship between urban spatial morphology factors and land surface temperature in summer: A case of the central district of Tianjing. Sci. Geogr. Sin. 2023, 43, 360–369. [Google Scholar]
- Guo, A.D.; Yang, J.; Xiao, X.M.; Xia, J.H.; Jin, C.; Li, X.M. Influences of urban spatial form on urban heat island effects at the community level in China. Sustain. Cities Soc. 2020, 53, 101972. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.Y.; Liu, Y.Y.; Tian, T.; Wu, J.; Dong, Q.Q.; Peng, S.J.; Che, Y. The influence of the landscape pattern on the urban land surface temperature varies with the ratio of land components: Insights from 2D/3D building/vegetation metrics. Sustain. Cities Soc. 2022, 78, 13599. [Google Scholar] [CrossRef]
- Sun, F.Y.; Liu, M.; Wang, Y.C.; Wang, H.; Che, Y. The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects. J. Clean. Prod. 2020, 258, 120706. [Google Scholar] [CrossRef]
Data Sets | Data Resources | Spatial Resolution |
---|---|---|
Administrative boundaries | https://www.webmap.cn/ (accessed on 20 January 2023) | - |
DEM | https://www.gscloud.cn/ (accessed on 20 January 2023) | 30 m |
Road data sets | https://www.webmap.cn/ (accessed on 20 January 2023) | - |
Landsat 8 OLI/TIRS data sets | https://earthexplorer.usgs.gov/ (accessed on 15 March 2023) | 30 m |
Building data sets | https://www.tianditu.gov.cn/ (accessed on 27 August 2022) | - |
Grade | Grading Standard | Calculation Result |
---|---|---|
Low LST zone | Ts ≤ Tm − 2.5Tstd | 6.95 < Ts ≤ 28.82 |
Relatively low LST zone | Tm − 2.5Tstd < Ts ≤ Tm − 1.5Tstd | 28.82 < Ts ≤ 32.94 |
Medium LST zone | Tm − 1.5Tstd < Ts ≤ Tm − 0.5Tstd | 32.94 < Ts ≤ 37.06 |
Relatively high LST zone | Tm − 0.5Tstd < Ts ≤ Tm + 0.5Tstd | 37.06 < Ts ≤ 41.18 |
High LST zone | Tm + 0.5Tstd < Ts ≤ Tm + 1.5Tstd | 41.18 < Ts ≤ 45.30 |
Extremely high LST zone | Tm + 1.5Tstd < Ts ≤ Tm + 2.5Tstd | 45.30 < Ts ≤ 48.85 |
Indicator | Definition | Computing Formula | Description |
---|---|---|---|
Building coverage ratio (BCR) | The ratio of total building footprint area in a unit grid to unit grid area | Where i is the ith unit grid; M is the total area of building footprint in a unit grid; A is the area of a unit grid(%) | |
Mean building height (BH_mean) | The mean height of buildings in a unit grid | Where H is the sum of the height of buildings in the ith unit grid; j is the number of buildings in a unit grid(m) | |
Floor area ratio (FAR) | The ratio of total floor area to unit grid area | Where j is the jth building in a unit grid; E is the floor area of a building in a unit grid; F is the number of floors of a building in a unit grid(%) | |
Mean sky view factor (SVF_mean) | The ratio between the radiation received by a planar surface and the entire hemispheric radiating environment | Where N is the total number of sectors in the sky hemisphere that are obscured by obstacles; βi is the angle of maximum building height of each sector; ai is the azimuthal angle of each sector(%) |
Scale | OLS | GWR | ||
---|---|---|---|---|
AdjR2 | AICc | AdjR2 | AICc | |
100 m | 0.06 | 53,203.39 | 0.380 | 49,373.13 |
200 m | 0.105 | 14,669.77 | 0.396 | 13,688.73 |
300 m | 0.107 | 6676.82 | 0.325 | 6353.53 |
400 m | 0.119 | 3763.88 | 0.284 | 3629.37 |
500 m | 0.084 | 2590.84 | 0.183 | 2540.70 |
Indicator | Mean | Median | Min | Max | S.D. |
---|---|---|---|---|---|
BCR | 6.524 | 4.837 | −6.109 | 28.442 | 5.665 |
BH_mean | −0.312 | −0.104 | −0.523 | 0.313 | 0.143 |
FAR | 0.032 | 0.021 | −2.529 | 3.524 | 1.047 |
SVF_mean | −1.005 | −1.086 | −14.660 | 10.106 | 4.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Chen, X.; Xie, S.; Zhang, Y. Study on the Response of the Summer Land Surface Temperature to Urban Morphology in Urumqi, China. Sustainability 2023, 15, 15255. https://doi.org/10.3390/su152115255
Fan J, Chen X, Xie S, Zhang Y. Study on the Response of the Summer Land Surface Temperature to Urban Morphology in Urumqi, China. Sustainability. 2023; 15(21):15255. https://doi.org/10.3390/su152115255
Chicago/Turabian StyleFan, Jiayu, Xuegang Chen, Siqi Xie, and Yuhu Zhang. 2023. "Study on the Response of the Summer Land Surface Temperature to Urban Morphology in Urumqi, China" Sustainability 15, no. 21: 15255. https://doi.org/10.3390/su152115255
APA StyleFan, J., Chen, X., Xie, S., & Zhang, Y. (2023). Study on the Response of the Summer Land Surface Temperature to Urban Morphology in Urumqi, China. Sustainability, 15(21), 15255. https://doi.org/10.3390/su152115255