Thermal Characteristics and Temperature Distribution of Asphalt Mixtures Containing Residues from Municipal Solid Waste Incineration
Abstract
:1. Introduction
- (1)
- Research on the effects of MSWI residues with hollow microsphere structures on the thermal behavior of asphalt roads is still relatively limited;
- (2)
- The numerical studies in the literature do not focus on the effects of MSWIRs with hollow microsphere structures on the thermal behavior of flexible pavements;
- (3)
- The interaction between MSWIRs in asphalt and the environment has not been validated through field investigations.
- (1)
- Investigating the use of MSWIRs as fillers in asphalt mixtures whose thermal characteristics must be measured;
- (2)
- Developing a three-dimensional finite element model (FEM) to investigate temperature distributions;
- (3)
- Analyzing the thermal resistance of asphalt mixtures with MSWIRs and their effectiveness in countering urban heat islands.
2. Materials and Methods
2.1. Materials
2.2. Methods
- The DFLUX subroutine calculated the daily solar radiation absorbed by the surface assuming an absorption coefficient equal to 0.88–0.95. Equations (2) and (3) describe the solar radiation tendency
- Equation (4) describes the surface heat transfer according to the FILM subroutine, which results from the temperature difference between air and the asphalt surface
- Based on the Stefan–Boltzmann law, Equation (7) was used to calculate the surface radiation of the pavement ()
3. Results and Discussion
4. Conclusions
- (1)
- Incorporating MSWIR reduces the thermal conductivity of asphalt mixtures from 1.4356 to 1.1362 W/(m·K) compared with using LF. The specific heat capacity of the mixture increases from 0.385 to 0.9554 J/(kg·K) because of the hollow microsphere structure of the MSWI residues.
- (2)
- Thermal diffusivity decreases by 0.1955 mm2/s, indicating enhanced thermal resistance. Asphalt with MSWIR transfers less heat to lower layers at the same solar radiation level, which is conducive to alleviating the heat island effect.
- (3)
- The temperature and heat flux gradients indicate a time lag for heat stored in the daytime and released at night. The heating accumulation and dissipation rate exhibit a positive correlation with the MSWIR content.
- (4)
- Compared with the daily maximum temperature of the asphalt mixture, the daily heat flux can elucidate the thermal absorption and conductive mechanism at a more specific level, helping us to understand pavement heat transfer.
- (5)
- The indoor irradiation test indicated the exacerbated urban heat island effect during a hot summer can cause an increase of about 2.5 °C in the surface layer temperature, which should be considered before material design and proposing MSWIR applications. Therefore, the proposed approach, combined with cool pavement technologies, can balance physical, mechanical, functional, and environmental goals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elnaml, I.; Liu, J.; Mohammad, L.N.; Wasiuddin, N.; Cooper, S.B. Developing Sustainable Asphalt Mixtures Using High-Density Polyethylene Plastic Waste Material. Sustainability 2023, 15, 9897. [Google Scholar] [CrossRef]
- Monticelli, R.; Roberto, A.; Romeo, E.; Tebaldi, G. Mixed Design Optimization of Polymer-Modified Asphalt Mixtures (PMAs) Containing Carton Plastic Packaging Wastes. Sustainability 2023, 15, 10574. [Google Scholar] [CrossRef]
- Wong, N.H.; Jusuf, S.K.; Syafii, N.I.; Chen, Y.; Hajadi, N.; Sathyanarayanan, H.; Manickavasagam, Y.V. Evaluation of the impact of the surrounding urban morphology on building energy consumption. Sol. Energy 2011, 85, 57–71. [Google Scholar] [CrossRef]
- Xu, L.; Magar, S.; Zhao, Z.; Xiang, Q.; Xiao, F. Rheological and anti-moisture characteristics of rubberized reclaimed asphalt pavement with interfacial bond behavior. J. Clean. Prod. 2023, 391, 136172. [Google Scholar] [CrossRef]
- Khan, N.; Karim, F.; Latif Qureshi, Q.B.A.I.; Mufti, S.A.; Rabbani, M.B.A.; Khan, M.S.; Khan, D. Effect of Fine Aggregates and Mineral Fillers on the Permanent Deformation of Hot Mix Asphalt. Sustainability 2023, 15, 10646. [Google Scholar] [CrossRef]
- Abbà, A.; Collivignarelli, M.C.; Sorlini, S.; Bruggi, M. On the reliability of reusing bottom ash from municipal solid waste incineration as aggregate in concrete. Compos. Part B Eng. 2014, 58, 502–509. [Google Scholar] [CrossRef]
- Stabile, P.; Bello, M.; Petrelli, M.; Paris, E.; Carroll, M.R. Vitrification treatment of municipal solid waste bottom ash. Waste Manag. 2019, 95, 250–258. [Google Scholar] [CrossRef]
- Cho, B.H.; Nam, B.H.; An, J.; Youn, H. Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials-A Review. Materials 2020, 13, 3143. [Google Scholar] [CrossRef]
- Phummiphan, I.; Horpibulsuk, S.; Rachan, R.; Arulrajah, A.; Shen, S.-L.; Chindaprasirt, P. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J. Hazard. Mater. 2018, 341, 257–267. [Google Scholar] [CrossRef]
- Lynn, C.J.; Ghataora, G.S.; Obe, R.K.D. Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. Int. J. Pavement Res. Technol. 2017, 10, 185–201. [Google Scholar] [CrossRef]
- Hoy, M.; Horpibulsuk, S.; Rachan, R.; Chinkulkijniwat, A.; Arulrajah, A. Recycled asphalt pavement—Fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. Sci. Total Environ. 2016, 573, 19–26. [Google Scholar] [CrossRef]
- Roessler, J.G.; Townsend, T.G.; Ferraro, C.C. Use of leaching tests to quantify trace element release from waste to energy bottom ash amended pavements. J. Hazard. Mater. 2015, 300, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Ren, F.; Nguyen, M.Q.; Ahamed, A.; Yin, K.; Chan, W.P.; Chang, V.W.-C. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew. Sustain. Energy Rev. 2017, 79, 24–38. [Google Scholar] [CrossRef]
- Xu, L.; Du, Y.; Loprencipe, G.; Moretti, L. Rheological and Fatigue Characteristics of Asphalt Mastics and Mixtures Containing Municipal Solid Waste Incineration (MSWI) Residues. Sustainability 2023, 15, 8356. [Google Scholar] [CrossRef]
- del Valle-Zermeño, R.; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manag. 2013, 33, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Ling, X.; Haibin, D.; Deyi, D.; Hao, W.; Weidong, L. Evaluation of thermal behavior and high-temperature performances of asphalt mixture containing fly ash cenosphere. Constr. Build. Mater. 2020, 245, 118429. [Google Scholar] [CrossRef]
- Aysen Lav, M.; Hilmi Lav, A. Effects of stabilization on resilient characteristics of fly ash as pavement material. Constr. Build. Mater. 2014, 54, 10–16. [Google Scholar] [CrossRef]
- Du, Y.; Xu, L.; Deng, H.; Deng, D.; Ma, C.; Liu, W. Characterization of thermal, high-temperature rheological and fatigue properties of asphalt mastic containing fly ash cenosphere. Constr. Build. Mater. 2020, 233, 117345. [Google Scholar] [CrossRef]
- Del Serrone, G.; Peluso, P.; Moretti, L. Photovoltaic road pavements as a strategy for low-carbon urban infrastructures. Heliyon 2023, 17, e19977. [Google Scholar] [CrossRef]
- Moretti, L.; Cantisani, G.; Carpiceci, M.; D’Andrea, A.; Del Serrone, G.; Di Mascio, P.; Loprencipe, G. Effect of Sampietrini Pavers on Urban Heat Islands. Int. J. Environ. Res. Public. Health 2021, 18, 13108. [Google Scholar] [CrossRef]
- Allegrini, E.; Vadenbo, C.; Boldrin, A.; Astrup, T.F. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. J. Environ. Manag. 2015, 151, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Kiihnl, L.; Braham, A. Exploring the influence of pavement preservation, maintenance, and rehabilitation on Arkansas’ highway network: An education case study. Int. J. Pavement Eng. 2021, 22, 570–581. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.; Zong, Q.; Xiao, F. Chemical, morphological and rheological investigations of SBR/SBS modified asphalt emulsions with waterborne acrylate and polyurethane. Constr. Build. Mater. 2021, 272, 121972. [Google Scholar] [CrossRef]
- Androutsopoulos, A.V.; Stavrakakis, G.M.; Damasiotis, M. Cool Roof Impacts on a School-building Thermal and Energy Performance in Athens, Greece. Procedia Environ. Sci. 2017, 38, 178–186. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Xiao, F.; Ei-Badawy, S.; Awed, A. Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Appl. Energy 2021, 281, 116077. [Google Scholar] [CrossRef]
- Gao, J.; Yao, Y.; Song, L.; Xu, J.; Yang, J. Determining the maximum permissible content of recycled asphalt pavement stockpile in plant hot-mix recycled asphalt mixtures considering homogeneity: A case study in China. Case Stud. Constr. Mater. 2022, 16, e00961. [Google Scholar] [CrossRef]
- Liu, H.; Luo, R.; Xi, L.; Hu, L. Development of Two-Step Secant Method to Interpret the Flow Number Test Data of Asphalt Mixtures. J. Mater. Civ. Eng. 2020, 32, 111. [Google Scholar] [CrossRef]
- Qin, Y.; Hiller, J.E. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014, 85, 389–399. [Google Scholar] [CrossRef]
- Kong, L.; Xu, L.; Du, Y.; Jin, J.; Loprencipe, G.; Moretti, L. Use of Hybrid Mineral Filler with High Emissivity in Asphalt Mixture for Cooling Road Pavements. Materials 2023, 16, 175. [Google Scholar] [CrossRef]
- Li, Z.; Yu, X.; Liang, Y.; Wu, S. Carbon Nanomaterials for Enhancing the Thermal, Physical and Rheological Properties of Asphalt Binders. Materials 2021, 14, 2585. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.; Xiao, Y.; Wang, P.; Liu, X. Influence of graphite on the thermal characteristics and anti-ageing properties of asphalt binder. Constr. Build. Mater. 2014, 68, 220–226. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, H.; Liu, Z.; Liu, D.; He, D.; Yu, T. The heat flux evolution of porous asphalt mixture based on meso-structure and its influence on heat transfer property. Therm. Sci. Eng. Prog. 2023, 43, 102020. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, J.; Dai, Y.; Zhou, L.; Ni, F. Thermal Property Evaluation of Porous Asphalt Concrete Based on Heterogeneous Meso-Structure Finite Element Simulation. Appl. Sci. 2020, 10, 1671. [Google Scholar] [CrossRef]
- Hassn, A.; Aboufoul, M.; Wu, Y.; Dawson, A.; Garcia, A. Effect of air voids content on thermal properties of asphalt mixtures. Constr. Build. Mater. 2016, 115, 327–335. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Wang, H.; Li, L. Evaluation of thermal conductivity of asphalt concrete with heterogeneous microstructure. Appl. Eng. 2015, 84, 368–374. [Google Scholar] [CrossRef]
- Mirzanamadi, R.; Johansson, P.; Grammatikos, S.A. Thermal properties of asphalt concrete: A numerical and experimental study. Constr. Build. Mater. 2018, 158, 774–785. [Google Scholar] [CrossRef]
- Mu, K.; Chen, J.; Mu, Q.; Garg, A.; Gao, Z.; Li, Y. Development of a microstructure-based numerical approach for analyzing heat transfer within the asphalt mixture. Constr. Build. Mater. 2020, 260, 119890. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, S.; Gu, X.; Dorjee, N.; Bo, W. Inducing directional heat transfer by enhancing directional thermal conductivity of asphalt mixtures for improving asphalt solar collectors. Constr. Build. Mater. 2021, 267, 121731. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S. Transferring heat accumulated by asphalt pavement from inside to outside through carbon fibers. Constr. Build. Mater. 2023, 383, 131314. [Google Scholar] [CrossRef]
- Shamsaei, M.; Carter, A.; Vaillancourt, M. A Review on the Heat Transfer in Asphalt Pavements and Urban Heat Island Mitigation Methods. Constr. Build. Mater. 2022, 359, 129350. [Google Scholar] [CrossRef]
- Górszczyk, J.; Malicki, K. Comparison of temperature distributions in road pavement obtained in field tests and using transient thermal analysis. MATEC Web Conf. 2019, 262, 05007. [Google Scholar] [CrossRef]
- Balreddy, M.S.; Nethra, P.; Naganna, S.R. Performance Evaluation of Open-Graded Bituminous Concrete Modified with Natural Fibers. Sustainability 2023, 15, 11952. [Google Scholar] [CrossRef]
- Khorshidi, M.; Goli, A.; Orešković, M.; Khayambashi, K.; Ameri, M. Performance Evaluation of Asphalt Mixtures Containing Different Proportions of Alternative Materials. Sustainability 2023, 15, 13314. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Chinese Standard: Beijing, China, 2011.
- JTG E42-2005; Test Methods of Aggregate for Highway Engineering. Chinese Standard: Beijing, China, 2004.
- JTG F40-2004; Technical Specifications for Construction of Highway Asphalt Pavements. Chinese Standard: Beijing, China, 2004.
- Hatvani-Kovacs, G.; Belusko, M.; Skinner, N.; Pockett, J.; Boland, J. Heat stress risk and resilience in the urban environment. Sustain. Cities Soc. 2016, 26, 278–288. [Google Scholar] [CrossRef]
- He, Q.; Tapia, F.; Reith, A. Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review. Renew. Sustain. Energy Rev. 2023, 186, 113660. [Google Scholar] [CrossRef]
- Rossi, F.; Pisello, A.L.; Nicolini, A.; Filipponi, M.; Palombo, M. Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model. Appl. Energy 2014, 114, 621–631. [Google Scholar] [CrossRef]
- Han, D.; Liu, G.; Zhao, Y.; Pan, Y.; Yang, T. Research on thermal properties and heat transfer of asphalt mixture based on 3D random reconstruction technique. Constr. Build. Mater. 2021, 270, 121393. [Google Scholar] [CrossRef]
- Buchin, O.; Hoelscher, M.-T.; Meier, F.; Nehls, T.; Ziegler, F. Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy Build. 2016, 114, 27–37. [Google Scholar] [CrossRef]
- Sheng, L.; Tang, X.; You, H.; Gu, Q.; Hu, H. Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecol. Indic. 2017, 72, 738–746. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Fernández, F.J.; Alvarez-Vázquez, L.J.; García-Chan, N.; Martínez, A.; Vázquez-Méndez, M.E. Optimal location of green zones in metropolitan areas to control the urban heat island. J. Comput. Appl. Math. 2015, 289, 412–425. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D. Global cooling updates: Reflective roofs and pavements. Energy Build. 2012, 55, 2–6. [Google Scholar] [CrossRef]
- Santamouris, M.; Ban-Weiss, G.; Osmond, P.; Paolini, R.; Synnefa, A.; Cartalis, C.; Muscio, A.; Zinzi, M.; Morakinyo, T.E.; Ng, E.; et al. Progress in urban greenery mitigation science—Assessment methodologies advanced technologies and impact on cities. J. Civ. Eng. Manag. 2018, 24, 638–671. [Google Scholar] [CrossRef]
- Hendel, M.; Parison, S.; Grados, A.; Royon, L. Which pavement structures are best suited to limiting the UHI effect? A laboratory-scale study of Parisian pavement structures. Build. Environ. 2018, 144, 216–229. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Qin, Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Cheela, V.R.S.; John, M.; Biswas, W.; Sarker, P. Combating Urban Heat Island Effect—A Review of Reflective Pavements and Tree Shading Strategies. Buildings 2021, 11, 93. [Google Scholar] [CrossRef]
- Kyriakodis, G.-E.; Santamouris, M. Using reflective pavements to mitigate urban heat island in warm climates—Results from a large scale urban mitigation project. Urban. Clim. 2018, 24, 326–339. [Google Scholar] [CrossRef]
- Manteghi, G.; Mostofa, T. Evaporative Pavements as an Urban Heat Island (UHI) Mitigation Strategy: A Review. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2019, 11, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Tan, K.; Santamouris, M. Evaporative cooling performance estimation of pervious pavement based on evaporation resistance. Build. Environ. 2022, 217, 109083. [Google Scholar] [CrossRef]
- Peluso, P.; Persichetti, G.; Moretti, L. Effectiveness of Road Cool Pavements, Greenery, and Canopies to Reduce the Urban Heat Island Effects. Sustainability 2022, 14, 16027. [Google Scholar] [CrossRef]
Property | Unit | Result | Technical Requirement | Test Method |
---|---|---|---|---|
Penetration, 25 °C, 100 g/5 s | 0.1 mm | 71.2 | 60–80 | T 0604 [44] |
Softening point | °C | 46.3 | ≥45 | T 0606 [44] |
Ductility, 10 °C | cm | 38 | ≥20 | T 0605 [44] |
Ductility, 15 °C | cm | >150 | ≥100 | T 0605 [44] |
Specific gravity (15 °C) | g/cm3 | 1.039 | - | T 0603 [44] |
Aggregate Property | Bulk Relative Density (g/cm3) | Apparent Relative Density (g/cm3) | Water Absorption (%) |
---|---|---|---|
10–15 mm | 2.704 | 2.735 | 0.45 |
5–10 mm | 2.686 | 2.720 | 0.44 |
3–5 mm | 2.635 | 2.743 | 1.41 |
0–3 mm | 2.621 | 2.663 | 1.56 |
Filler property | Acronym | Appearance | Density (g/cm3) |
Limestone filler | LF | White powder | 2.77 |
MSWI residue | MSWIR | Gray spherical particles | 0.72 |
Sieve size (mm) | 16.0 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
Passing ratio by weight (%) | 100 | 90.2 | 63.4 | 26.5 | 17.7 | 15.4 | 13.1 | 11.2 | 10.5 | 9.8 | |
Mixture type | Control Mixture | Mixture #1 | Mixture #2 | Mixture #3 | Mixture #4 | ||||||
Mixture number | 1 | 2 | 3 | 4 | 5 | ||||||
Filler ratio (% by volume) | LF | 100 | 75 | 50 | 25 | 0 | |||||
MSWIR | 0 | 25 | 50 | 75 | 100 | ||||||
Mass ratio (% by weight) | LF | 9.6 | 7.2 | 4.8 | 2.4 | 0 | |||||
MSWIR | 0 | 0.6 | 1.2 | 1.9 | 2.5 |
Mixture | MS (kN) | FL (0.1 mm) | VV (%) | VMA (%) | VFA (%) | ρ (g/cm3) |
---|---|---|---|---|---|---|
Control Mixture | 12.04 | 30.6 | 4.29 | 17.74 | 74.78 | 2.389 |
Mixture #1 | 11.87 | 31.5 | 4.75 | 17.98 | 73.45 | 2.363 |
Mixture #2 | 11.81 | 31.3 | 5.31 | 18.41 | 72.44 | 2.331 |
Mixture #3 | 10.94 | 32.2 | 5.93 | 19.47 | 71.08 | 2.307 |
Mixture #4 | 10.42 | 32.6 | 6.12 | 20.87 | 70.53 | 2.282 |
Mixture | λ (W/(m·K)) | Testing Error (W/(m·K)) |
---|---|---|
Control Mixture | 1.4356 | 0.0206 |
Mixture #1 | 1.2964 | 0.0248 |
Mixture #2 | 1.2401 | 0.0101 |
Mixture #3 | 1.1846 | 0.0292 |
Mixture #4 | 1.1362 | 0.0052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Alae, M.; Du, Y.; Loprencipe, G.; Peluso, P.; Moretti, L. Thermal Characteristics and Temperature Distribution of Asphalt Mixtures Containing Residues from Municipal Solid Waste Incineration. Sustainability 2023, 15, 15612. https://doi.org/10.3390/su152115612
Xu L, Alae M, Du Y, Loprencipe G, Peluso P, Moretti L. Thermal Characteristics and Temperature Distribution of Asphalt Mixtures Containing Residues from Municipal Solid Waste Incineration. Sustainability. 2023; 15(21):15612. https://doi.org/10.3390/su152115612
Chicago/Turabian StyleXu, Ling, Mohsen Alae, Yinfei Du, Giuseppe Loprencipe, Paolo Peluso, and Laura Moretti. 2023. "Thermal Characteristics and Temperature Distribution of Asphalt Mixtures Containing Residues from Municipal Solid Waste Incineration" Sustainability 15, no. 21: 15612. https://doi.org/10.3390/su152115612
APA StyleXu, L., Alae, M., Du, Y., Loprencipe, G., Peluso, P., & Moretti, L. (2023). Thermal Characteristics and Temperature Distribution of Asphalt Mixtures Containing Residues from Municipal Solid Waste Incineration. Sustainability, 15(21), 15612. https://doi.org/10.3390/su152115612