Blessing or Curse? The Impact of Digital Technologies on Carbon Efficiency in the Agricultural Sector of China
Abstract
:1. Introduction
2. Literature Review
2.1. Studies on Agricultural Carbon Emissions
2.1.1. Data Determinant of Agricultural Carbon Emissions
2.1.2. Factors Influencing Agricultural Carbon Emissions
2.2. Studies on the Digital Economy
2.2.1. Measurement of the Digital Economy Development Index
2.2.2. Digital Economy and Agriculture
2.2.3. Digital Economy and Carbon Emissions
2.3. Digital Technology Index System Construction and Measurement
3. Empirical Study of the Impact of Digital Technology on the Carbon Intensity of Agricultural Emissions
3.1. Model Setup
3.2. Data Sources and Descriptive Statistical Analysis
3.3. Benchmark Regression Results
3.4. Heterogeneity Test
3.5. Robustness Tests
4. Conclusions, Policy Recommendations, and Research Outlook
4.1. Conclusions
4.2. Policy Recommendations
4.3. Research Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, J.; Zhong, S.; Xiang, G. Environmental regulation, directed technical change, and economic growth: Theoretic model and evidence from China. Int. Reg. Sci. Rev. 2019, 42, 519–549. [Google Scholar] [CrossRef]
- Guo, B.; Wang, Y.; Zhang, H.; Liang, C.; Feng, Y.; Hu, F. Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities. Econ. Model. 2023, 120, 106194. [Google Scholar] [CrossRef]
- Guo, X.; Zhong, S. Unintended consequences: How does digital inclusive finance affect migrants’ urban settlement intentions? Int. Rev. Financ. Anal. 2023, 89, 102766. [Google Scholar] [CrossRef]
- Tian, H.; Guan, H. Research on the Impact of Digital Economy on Carbon Emissions from Grain Production—Empirical Evidence from 108 Prefectural Cities in the Yangtze River Economic Belt. Agric. Resour. Reg. China[J/OL]. Available online: http://kns.cnki.net/kcms/detail/11.3513.S.20220818.1050.012.html (accessed on 14 January 2023).
- Paustian, K.; Cole, C.V.; Sauerbeck, D.; Sampson, N. CO2 mitigation by agriculture: An overview. Clim. Chang. 1998, 40, 135–162. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, M.; Moran, D.; Eory, V.; Rees, R.M.; Barnes, A.; Topp, C.F.; Ball, B.; Hoad, S.; Wall, E.; McVittie, A.; et al. Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the U.K. Agric. Syst. 2010, 103, 198–209. [Google Scholar] [CrossRef]
- Vleeshouwers, L.M.; Verhagen, A. Carbon emission and sequestration by agricultural land use: A model study for Europe. Glob. Change Biol. 2002, 8, 519–530. [Google Scholar] [CrossRef]
- Xu, H.; Pan, X.; Li, J.; Feng, S.; Guo, S. Comparing the impacts of the carbon tax and carbon emission trading, which regulation is more effective? J. Environ. Manag. 2023, 330, 117156. [Google Scholar] [CrossRef]
- Pamuk, H.; Bulte, E.; Adekunle, A.A. Do decentralized innovation systems promote agricultural technology adoption? Experimental evidence from Africa. Food Policy 2014, 44, 227–236. [Google Scholar] [CrossRef]
- Xu, L.; Dong, D.; Zhang, J.F.; Li, L. System simulation and policy optimization of agricultural carbon emissions in Hubei province based on S.D. model. Resour. Dev. Mark 2017, 33, 1031–1035. [Google Scholar]
- Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Gavier Pizarro, G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon emissions from agricultural expansion and intensification in the Chaco. Glob. Change Biol. 2017, 23, 1902–1916. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, A.M.; Galicia, L. Differential influence of land use/cover change on topsoil carbon and microbial activity in low-latitude temperate forests. Agric. Ecosyst. Environ. 2011, 142, 280–290. [Google Scholar] [CrossRef]
- Cui, J.; Sui, P.; Wright, D.L.; Wang, D.; Sun, B.; Ran, M.; Shen, Y.; Li, C.; Chen, Y. Carbon emission of maize-based cropping systems in the North China Plain. J. Clean. Prod. 2019, 213, 300–308. [Google Scholar] [CrossRef]
- Tapscott, D. The Digital Economy: Promise and Peril in the Age of Networked Intelligence; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Berisha-Shaqiri, A.; Berisha-Namani, M. Information technology and the digital economy. Mediterr. J. Soc. Sci. 2015, 6, 78. [Google Scholar] [CrossRef]
- Colecchia, A.; Panizza, A.D.; Köksal-Oudot, E.; Spiezia, V.; Montagnier, P.; Herrera-Gimenez, P.; Serra-Vallejo, C.; Bourassa, F. Measuring the Digital Economy: A New Perspective; OECD: Paris, France, 2014. [Google Scholar]
- Richter, C.; Kraus, S.; Brem, A.; Durst, S.; Giselbrecht, C. Digital entrepreneurship: Innovative business models for the sharing economy. Creat. Innov. Manag. 2017, 26, 300–310. [Google Scholar] [CrossRef]
- Barefoot, K.; Curtis, D.; Jolliff, W.; Nicholson, J.R.; Omohundro, R. Defining and Measuring the Digital Economy; Bureau of Economic Analysis: Washington, DC, USA, 2018. [Google Scholar]
- Demirgüç-Kunt, A.; Klapper, L.F.; Singer, D.; Van Oudheusden, P. The Global Findex Database 2014: Measuring Financial Inclusion Around the World; World Bank Policy Research Working Paper; World Bank: Washington, DC, USA, 2015; p. 7255. [Google Scholar]
- Guo, F.; Kong, S.T.; Wang, J. General patterns and regional disparity of internet finance development in China: Evidence from the Peking University Internet Finance Development Index. China Econ. J. 2016, 9, 253–271. [Google Scholar] [CrossRef]
- Hailu, B.K.; Abrha, B.K.; Weldegiorgis, K.A. Adoption and impact of agricultural technologies on farm income: Evidence from Southern Tigray, Northern Ethiopia. Int. J. Food Agric. Econ. 2014, 2, 91–106. [Google Scholar]
- Irwin, E.G.; Isserman, A.M.; Kilkenny, M.; Partridge, M.D. A century of research on rural development and regional issues. Am. J. Agric. Econ. 2010, 92, 522–553. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Bukht, R.; Heeks, R. Defining, Conceptualising and Measuring the Digital Economy. Int. Organ. Res. J. 2019, 13, 143–172. [Google Scholar]
- Henderson, B.; Frezal, C.; Flynn, E.A. Survey of GHG Mitigation Policies for the Agriculture, Forestry and Other Land Use Sector; OECD Food, Agriculture and Fisheries Papers; OECD: Paris, France, 2020. [Google Scholar]
- Brock, W.A.; Taylor, M. The Green Solow mode. J. Econ. Growth 2010, 15, 127–153. [Google Scholar] [CrossRef]
- Lee, K.H.; Min, B. Green R&D for eco-innovation and its impact on carbon emissions and firm performance. J. Clean. Prod. 2015, 108, 534–542. [Google Scholar]
- Williams, E. Environmental effects of information and communications technologies. Nature 2011, 479, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, M.; Alam, K. Internet usage, electricity consumption and economic growth in Australia: A time series evidence. Telemat. Inform. 2015, 32, 862–878. [Google Scholar] [CrossRef]
- Hittinger, E.; Jaramillo, P. Internet of Things: Energy boon or bane? Science 2019, 364, 326–328. [Google Scholar] [CrossRef]
- Anser, M.K.; Ahmad, M.; Khan, M.A.; Zaman, K.; Nassani, A.A.; Askar, S.E.; Abro, M.M.Q.; Kabbani, A. The role of information and communication technologies in mitigating carbon emissions: Evidence from panel quantile regression. Environ. Sci. Pollut. Res. 2021, 28, 21065–21084. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D.S. Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: Digital twins, immersive realities and new urban economies. Land Use Policy 2021, 101, 105201. [Google Scholar] [CrossRef]
- Fankhauser, S. A practitioner’s guide to a low-carbon economy: Lessons from the U.K. Clim. Policy 2013, 13, 345–362. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The impact of the digital economy on CO2 emissions: A theoretical and empirical analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Zhu, Y.; Huo, C. The Impact of Agricultural Production Efficiency on Agricultural Carbon Emissions in China. Energies 2022, 15, 4464. [Google Scholar] [CrossRef]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Luo, M.; Chen, L. The impact of sports industry agglomeration on the high-quality development of green energy. Front. Environ. Sci. 2023, 11, 1109072. [Google Scholar] [CrossRef]
Digital technology index | Primary indicators | Indicator weights | Secondary indicators | Indicator weights | Indicator attribute (+/−) |
The development of the digital industry | 0.904 | Percentage of employees in computer services and software | 0.187 | + | |
Total telecom services per capita | 0.359 | + | |||
Mobile subscribers per 100 persons | 0.146 | + | |||
Internet users per 100 persons | 0.212 | + | |||
The application of digital technology | 0.096 | China’s Digital Inclusive Finance Index | 0.096 | + |
Regions | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Average |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.333 | 0.371 | 0.415 | 0.447 | 0.506 | 0.573 | 0.532 | 0.531 | 0.557 | 0.4739 |
Tianjin | 0.071 | 0.100 | 0.111 | 0.165 | 0.245 | 0.197 | 0.200 | 0.206 | 0.210 | 0.1672 |
Hebei | 0.038 | 0.051 | 0.078 | 0.081 | 0.093 | 0.099 | 0.138 | 0.131 | 0.145 | 0.0949 |
Shanxi | 0.046 | 0.063 | 0.089 | 0.089 | 0.101 | 0.114 | 0.120 | 0.130 | 0.158 | 0.1011 |
Inner Mongolia | 0.069 | 0.077 | 0.107 | 0.104 | 0.116 | 0.122 | 0.134 | 0.154 | 0.165 | 0.1164 |
Liaoning | 0.067 | 0.086 | 0.111 | 0.120 | 0.134 | 0.143 | 0.163 | 0.172 | 0.190 | 0.1318 |
Jilin | 0.071 | 0.074 | 0.100 | 0.107 | 0.119 | 0.126 | 0.138 | 0.146 | 0.115 | 0.1107 |
Heilongjiang | 0.056 | 0.063 | 0.140 | 0.099 | 0.110 | 0.118 | 0.138 | 0.151 | 0.164 | 0.1154 |
Shanghai | 0.154 | 0.181 | 0.388 | 0.292 | 0.296 | 0.310 | 0.343 | 0.390 | 0.410 | 0.3071 |
Jiangsu | 0.068 | 0.087 | 0.125 | 0.123 | 0.133 | 0.149 | 0.170 | 0.191 | 0.212 | 0.1398 |
Zhejiang | 0.096 | 0.120 | 0.146 | 0.155 | 0.168 | 0.179 | 0.208 | 0.221 | 0.237 | 0.1700 |
Anhui | 0.025 | 0.041 | 0.063 | 0.079 | 0.090 | 0.100 | 0.096 | 0.129 | 0.135 | 0.0842 |
Fujian | 0.063 | 0.083 | 0.113 | 0.116 | 0.138 | 0.147 | 0.167 | 0.189 | 0.210 | 0.1362 |
Jiangxi | 0.023 | 0.053 | 0.070 | 0.081 | 0.087 | 0.091 | 0.113 | 0.119 | 0.126 | 0.0848 |
Shandong | 0.036 | 0.059 | 0.093 | 0.104 | 0.121 | 0.115 | 0.129 | 0.141 | 0.148 | 0.1051 |
Henan | 0.016 | 0.033 | 0.056 | 0.064 | 0.078 | 0.089 | 0.102 | 0.122 | 0.169 | 0.0810 |
Hubei | 0.039 | 0.060 | 0.079 | 0.089 | 0.098 | 0.106 | 0.123 | 0.154 | 0.164 | 0.1013 |
Hunan | 0.037 | 0.054 | 0.069 | 0.081 | 0.089 | 0.092 | 0.105 | 0.118 | 0.130 | 0.0861 |
Guangdong | 0.106 | 0.124 | 0.152 | 0.164 | 0.164 | 0.176 | 0.205 | 0.246 | 0.256 | 0.1770 |
Guangxi | 0.042 | 0.062 | 0.072 | 0.069 | 0.079 | 0.123 | 0.145 | 0.185 | 0.197 | 0.1082 |
Hainan | 0.126 | 0.138 | 0.160 | 0.188 | 0.148 | 0.163 | 0.179 | 0.217 | 0.214 | 0.1703 |
Chongqing | 0.065 | 0.063 | 0.085 | 0.095 | 0.110 | 0.103 | 0.118 | 0.138 | 0.147 | 0.1027 |
Sichuan | 0.034 | 0.062 | 0.095 | 0.108 | 0.127 | 0.170 | 0.185 | 0.198 | 0.179 | 0.1287 |
Guizhou | 0.026 | 0.035 | 0.062 | 0.071 | 0.082 | 0.092 | 0.108 | 0.112 | 0.118 | 0.0784 |
Yunnan | 0.034 | 0.050 | 0.086 | 0.085 | 0.090 | 0.098 | 0.106 | 0.125 | 0.140 | 0.0904 |
Shanxi | 0.071 | 0.115 | 0.173 | 0.120 | 0.125 | 0.138 | 0.156 | 0.177 | 0.186 | 0.1401 |
Gansu | 0.019 | 0.037 | 0.059 | 0.070 | 0.082 | 0.096 | 0.111 | 0.120 | 0.159 | 0.0837 |
Qinghai | 0.073 | 0.105 | 0.087 | 0.078 | 0.124 | 0.265 | 0.295 | 0.327 | 0.437 | 0.1990 |
Ningxia | 0.039 | 0.063 | 0.087 | 0.178 | 0.125 | 0.103 | 0.115 | 0.121 | 0.138 | 0.1077 |
Xinjiang | 0.151 | 0.118 | 0.135 | 0.136 | 0.154 | 0.135 | 0.176 | 0.208 | 0.230 | 0.1603 |
Sources | Factors |
---|---|
Ploughing | 312.6 kg C/km2 |
Diesel | 0.5927 kg C/kg |
Agricultural film | 5.18 kg C/kg |
Pesticides | 4.934 kg C/kg |
Fertiliser | 0.8956 kg C/kg |
Irrigation | 25 kg C/km2 |
Variable Name | Mean | Standard Deviation | Min | Max | |
---|---|---|---|---|---|
Dependent variable | Agricultural carbon intensity | 0.3294 | 0.2011 | 0.0829 | 1.6522 |
Independent variable | Digital technology | 0.1385 | 0.0917 | 0.0160 | 0.5728 |
Control variables | Exports of agricultural products | 0.0585 | 0.0856 | 0.0031 | 0.4561 |
Extent of damage to arable land | 815.17 | 771.79 | 0.00 | 4223.70 | |
Urbanisation level | 58.38 | 12.30 | 35.03 | 89.60 | |
Industrial structure | 46.38 | 9.68 | 29.70 | 83.50 | |
Income per person | 2.2997 | 1.0984 | 0.82 | 7.22 | |
Financial support for agriculture (log) | 6.1194 | 0.5636 | 4.5190 | 7.1780 |
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) | |
---|---|---|---|---|---|---|
FE | FE | FE | FE | FE | RE | |
Digital technology | −0.9619 *** (−16.16) | −0.9392 *** (−15.51) | −0.5706 *** (−7.26) | −0.6581 *** (−7.20) | −0.6102 *** (−6.63) | −0.5596 ** (−2.23) |
Exports of agricultural products | 0.3499 ** (2.03) | 0.0264 (0.18) | −0.1618 (−0.91) | −0.1229 (−0.70) | −0.0169 (−0.08) | |
Extent of damage to arable land | 0.0185 *** (2.97) | 0.0012 (0.23) | 0.0010 (0.19) | 0.0021 (0.39) | 0.0033 (0.59) | |
Urbanisation level | −0.0135 *** (−9.96) | −0.0143 *** (−10.09) | −0.0125 *** (−8.00) | 0.0043 ** (2.58) | ||
Industrial structure | 0.0045 *** (4.74) | 0.0040 *** (4.07) | 0.0044 *** (4.54) | 0.0257 (1.09) | ||
Income per person | 0.0176 * (1.85) | 0.0257 ** (2.60) | −0.0841 ** (−2.31) | |||
Financial support for agriculture | −0.0578 *** (−2.67) | 1.290 *** (5.44) | ||||
Constant | 0.4626 *** (52.97) | 0.4239 *** (30.28) | 0.9880 *** (17.36) | 1.042 *** (16.35) | 1.237 *** (12.80) | −7.442 *** (−3.86) |
Prob > F | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
N | 270 | 270 | 270 | 270 | 270 | 270 |
Variables | Eastern Region Model (7) | Central Region Model (8) | Western Region Model (9) |
---|---|---|---|
Digital technology | −0.2284 *** (−4.52) | −0.6069 *** (−3.14) | −0.8809 *** (−5.28) |
Exports of agricultural products | −0.0324 (−0.48) | 3.5906 *** (3.89) | 0.5826 (0.49) |
Extent of damage to arable land | −0.0060 (−1.02) | 0.0004 (0.11) | 0.0033 (0.19) |
Urbanisation level | −0.0068 *** (−6.14) | −0.0100 *** (−2.88) | 0.0002 *** (0.04) |
Industrial structure | −0.0005 (−0.68) | 0.0020* (1.77) | 0.0098 *** (3.96) |
Income per person | −0.0205 *** (−3.16) | −0.0076 (−0.32) | −0.0583 (−0.97) |
Financial support for agriculture | −0.0228 * (−1.83) | 0.0275 (0.95) | −0.2191 *** (−3.52) |
Constant | 0.7555 *** (12.81) | 0.6486 *** (3.75) | 1.5228 *** (5.49) |
Provincial Effect | Yes | Yes | Yes |
Year Effect | Yes | Yes | Yes |
Prob > F | 0.0000 | 0.0000 | 0.0000 |
N | 99 | 90 | 81 |
Replacing the Dependent Variable | Replacing Independent Variable (fii) | Tailoring | ||||
---|---|---|---|---|---|---|
Model (10) | Model (11) | Model (12) | Model (13) | Model (14) | Model (15) | |
FE | RE | FE | RE | FE | RE | |
Digital Inclusion Index | −0.0249 *** (−2.91) | −0.0238 *** (−3.38) | ||||
Digital technology | −0.8173 * (−1.81) | −0.9675 *** (−2.96) | −0.4351 *** (−6.26) | −0.4026 *** (−2.64) | ||
Control variables | YES | YES | YES | YES | YES | YES |
Constant | 7.248 *** (15.22) | 6.929 *** (6.23) | 1.216 *** (10.46) | 1.258 *** (4.56) | 1.103 *** (15.38) | 1.139 *** (7.33) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, X.; Zheng, G. Blessing or Curse? The Impact of Digital Technologies on Carbon Efficiency in the Agricultural Sector of China. Sustainability 2023, 15, 15613. https://doi.org/10.3390/su152115613
Zhu Y, Wang X, Zheng G. Blessing or Curse? The Impact of Digital Technologies on Carbon Efficiency in the Agricultural Sector of China. Sustainability. 2023; 15(21):15613. https://doi.org/10.3390/su152115613
Chicago/Turabian StyleZhu, Yong, Xiongying Wang, and Gong Zheng. 2023. "Blessing or Curse? The Impact of Digital Technologies on Carbon Efficiency in the Agricultural Sector of China" Sustainability 15, no. 21: 15613. https://doi.org/10.3390/su152115613
APA StyleZhu, Y., Wang, X., & Zheng, G. (2023). Blessing or Curse? The Impact of Digital Technologies on Carbon Efficiency in the Agricultural Sector of China. Sustainability, 15(21), 15613. https://doi.org/10.3390/su152115613