Aqueous Organic Redox-Targeting Flow Batteries with Advanced Solid Materials: Current Status and Future Perspective
Abstract
:1. Introduction
2. Aqueous Organic Redox Flow Batteries
2.1. Quinone Derivatives
2.2. TEMPO/Viologen Derivatives
2.3. Ferrocene Derivatives
2.4. Challenges of Conventional AORFBs
3. Evolution of Redox-Targeting Based System
3.1. Concept and Principles
3.2. Two-Molecule RT Reaction
3.3. Single-Molecule RT Reaction
4. Redox-Targeting Based RT Systems
4.1. Anthraquinone (AQ)-Based RT Systems
4.2. TEMPO-Based RT Systems
4.3. Ferrocene-Based RT Systems
4.4. Viologen-Based RT Systems
4.5. Advanced Characterization Methods
5. Challenges and Outlooks
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
AORFBs | Aqueous organic redox flow batteries |
RT | Redox-targeting |
PSH | Pumped-storage hydropower |
RFB | Redox flow battery |
VRFBs | Vanadium redox flow batteries |
RMs | Redox mediators |
solid materials | Energy storage solid materials |
RT-AORFBs | Redox-targeting aqueous organic redox flow batteries |
AQ | Anthraquinones |
OCV | Open-circuit voltage |
SOC | State of charge |
2,6-DHAQ | 2,6-dihydroxyanthraquinone |
PEG | Polyethylene glycol |
RFLB | Redox-Flow Lithium Battery |
TEMPO | (2,2,6,6-tetramethylpiperidin-1-yl) oxyl |
MV | Methyl viologen |
SMRT | Single-Molecule Redox-Targeting |
RT-VRB | a RT-based VRFB system |
PBA | Prussian blue analogue |
2,7-AQDS | 9,10-Anthraquinone-2,7-disulphonic acid |
1,5-DHAQ | 1,5-Dihydroxyanthraquinone |
PTMA | Poly (TEMPO-methacrylate) |
RTFB | RT-based flow battery |
RAP | Redox-active polymer |
UV-Vis | Ultraviolet and visible spectrophotometry |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray Diffraction |
2,6 DAEAQ | N,N-(9,10-anthraquinone 2,6-diyl)-di-β-alanine |
EPR | Electron Paramagnetic Resonance |
XANES | X-ray absorption near edge structure |
PSs | Polysulfides |
ATR | Attenuated total reflection |
DFT | Density Functional Theory |
TEMPTMA | N,N,N-2,2,6,6-heptamethyl piperidinyl oxy-4-ammonium chloride |
PCET | Proton-coupled electron transfer |
References
- Dresselhaus, M.S.; Thomas, I.L. Alternative Energy Technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef]
- Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q. Redox Flow Batteries: A Review. J. Appl. Electrochem. 2011, 41, 1137–1164. [Google Scholar] [CrossRef]
- Leung, P.; Li, X.; de León, C.P.; Berlouis, L.; Low, C.T.J.; Walsh, F.C. Progress in Redox Flow Batteries, Remaining Challenges and Their Applications in Energy Storage. RSC Adv. 2012, 2, 10125–10156. [Google Scholar] [CrossRef]
- Wang, Z.; Tam, L.-Y.S.; Lu, Y.-C. Flexible Solid Flow Electrodes for High-Energy Scalable Energy Storage. Joule 2019, 3, 1677–1688. [Google Scholar] [CrossRef]
- Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z. Recent Progress in Redox Flow Battery Research and Development. Adv. Funct. Mater. 2013, 23, 970–986. [Google Scholar] [CrossRef]
- Noack, J.; Roznyatovskaya, N.; Herr, T.; Fischer, P. The Chemistry of Redox-Flow Batteries. Angew. Chem. Int. Ed. 2015, 54, 9776–9809. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liu, X.; Li, W.; Li, W.; Feng, X.; Chen, W. Green Synthesis of Novel Conjugated Poly(Perylene Diimide) as Cathode with Stable Sodium Storage. Nano Res. 2023, 16, 9538–9545. [Google Scholar] [CrossRef]
- Lindley, D. Smart Grids: The Energy Storage Problem. Nature 2010, 463, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Kwon, G.; Lee, S.; Hwang, J.; Shim, H.-S.; Lee, B.; Lee, M.H.; Ko, Y.; Jung, S.-K.; Ku, K.; Hong, J.; et al. Multi-Redox Molecule for High-Energy Redox Flow Batteries. Joule 2018, 2, 1771–1782. [Google Scholar] [CrossRef]
- Mao, J.; Ruan, W.; Chen, Q. Understanding the Aqueous Solubility of Anthraquinone Sulfonate Salts: The Quest for High Capacity Electrolytes of Redox Flow Batteries. J. Electrochem. Soc. 2020, 167, 070522. [Google Scholar] [CrossRef]
- Larcher, D.; Tarascon, J.-M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Xu, Z.; Wang, G.; Xu, H.; Yang, M.; Ding, M.; Yuan, D.; Yan, C.; Sun, Q.; Liu, M.; et al. A Neutral Polysulfide/Ferricyanide Redox Flow Battery. iScience 2021, 24, 103157. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Tsujimura, S. Fabrication of an Organic Redox Capacitor with a Neutral Aqueous Electrolyte Solution. Electrochemistry 2021, 89, 317–322. [Google Scholar] [CrossRef]
- Mohammadi, T.; Chieng, S.C.; Skyllas Kazacos, M. Water Transport Study across Commercial Ion Exchange Membranes in the Vanadium Redox Flow Battery. J. Membr. Sci. 1997, 133, 151–159. [Google Scholar] [CrossRef]
- Soloveichik, G.L. Flow Batteries: Current Status and Trends. Chem. Rev. 2015, 115, 11533–11558. [Google Scholar] [CrossRef]
- Jing, Y.; Liang, Y.; Gheytani, S.; Yao, Y. A Quinone Anode for Lithium-Ion Batteries in Mild Aqueous Electrolytes. ChemSusChem 2020, 13, 2250–2255. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, H.; Mai, Z.; Zhang, H.; Vankelecom, I. Ion Exchange Membranes for Vanadium Redox Flow Battery (VRB) Applications. Energy Environ. Sci. 2011, 4, 1147–1160. [Google Scholar] [CrossRef]
- Wu, M.; Bahari, M.; Jing, Y.; Amini, K.; Fell, E.M.; George, T.Y.; Gordon, R.G.; Aziz, M.J. Highly Stable, Low Redox Potential Quinone for Aqueous Flow Batteries. Batter. Supercaps 2022, 5, e202200009. [Google Scholar] [CrossRef]
- Sum, E.; Rychcik, M.; Skyllas-kazacos, M. Investigation of the V(V)/V(IV) System for Use in the Positive Half-Cell of a Redox Battery. J. Power Source 1985, 16, 85–95. [Google Scholar] [CrossRef]
- Zeng, Y.K.; Zhao, T.S.; An, L.; Zhou, X.L.; Wei, L. A Comparative Study of All-Vanadium and Iron-Chromium Redox Flow Batteries for Large-Scale Energy Storage. J. Power Source 2015, 300, 438–443. [Google Scholar] [CrossRef]
- Wei, X.; Pan, W.; Duan, W.; Hollas, A.; Yang, Z.; Li, B.; Nie, Z.; Liu, J.; Reed, D.; Wang, W.; et al. Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. ACS Energy Lett. 2017, 2, 2187–2204. [Google Scholar] [CrossRef]
- Lin, K.; Chen, Q.; Gerhardt, M.R.; Tong, L.; Kim, S.B.; Eisenach, L.; Valle, A.W.; Hardee, D.; Gordon, R.G.; Aziz, M.J.; et al. Alkaline Quinone Flow Battery. Science 2015, 349, 1529–1532. [Google Scholar] [CrossRef]
- Leung, P.; Shah, A.A.; Sanz, L.; Flox, C.; Morante, J.R.; Xu, Q.; Mohamed, M.R.; Ponce de León, C.; Walsh, F.C. Recent Developments in Organic Redox Flow Batteries: A Critical Review. J. Power Source 2017, 360, 243–283. [Google Scholar] [CrossRef]
- Xu, Y.; Wen, Y.-H.; Cheng, J.; Cao, G.-P.; Yang, Y.-S. A Study of Tiron in Aqueous Solutions for Redox Flow Battery Application. Electrochim. Acta 2010, 55, 715–720. [Google Scholar] [CrossRef]
- Yu, J.; Fan, L.; Yan, R.; Zhou, M.; Wang, Q. Redox Targeting-Based Aqueous Redox Flow Lithium Battery. ACS Energy Lett. 2018, 3, 2314–2320. [Google Scholar] [CrossRef]
- Yan, R.; Wang, Q. Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage. Adv. Mater. 2018, 30, 1802406. [Google Scholar] [CrossRef]
- Ye, J.; Xia, L.; Wu, C.; Ding, M.; Jia, C.; Wang, Q. Redox Targeting-Based Flow Batteries. J. Phys. D Appl. Phys. 2019, 52, 443001. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, M.; Huang, S.; Zhang, H.; Wang, X.; Liu, L.; Han, M.; Wang, Q. Redox Targeting of Energy Materials for Energy Storage and Conversion. Adv. Mater. 2022, 34, 2104562. [Google Scholar] [CrossRef]
- Wang, Q.; Zakeeruddin, S.M.; Wang, D.; Exnar, I.; Grätzel, M. Redox Targeting of Insulating Electrode Materials: A New Approach to High-Energy-Density Batteries. Angew. Chem. Int. Ed. 2006, 45, 8197–8200. [Google Scholar] [CrossRef]
- Ruan, W.; Mao, J.; Chen, Q. Redox Flow Batteries toward More Soluble Anthraquinone Derivatives. Curr. Opin. Electrochem. 2021, 29, 100748. [Google Scholar] [CrossRef]
- Wang, C.; Yu, B.; Liu, Y.; Wang, H.; Zhang, Z.; Xie, C.; Li, X.; Zhang, H.; Jin, Z. N-Alkyl-Carboxylate-Functionalized Anthraquinone for Long-Cycling Aqueous Redox Flow Batteries. Energy Storage Mater. 2021, 36, 417–426. [Google Scholar] [CrossRef]
- Huskinson, B.; Marshak, M.P.; Suh, C.; Er, S.; Gerhardt, M.R.; Galvin, C.J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R.G.; Aziz, M.J. A Metal-Free Organic–Inorganic Aqueous Flow Battery. Nature 2014, 505, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Jing, Y.; Kwabi, D.G.; Ji, Y.; Tong, L.; De Porcellinis, D.; Goulet, M.-A.; Pollack, D.A.; Gordon, R.G.; Aziz, M.J. A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density. ACS Energy Lett. 2019, 4, 1342–1348. [Google Scholar] [CrossRef]
- Wei, X.; Xu, W.; Vijayakumar, M.; Cosimbescu, L.; Liu, T.; Sprenkle, V.; Wang, W. TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries. Adv. Mater. 2014, 26, 7649–7653. [Google Scholar] [CrossRef]
- Winsberg, J.; Janoschka, T.; Morgenstern, S.; Hagemann, T.; Muench, S.; Hauffman, G.; Gohy, J.-F.; Hager, M.D.; Schubert, U.S. Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, “Green”, High Voltage, and Safe Energy Storage System. Adv. Mater. 2016, 28, 2238–2243. [Google Scholar] [CrossRef]
- Liu, T.; Wei, X.; Nie, Z.; Sprenkle, V.; Wang, W. A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte. Adv. Energy Mater. 2016, 6, 1501449. [Google Scholar] [CrossRef]
- Orita, A.; Verde, M.G.; Sakai, M.; Meng, Y.S. The Impact of pH on Side Reactions for Aqueous Redox Flow Batteries Based on Nitroxyl Radical Compounds. J. Power Source 2016, 321, 126–134. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, H.; Xing, F. A Three-Dimensional Model for Negative Half Cell of the Vanadium Redox Flow Battery. Electrochim. Acta 2011, 58, 238–246. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, H.; Li, X.; Liu, T.; Xing, F. Vanadium Flow Battery for Energy Storage: Prospects and Challenges. J. Phys. Chem. Lett. 2013, 4, 1281–1294. [Google Scholar] [CrossRef] [PubMed]
- Janoschka, T.; Martin, N.; Hager, M.D.; Schubert, U.S. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. Angew. Chem. Int. Ed. 2016, 55, 14427–14430. [Google Scholar] [CrossRef]
- Seo, N.-U.; Kim, K.; Yeo, J.; Kwak, S.J.; Kim, Y.; Kim, H.; Kim, M.S.; Choi, J.; Jung, Y.S.; Chae, J.; et al. Covalent Conjugation of a ‘Hydroxide-Philic’ Functional Group Achieving ‘Hydroxide-Phobic’ TEMPO with Superior Stability in All-Organic Aqueous Redox Flow Batteries. J. Mater. Chem. A 2023, 11, 18953–18963. [Google Scholar] [CrossRef]
- Page, J.A.; Wilkinson, G. The Polarographic Chemistry of Ferrocene, Ruthenocene and the Metal Hydrocarbon Ions. J. Am. Chem. Soc. 1952, 74, 6149–6150. [Google Scholar] [CrossRef]
- Pauson, P.L. Ferrocene Derivatives. Part I. The Direct Synthesis of Substituted Ferrocenes. J. Am. Chem. Soc. 1954, 76, 2187–2191. [Google Scholar] [CrossRef]
- Beh, E.S.; De Porcellinis, D.; Gracia, R.L.; Xia, K.T.; Gordon, R.G.; Aziz, M.J. A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention. ACS Energy Lett. 2017, 2, 639–644. [Google Scholar] [CrossRef]
- Huang, J.; Hu, S.; Yuan, X.; Xiang, Z.; Huang, M.; Wan, K.; Piao, J.; Fu, Z.; Liang, Z. Radical Stabilization of a Tripyridinium–Triazine Molecule Enables Reversible Storage of Multiple Electrons. Angew. Chem. Int. Ed. 2021, 60, 20921–20925. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ding, Y.; Song, J.; Li, G.; Dong, G.; Goodenough, J.B.; Yu, G. Sustainable Electrical Energy Storage through the Ferrocene/Ferrocenium Redox Reaction in Aprotic Electrolyte. Angew. Chem. Int. Ed. 2014, 53, 11036–11040. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Cho, J.H.; Shanmuganathan, K.; Song, J.; Peng, J.; Gobet, M.; Greenbaum, S.; Ellison, C.J.; Goodenough, J.B. New Battery Strategies with a Polymer/Al2O3 Separator. J. Power Source 2014, 263, 52–58. [Google Scholar] [CrossRef]
- Hwang, B.; Park, M.-S.; Kim, K. Ferrocene and Cobaltocene Derivatives for Non-Aqueous Redox Flow Batteries. ChemSusChem 2015, 8, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; DeBruler, C.; Rhodes, Z.; Liu, T.L. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. J. Am. Chem. Soc. 2017, 139, 1207–1214. [Google Scholar] [CrossRef]
- Cong, G.; Lu, Y.C. Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries. Acta Phys. 2021, 38, 2106008. [Google Scholar] [CrossRef]
- Fang, X.; Cavazos, A.T.; Li, Z.; Li, C.; Xie, J.; Wassall, S.R.; Zhang, L.; Wei, X. Six-Electron Organic Redoxmers for Aqueous Redox Flow Batteries. Chem. Commun. 2022, 58, 13226–13229. [Google Scholar] [CrossRef] [PubMed]
- Material Design and Engineering of Next-Generation Flow-Battery Technologies|Nature Reviews Materials. Available online: https://www.nature.com/articles/natrevmats201680 (accessed on 11 September 2023).
- Huang, Q.; Li, H.; Grätzel, M.; Wang, Q. Reversible Chemical Delithiation/Lithiation of LiFePO4: Towards a Redox Flow Lithium-Ion Battery. Phys. Chem. Chem. Phys. 2013, 15, 1793–1797. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Yang, J.; Huang, Q.; Wang, X.; Huang, H.; Wang, Q. Redox Targeting of Anatase TiO2 for Redox Flow Lithium-Ion Batteries. Adv. Energy Mater. 2014, 4, 1400567. [Google Scholar] [CrossRef]
- Jia, C.; Pan, F.; Zhu, Y.G.; Huang, Q.; Lu, L.; Wang, Q. High–Energy Density Nonaqueous All Redox Flow Lithium Battery Enabled with a Polymeric Membrane. Sci. Adv. 2015, 1, e1500886. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.Y.; Woodford, W.H.; Li, Z.; Baram, N.; Smith, K.C.; Helal, A.; McKinley, G.H.; Carter, W.C.; Chiang, Y.-M. Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks. Nano Lett. 2014, 14, 2210–2218. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; Yang, S.; Lee, J.Y. The Application of Redox Targeting Principles to the Design of Rechargeable Li–S Flow Batteries. Adv. Energy Mater. 2015, 5, 1501808. [Google Scholar] [CrossRef]
- Hatakeyama-Sato, K.; Sadakuni, K.; Kitagawa, K.; Oyaizu, K. Thianthrene Polymers as 4 V-Class Organic Mediators for Redox Targeting Reaction with LiMn2O4 in Flow Batteries. Sci. Rep. 2023, 13, 5711. [Google Scholar] [CrossRef]
- Herren, F.; Fischer, P.; Ludi, A.; Haelg, W. Neutron Diffraction Study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of Water Molecules and Long-Range Magnetic Order. Inorg. Chem. 1980, 19, 956–959. [Google Scholar] [CrossRef]
- Schröter, E.; Stolze, C.; Saal, A.; Schreyer, K.; Hager, M.D.; Schubert, U.S. All-Organic Redox Targeting with a Single Redox Moiety: Combining Organic Radical Batteries and Organic Redox Flow Batteries. ACS Appl. Mater. Interfaces 2022, 14, 6638–6648. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Huang, Q.; Pham Truong, T.N.; Ghilane, J.; Zhu, Y.G.; Jia, C.; Yan, R.; Fan, L.; Randriamahazaka, H.; Wang, Q. Nernstian-Potential-Driven Redox-Targeting Reactions of Battery Materials. Chem 2017, 3, 1036–1049. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, M.; Xia, Y.; Wang, X.; Liu, Y.; Yao, Y.; Zhang, H.; Li, Y.; Lu, S.; Qin, W.; et al. A Stable and High-Capacity Redox Targeting-Based Electrolyte for Aqueous Flow Batteries. Joule 2019, 3, 2255–2267. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Huang, S.; Samarakoon, W.; Xi, S.; Ji, Y.; Zhang, H.; Zhang, F.; Du, Y.; Feng, Z.; et al. Redox Targeting-Based Vanadium Redox-Flow Battery. ACS Energy Lett. 2019, 12, 3028–3035. [Google Scholar] [CrossRef]
- Kwabi, D.G.; Ji, Y.; Aziz, M.J. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. Chem. Rev. 2020, 120, 6467–6489. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Y.; Salla, M.; Zhang, H.; Wang, X.; Mothe, S.R.; Wang, Q. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery. Angew. Chem. Int. Ed. 2020, 59, 14286–14291. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, H.; Salla, M.; Zhuang, J.; Zhi, Y.; Wang, X.; Wang, Q. Molecular Engineering of Dihydroxyanthraquinone-Based Electrolytes for High-Capacity Aqueous Organic Redox Flow Batteries. Nat. Commun. 2022, 13, 4746. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.M.; Sevov, C.S. All-Organic Storage Solids and Redox Shuttles for Redox-Targeting Flow Batteries. ACS Energy Lett. 2021, 6, 1271–1279. [Google Scholar] [CrossRef]
- Yu, J.; Salla, M.; Zhang, H.; Ji, Y.; Zhang, F.; Zhou, M.; Wang, Q. A Robust Anionic Sulfonated Ferrocene Derivative for pH-Neutral Aqueous Flow Battery. Energy Storage Mater. 2020, 29, 216–222. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Wang, X.; Cui, Y.; Zhang, Z.; Wang, S.; Xie, Z.; Yan, P.; Chen, W. Bridging Multiscale Interfaces for Developing Ionically Conductive High-Voltage Iron Sulfate-Containing Sodium-Based Battery Positive Electrodes. Nat. Commun. 2023, 14, 3701. [Google Scholar] [CrossRef]
- DeBruler, C.; Hu, B.; Moss, J.; Luo, J.; Liu, T.L. A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage. ACS Energy Lett. 2018, 3, 663–668. [Google Scholar] [CrossRef]
- Hu, B.; Tang, Y.; Luo, J.; Grove, G.; Guo, Y.; Liu, T.L. Improved Radical Stability of Viologen Anolytes in Aqueous Organic Redox Flow Batteries. Chem. Commun. 2018, 54, 6871–6874. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, Y.; Zhang, H.; Xie, C.; Shi, L.; Zhou, Y.-G.; Li, X. A Highly Stable Neutral Viologen/Bromine Aqueous Flow Battery with High Energy and Power Density. Chem. Commun. 2019, 55, 4801–4804. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Chen, Y.; Zhang, Q.; Xi, S.; Yu, J.; Du, Y.; Hu, Y.-S.; Wang, Q. Na3V2(PO4)3 as the Sole Solid Energy Storage Material for Redox Flow Sodium-Ion Battery. Adv. Energy Mater. 2019, 9, 1901188. [Google Scholar] [CrossRef]
- Meyerson, M.L.; Rosenberg, S.G.; Small, L.J. A Mediated Li–S Flow Battery for Grid-Scale Energy Storage. ACS Appl. Energy Mater. 2022, 5, 4202–4211. [Google Scholar] [CrossRef]
Catholyte | Anolyte | Performance | Problem | Ref. |
---|---|---|---|---|
4-HO-TEMPO | MV | ●1.25 V cell voltage ●43.2 Ah/L capacity ●89% capacity retention in 100 cycles | ●The degradation of 4-OH-TEMPO ●Only for neutral conditions | [35] |
TEMPTMA | MV | ●1.4 V cell voltage ●54 Ah/L capacity ●96.3% capacity retention in 100 cycles | ●Relatively complex synthesis steps of TEMPTMA ●Low energy density | [39] |
MIMAcO-TEMPO | BTMAP-Vi | ●1.18 V cell voltage ●57.1 Ah/L capacity ●88.3% capacity retention in 1000 cycles | ●Slow kinetics ●High internal resistance of the membrane | [40] |
PEGAQ | K4 [Fe(CN)6] | ●1.0 V cell voltage ●80.4 Ah/L capacity ●95.8% capacity retention in 100 cycles | ●The decomposition of PEGAQ ●Relatively complex synthesis steps of PEGAQ | [32] |
FcNCl | MV | ●1.06 V cell voltage ●107.2 Ah/L capacity ●93.2% capacity retention in 100 cycles | ●Low energy density ●Slow kinetics ●High toxicity | [48] |
2,6 DAEAQ | K4[Fe(CN)] 6 | ●1.12 V cell voltage ●58.76 Ah/L capacity ●91.3% capacity retention in 100 cycles | ●Stringent pH restrictions ●Low volumetric capacity | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Rong, S.; Cai, Y.; Wang, T.; Han, Z.; Ji, Y. Aqueous Organic Redox-Targeting Flow Batteries with Advanced Solid Materials: Current Status and Future Perspective. Sustainability 2023, 15, 15635. https://doi.org/10.3390/su152115635
Ma J, Rong S, Cai Y, Wang T, Han Z, Ji Y. Aqueous Organic Redox-Targeting Flow Batteries with Advanced Solid Materials: Current Status and Future Perspective. Sustainability. 2023; 15(21):15635. https://doi.org/10.3390/su152115635
Chicago/Turabian StyleMa, Jin, Sida Rong, Yichong Cai, Tidong Wang, Zheng Han, and Ya Ji. 2023. "Aqueous Organic Redox-Targeting Flow Batteries with Advanced Solid Materials: Current Status and Future Perspective" Sustainability 15, no. 21: 15635. https://doi.org/10.3390/su152115635
APA StyleMa, J., Rong, S., Cai, Y., Wang, T., Han, Z., & Ji, Y. (2023). Aqueous Organic Redox-Targeting Flow Batteries with Advanced Solid Materials: Current Status and Future Perspective. Sustainability, 15(21), 15635. https://doi.org/10.3390/su152115635