Green Chemistry in Medical Applications: Preliminary Assessment of Kuzu Starch Films with Plant-Based Antiseptics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Films
2.2.1. Film Prepared with Rooibos Extract (Kuzu Rooibos)
2.2.2. Films Prepared with Oil-based Chili Extract (Kuzu Chili)
2.2.3. Film Prepared with Nonionic Colloidal Silver (Kuzu Ag)
2.3. Tests and Characterization
2.3.1. Thickness
2.3.2. Hardness
2.3.3. Density
2.3.4. Swelling Index
2.3.5. Solubility Index
2.3.6. Thermal Analyses
2.3.7. Water Vapor Permeability Test
- P—permeability of water vapor [mg cm−2 h−1]
- M1—mass of distilled water in the probe cell in the 1 h of the experiment,
- M2—mass of distilled water in the probe cell in the 2 h of the experiment.
- t—time of the experiment (1 h),
- Pp—surface of evaporation.
2.3.8. Tensile Tests
2.3.9. Fourier-Transform Infrared Spectroscopy (ATR/FTIR)
2.3.10. Antibacterial Tests
- DI—Diameter of the entire inhibition zone [mm];
- Dd—Diameter of the disc [mm].
2.3.11. Statistical Analysis
3. Results and Discussion
3.1. Thickness, Hardness, and Density
3.2. Swelling Index, Solubility in Water, Permeability of Water Vapor
4. Tensile Tests
5. Chemical Structure
6. Antibacterial Tests
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B 2009, 364, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Shogren, R.; Wood, D.; Orts, W.; Glenn, G. Plant-based materials and transitioning to a circular economy. Sustain. Prod. Consum. 2019, 19, 194–215. [Google Scholar] [CrossRef]
- Gandini, A.; Lacerda, T. Monomers and macromolecular materials from renewable resources: State of the art and perspec-tives. Molecules 2021, 27, 159. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.; Bharadwaj, D.; Podder, R.; Bubbly, S.; Gudennavar, S. Natural polymer-based hydrogels as prospective tissue equivalent materials for radiation therapy and dosimetry. Phys. Eng. Sci. Med. 2021, 44, 1107–1120. [Google Scholar] [CrossRef]
- Karati, D. A concise review on bio-responsive polymers in targeted drug delivery system. Polym. Bull. 2023, 80, 7023–7045. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.M.; Gan, Y.C.; Qiu, X.Z.; Gao, Z.C.; Wang, H.; Hou, H.H. Biomimetic natural biomaterials for tissue engi-neering and regenerative medicine: New biosynthesis methods, recent advances, and emerging applications. Mil. Med. 2023, 10, 16. [Google Scholar]
- Oleksy, M.; Dynarowicz, K.; Aebisher, D. Advances in Biodegradable Polymers and Biomaterials for Medical Applica-tions—A Review. Molecules 2023, 28, 6213–6219. [Google Scholar] [CrossRef]
- Tavakoli, M.; Labbaf, S.; Mirhaj, M.; Salehi, S.; Seifalian, A.M.; Firuzeh, M. Natural polymers in wound healing: From academic studies to commercial products. J. Appl. Polym. Sci. 2023, 140, e53910. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B.; Wang, M.; Pan, S.; Wang, Y.; Gu, J. Effect of natural polymer materials on skin healing based on internal wound microenvironment: A review. Front. Chem. 2023, 11, 1257915. [Google Scholar] [CrossRef]
- Yasin, S.; Said, Z.; Halib, N.; Rahman, Z.; Mokhzani, N.I. Polymer-Based Hydrogel Loaded with Honey in Drug Delivery System for Wound Healing Applications. Polymers 2023, 15, 3085. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Qi, R.; Yuan, H. Recent Advances of Natural-Polymer-Based Hydrogels for Wound Antibacterial Therapeutics. Polymers 2023, 15, 3305. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, Z.; Gheybi, H.; Adeli, M. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J. Drug Deliv. Sci. Technol. 2022, 73, 103458. [Google Scholar] [CrossRef]
- Shahriari-Khalaji, M.; Sattar, M.; Cao, R.; Zhu, M. Angiogenesis, hemocompatibility and bactericidal effect of bioactive natural polymer-based bilayer adhesive skin substitute for infected burned wound healing. Bioact. Mater. 2023, 29, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, R.; Górniak, B.; Maksymi, J. Biomedyczne Zastosowania Polimerów—Materiały Opatrunkowe Nowoczesne Trendy w Medycynie (Biomedical Applications of Polymers—Dressing Materials Modern Trends in Medicine); Fundacja na Rzecz Promocji Nauki i Rozwoju TYGIEL: Lublin, Poland, 2015; pp. 18–32. (In Polish) [Google Scholar]
- Ratnavathi, C.; Komala, V.V. Sorghum Biochemistry, 1st ed.; Academic Press: Amsterdam, The Netherlands, 2016; pp. 1–61. [Google Scholar]
- Kim, S.; Wiesenborn, P.; Grant, L. Screening potato starch for novel properties using differential scanning calorimetry. J. Food Sci. 1995, 60, 1060–1065. [Google Scholar] [CrossRef]
- Milligan, T.; Azudin, M.; Morrison, W.A. A relationship between the amylose and lipids contents of starches from diploid cereals. J. Cereal Sci. 1984, 2, 257–260. [Google Scholar]
- Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydr. Polym. 2001, 45, 253–267. [Google Scholar] [CrossRef]
- Sandoval Gordillo, C.A.; Ayala Valencia, G.; Vargas Zapata, R.A.; Agudelo Henao, A.C. Physicochemical Characterization of Arrowroot Starch (Maranta arundinacea Linn) and Glycerol/Arrowroot Starch Membranes. Int. J. Food Eng. 2014, 10, 727–735. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, M.; Song, X.; Ye, S.; Jiang, C.; Dong, H.; Zhu, W. Study on structural characteristics, physicochemical properties, and in vitro digestibility of Kudzu-resistant starch prepared by different methods. Food Sci. Nutr. 2023, 11, 481–492. [Google Scholar] [CrossRef]
- Lim, T. Pueraria montana var. lobata in Edible Medicinal and Non-Medicinal Plants; Springer Science+Business Media: Dordrecht, The Netherlands, 2016; pp. 482–540. [Google Scholar]
- Geng, Z.; Zongdao, C.; Yimin, W. Physicochemical properties of lotus (Nelumbo nucifera Gaertn.) and kudzu (Pueraria hirsuta Matsum.) starches. Int. J. Food Sci. Technol. 2007, 42, 1449–1455. [Google Scholar] [CrossRef]
- Eskandarinia, A.; Rafienia, M.; Navid, S.; Agheb, M. Physicochemical, Antimicrobial and Cytotoxic Characteristics of Corn Starch Film Containing Propolis for Wound Dressing. J. Polym. Environ. 2018, 26, 3345–3351. [Google Scholar] [CrossRef]
- Moradi, M.; Barati, A.; Moradi, S.; Zarinabadi, E. Synthesis and characterization of starch-based hydrogels containing myrtus oil nanoemulsion for wound dressings. Polym. Bull. 2023, 1–20. [Google Scholar] [CrossRef]
- Delavari, M.M.; Stiharu, I. Preparing and Characterizing Novel Biodegradable Starch/PVA-Based Films with Nano-Sized Zinc-Oxide Particles for Wound-Dressing Applications. Appl. Sci. 2022, 12, 4001. [Google Scholar] [CrossRef]
- Boateng, J.; Catanzano, O. Advanced therapeutic dressings for effective wound healing—A review. J. Pharm. Sci. 2015, 104, 3653–3680. [Google Scholar] [CrossRef] [PubMed]
- Jungprasertchai, N.; Chuysinuan, P.; Ekabutr, P.; Niamlang, P.; Supaphol, P.X. Freeze-Dried Carboxymethyl Chitosan/Starch Foam for Use as a Haemostatic Wound Dressing. J. Polym. Environ. 2021, 30, 1106–1117. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Ahmed, F.; Mondal, M.; Ibrahim, H. An overview on starch-based sustainable hydrogels: Potential applications and aspects. J. Polym. Environ. 2021, 30, 19–52. [Google Scholar] [CrossRef]
- Sethi, S.; Thakur, S.; Kaith, B.S.; Sharma, N.; Ansar, S.; Pandey, S.; Kuma, V. Biopolymer starch-gelatin embedded with silver nanoparticle–based hydrogel composites for antibacterial application. Biomass Convers. Biorefin. 2022, 12, 5363–5384. [Google Scholar] [CrossRef]
- Eskandarinia, A.; Kefayat, A.; Rafienia, M.; Agheb, M.; Navid, S.; Ebrahimpour, K. Cornstarch-based wound dressing in-corporated with hyaluronic acid and propolis: In vitro and in vivo studies. Carbohydr. Polym. 2019, 216, 25–35. [Google Scholar] [CrossRef]
- Hadisi, Z.; Nourmohammadi, J.; Nassiri, S.M. The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. Int. J. Biol. Macromol. 2015, 107, 2008–2019. [Google Scholar] [CrossRef]
- Hübsch, Z.; Van Vuuren, S.F.; Van Zyl, R.L. Can rooibos (Aspalathus linearis) tea have an effect on conventional antimicrobial therapies? S. Afr. J. Bot. 2014, 93, 148–156. [Google Scholar] [CrossRef]
- Malongane, F.; McGaw, L.J.; Olaokun, O.O.; Mudau, F.N. Anti-Inflammatory, Anti-Diabetic, Anti-Oxidant and Cytotoxicity Assays of South African Herbal Teas and Bush Tea Blends. Foods 2022, 11, 2233. [Google Scholar] [CrossRef]
- Elegbede, R.D.; Ilomuanya, M.O.; Sowemimo, A.A.; Nneji, A.; Joubert, E.; de Beer, D.; Koekemoer, T.; van de Venter, M. Effect of fermented and green Aspalathus linearis extract loaded hydrogel on surgical wound healing in Sprague Dawley rats. Wound Med. 2020, 29, 100186. [Google Scholar] [CrossRef]
- Pyrzanowska, J. Pharmacological activity of Aspalathus linearis extracts: Pre-clinical research in view of prospective neu-roprotection. Nutr. Neurosci. 2023, 26, 384–402. [Google Scholar] [CrossRef] [PubMed]
- Paszkiewicz, M.; Budzyńska, A.; Różalska, B.; Sadowska, B. Immunomodulacyjna Rola Polifenoli Roślinnych. Postepy Hig. Med. Dosw. 2012, 66, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Builders, P.; Builders, M. Wound Care: Traditional African Medicine Approach. In Worldwide Wound Healing: Innovation in Natural and Conventional Methods; BoD—Books on Demand: Norderstedt, Germany, 2016; pp. 4–24. [Google Scholar]
- Baloghová, J.; Michalková, R.; Baranová, Z.; Mojžišová, G.; Fedáková, Z.; Mojžiš, J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023, 28, 6251. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, X.; Yan, Y.; Hu, J.; Wang, H.; Cai, Y.; Qu, J. Preparation and characterization of a novel antibacterial acrylate polymer composite modified with capsaicin. Chin. J. Chem. Eng. 2019, 27, 3043–3052. [Google Scholar] [CrossRef]
- Hebeish, A.; El-Rafie, M.H.; EL-Sheikh, M.A.; Seleem, A.A.; El-Naggar, M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int. J. Biol. Macromol. 2014, 65, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Popova, T.P.; Ignatov, I. In Vitro activity of colloidal nano silver. Bulg. J. Vet. Med. 2023, 26, 1. [Google Scholar]
- Blanco, A.R.; Marino, A.; D’Arrigo, M.; Nostro, A. Activity of Colloidal Silver Solution against Microorganisms Implicated in Ocular Infections. Coatings 2023, 13, 265. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.; Yalamarty, S.S.K.; Filipczak, N.; Jin, Y.; Li, X. Nano Silver-Induced Toxicity and Associated Mechanisms. Int. J. Nanomed. 2022, 17, 1851–1864. [Google Scholar] [CrossRef]
- Pang, S.; Gao, Y.; Wang, F.; Wang, Y.; Cao, M.; Zhang, W.; Liang, Y.; Song, M.; Jiang, G. Toxicity of silver nanoparticles on wound healing: A case study of zebrafish fin regeneration model. Sci. Total Environ. 2020, 717, 137178. [Google Scholar] [CrossRef]
- Anju, T.; Gopal, N.; Parvathy, S. Antibacterial Effect of Pepper and Chilli against Staphylococcus aureus: A Comparative Study. Int. J. Biochem. Physiol. 2019, 4, 000162. [Google Scholar]
- Bignardi, C.; Cavazza, A.; Rinaldi, M.; Corradini, C. Correlation between different markers for the assessment of red chilli pepper powders stability during shelf-life. Int. J. Food Sci. Nutr. 2016, 67, 391–399. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 868:2005; Tworzywa Sztuczne i Ebonit—Oznaczanie Twardości Metodą Wciskania z Zastosowaniem Twardościomierza (Twardość Metodą Shore’a) (Plastics and Ebonite—Determination of Hardness by Pressing Method Using a Hardness Tester (Shore Hardness)). ISO: Geneva, Switzerland, 2005. (In Polish)
- PN-EN ISO 1183-1:2019-05; Tworzywa Sztuczne—Metody Oznaczania Gęstości Tworzyw Sztucznych Nieporowatych—Część 1: Metoda Zanurzeniowa, Metoda Piknometru Cieczowego i Metoda Miareczkowa (Plastics—Methods for Determining the Density of Non-Porous Plastics—Part 1: Immersion Method, Liquid Pycnometer Method and Titration Method). ISO: Geneva, Switzerland, 2019. (In Polish)
- Riar, C. Studies on Influence of Chemical Modification, Plasticizer and Starch Concentration on Some Characteristics of Biodegradable Film. Mater. Sci. Forum 2016, 842, 129–156. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ariaii, P.; Tavakolipour, H.; Rezaei, M.; Elhami Rad, A. Properties and antimicrobial activity of edible methylcellulose based film incorporated with Pimpinella affinis oil. Eur. J. Exp. Biol. 2014, 4, 670–676. [Google Scholar]
- de Souza, M.N.; Piedade, A.B.S.; Santos, T.P.; de Britto, V.F.; Nascimento, E.; de Faria, J.L.B.; de Faria, R.A.P.G. Interaction effect of cassava starch × buriti oil on the physical properties of edible films. eFood 2022, 3, 53. [Google Scholar] [CrossRef]
- Arifin, H.; Utaminingsih, F.; Djali, M.; Nurhadi, B.; Lembong, E.; Marta, H. The Role of Virgin Coconut Oil in Corn Starch/NCC-Based Nanocomposite Film Matrix: Physical, Mechanical, and Water Vapor Transmission Characteristics. Polymers 2023, 15, 3239–3252. [Google Scholar] [CrossRef]
- Song, X.; Zuo, G.; Chen, F. Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. Int. J. Biol. Macromol. 2018, 107, 1302–1309. [Google Scholar] [CrossRef]
- Carson, F. Permeability of Membranes to Water Vapor with Special Reference to Packagig Materials; United States Governmsnt Printing Office: Washington, DC, USA, 1937. [Google Scholar]
- Singh, R.; Chacharkar, M.; Mathur, A. Chitin membrane for wound dressing application—Preparation, characterisation and toxicological evaluation. Int. Wound J. 2008, 5, 665–673. [Google Scholar] [CrossRef]
- Altaf, F.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Akram, M.A.; Safdar, A.; Sher, F. Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. J. Polym. Environ. 2021, 29, 156–174. [Google Scholar] [CrossRef]
- Zahedi, P.; Rezaeian, I.; Ranaei-Siadat, S.O.; Jafari, S.H.; Supaphol, P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol. 2010, 21, 77–95. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Souza, B.W.; Teixeira, J.A.; Vicente, A.A. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films—A comparative study. Food Hydrocoll. 2012, 27, 175–184. [Google Scholar] [CrossRef]
- Chen, G.; Liu, B. Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll. 2016, 55, 100–107. [Google Scholar] [CrossRef]
- Nadtoka, O.; Kutsevol, N.; Linnik, O.; Nikiforov, M. Nanocomposite hydrogels containing silver nanoparticles as materials for wound dressings. In Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications, Proceedings of the 6th International Conference Nanotechnology and Nanomaterials (NANO2018), Kyiv, Ukraine, 27–30 August 2018; Springer International Publishing: Cham, Switzerland; pp. 375–387.
- Chiumarelli, M.; Hubinger, M.D. Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocoll. 2014, 38, 20–27. [Google Scholar] [CrossRef]
- Medina Jaramillo, C.; Gutiérrez, T.; Goyanes, S. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydr. Polym. 2016, 151, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Luchese, C.; Garrido, T.; Spada, J.; Tessaro, I.; de la Caba, K. Development and characterization of cassava starch films incorporated with blueberry pomace. Int. J. Biol. Macromol. 2018, 106, 834–839. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr. Polym. 2017, 176, 187–194. [Google Scholar] [CrossRef]
- Ivanič, F.; Jochec-Mošková, D.; Janigová, I.; Chodák, I. Physical properties of starch plasticized by a mixture of plasticizers. Eur. Polym. J. 2017, 93, 843–849. [Google Scholar] [CrossRef]
- Šuput, D.; Lazić, V.; Pezo, L.; Markov, S.; Vaštag, Z.; Popović, L.; Radulović, A.; Ostojić, S.; Zlatanović, S.; Popović, S. Characterization of Starch Edible Films with Different Essential Oils Addition. Pol. J. Food Nutr. Sci. 2016, 66, 277–286. [Google Scholar] [CrossRef]
- Leon-Bejarano, M.; Santos-Sauceda, I.; Dórame-Miranda, R.F.; Medina-Juárez, L.Á.; Gámez-Meza, N.; García-Galaz, A.; Ovando-Martínez, M. Characterization of OSA starch-based films with nut-byproducts extracts for potential application as natural wound dressing. Polym. Bull. 2023, 80, 13199–13215. [Google Scholar] [CrossRef]
- Minsart, M.; Van Vlierberghe, S.; Dubruel, P.; Mignon, A. Commercial wound dressings for the treatment of exuding wounds: An in-depth physico-chemical comparative study. Burn. Trauma 2022, 10, tkac024. [Google Scholar] [CrossRef] [PubMed]
- Jouki, M.; Mortazavi, S.; Yazdi, F.; Koochek, A. Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohydr. Polym. 2014, 99, 537–546. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, A.; Koshenaj, K.; Ferrari, G. A Preliminary Study on the Release of Bioactive Compounds from Rice Starch Hydrogels Produced by High-Pressure Processing (HPP). Gels 2023, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Luo, S.; Huang, A.; Chen, J.; Liu, C.; McClements, D.J. Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch. Food Hydrocoll. 2019, 92, 135–142. [Google Scholar] [CrossRef]
- Barragán-Martínez, L.P.; Molina-Rodríguez, A.; Román-Guerrero, A.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Effect of starch gelatinization on the morphology, viscoelasticity, and water structure of candelilla wax–canola oil–starch hybrid gels. J. Food Process. Preserv. 2022, 46, e16520. [Google Scholar] [CrossRef]
- Senevirathna, M.A.S.R.; Swarnamali, V.M.R.; Naseef, M.N.A.; Amaraweera, T.H.N.G.; Premathilake, M.M.S.N. Development of antibacterial polymer composite films from cassava starch and silver vein graphite composite. Ceylon J. Sci. 2022, 51, 277–284. [Google Scholar] [CrossRef]
- Borowska, D.; Jabłoński, Z.P.I.A. Disk Diffusion Method in Veterinary Diagnostics—Practical Data; Życie Weterynaryjne: Warszawa, Poland, 2014; Volume 89, pp. 116–120. [Google Scholar]
- Karas, J.A.; Wong, L.J.M.; Paulin, O.K.A.; Mazeh, A.C.; Hussein, M.H.; Li, J.; Velkov, T. The Antimicrobial Activity of Cannabinoids. Antibiotics 2020, 9, 406. [Google Scholar] [CrossRef]
- Omolo, M.; Wong, Z.; Mergen, A.; Hastings, J.; Le, N.; Reiland, H.; Case, K.; Baumler, D. Antimicrobial Properties of Chili Peppers. J. Infect. Dis. Ther. 2014, 2, 145. [Google Scholar] [CrossRef]
- Marini, E.; Magi, G.; Mingoia, M.; Pugnaloni, A.; Facinell, B. Antimicrobial and Anti-Virulence Activity of Capsaicin Against Erythromycin-Resistant, Cell-Invasive Group A Streptococci. Front. Microbiol. 2015, 6, 1281. [Google Scholar] [CrossRef]
- Kędziora, A.; Krzyżewska, E.; Dudek, B.; Bugla-Płoskońska, G. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver. Adv. Hyg. Exp. Med. 2016, 70, 610–617. [Google Scholar] [CrossRef]
- Salleh, A.; Naomi, R.; Utami, N.D.; Mohammad, A.W.; Mahmoudi, E.; Mustafa, N.; Fauzi, M.B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials 2020, 10, 1566. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, H.; Ryu, D.; Choi, S.; Lee, D. Antibacterial Activity of Silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 2011, 39, 77–85. [Google Scholar]
Sample | Kuzu Starch [g] | Glycerol [g] | Citric Acid [g] | Rooibos Extract [g] | Chili Extract [g] | Nanocolloid Ag [g] |
---|---|---|---|---|---|---|
Kuzu 0 | 5 | 2 | 0.5 | - | - | - |
Kuzu rooibos | 5 | 2 | 0.5 | 92.5 | - | - |
Kuzu chili | 5 | 2 | 0.5 | - | 20 | - |
Kuzu Ag | 5 | 2 | 0.5 | - | - | 46.5 |
Sample | Thickness [mm] | Hardness [Shore A] | Density [g cm−3] |
---|---|---|---|
Kuzu 0 | 0.265 ± 0.0025 | 94.2 ± 8.07 | 1.3605 ± 0.03269 |
Kuzu rooibos | 0.210 ± 0.0072 * | 61.9 ± 4.39 * | 1.3069 ± 0.02098 * |
Kuzu chili | 0.415 ± 0.0123 * | 19.1 ± 4.99 * | 1.2270 ± 0.01615 * |
Kuzu Ag | 0.250 ± 0.0011 | 93.9 ± 2.20 | 1.3609 ± 0.00850 |
Sample | Tm [°C] | ΔH [J/g] |
---|---|---|
Kuzu 0 | 88.5 | 359.5 |
Kuzu rooibos | 85.0 | 325.3 |
Kuzu chili | 88.9 | 190.8 |
Kuzu Ag | 89.0 | 360.6 |
Sample | S. aureus ATCC 25923 Gram (+) | E. coli ATCC 25922 Gram (−) |
---|---|---|
Inhibition Area [mm2] * | ||
Kuzu 0 | 0.00 ± 0.00 | |
Kuzu rooibos | 5.3 ± 2.04 * | 22.0 ± 1.55 * |
Kuzu chili | 87.1 ± 3.59 * | 29.4 ± 2.59 * |
Kuzu Ag | 94.7 ± 1.07 * | 87.6 ± 3.59 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morawska, M.; Kukułowicz, A.; Brzeska, J. Green Chemistry in Medical Applications: Preliminary Assessment of Kuzu Starch Films with Plant-Based Antiseptics. Sustainability 2023, 15, 16541. https://doi.org/10.3390/su152316541
Morawska M, Kukułowicz A, Brzeska J. Green Chemistry in Medical Applications: Preliminary Assessment of Kuzu Starch Films with Plant-Based Antiseptics. Sustainability. 2023; 15(23):16541. https://doi.org/10.3390/su152316541
Chicago/Turabian StyleMorawska, Magda, Anita Kukułowicz, and Joanna Brzeska. 2023. "Green Chemistry in Medical Applications: Preliminary Assessment of Kuzu Starch Films with Plant-Based Antiseptics" Sustainability 15, no. 23: 16541. https://doi.org/10.3390/su152316541
APA StyleMorawska, M., Kukułowicz, A., & Brzeska, J. (2023). Green Chemistry in Medical Applications: Preliminary Assessment of Kuzu Starch Films with Plant-Based Antiseptics. Sustainability, 15(23), 16541. https://doi.org/10.3390/su152316541