Use of the Box–Behnken Experimental Design for the Optimization of Orange II (Acid Orange 7) Adsorption on Aloe vera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biosorbent Preparation
2.2. Characterization of Biosorbent
2.3. Adsorbate
2.4. Design of Experiments—DOE
- Y = predicted response values (dye adsorption capacity, q)
- k = numbers of variables
- β0, βi, βjj and βij = intercept, quadratic, linear, and interaction effects, respectively
- Xi, Xj = independent variables
2.5. Batch Adsorption Studies
- C0 = initial dye concentration in the solution (mg·L−1)
- C = dye concentration in the solution at time t (mg·L−1)
- V = solution volume (L)
- m = adsorbent mass (g)
2.5.1. Influence of pH on Adsorption
2.5.2. Biosorption Kinetics
2.5.3. Biosorption Isotherms
3. Results
3.1. Characterization of Aloe vera
3.2. Box–Behnken Design
- X1 = adsorbent dose, g·L−1
- X2 = initial dye concentration, mg·L−1
- X3 = contact time, min
3.2.1. Influence of Different Parameters Affecting the Biosorption of O-II dye by Aloe vera
3.2.2. Effects of Adsorbent Dose (D) and Initial O-II Concentration ([O-II]i)
3.2.3. Effect of Adsorbent Dose (D) and Contact Time (t)
3.2.4. Effect of Initial O-II Concentration ([O-II]i) and Contact Time
3.3. Effect of pH on O-II Biosorption
3.4. Biosorption Kinetics
3.5. Adsorption Isotherm
3.6. Adsorption Mechanisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bazin, I.; Ibn Hadj Hassine, A.; Haj Hamouda, Y.; Mnif, W.; Bartegi, A.; Lopez-Ferber, M.; De Waard, M.; Gonzalez, C. Estrogenic and Anti-Estrogenic Activity of 23 Commercial Textile Dyes. Ecotoxicol. Environ. Saf. 2012, 85, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Birhanli, A.; Ozmen, M. Evaluation of the Toxicity and Teratogenity of Six Commercial Textile Dyes Using the Frog Embryo Teratogenesis Assay-Xenopus. Drug Chem. Toxicol. 2005, 28, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.P.; Carneiro, P.A.; Sakagami, M.K.; Zanoni, M.V.B.; Umbuzeiro, G.A. Chemical Characterization of a Dye Processing Plant Effluent-Identification of the Mutagenic Components. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2007, 626, 135–142. [Google Scholar] [CrossRef]
- Mustereţ, C.P.; Teodosiu, C. Removal of Persistent Organic Pollutants from Textile Wastewater by Membrane Processes. Environ. Eng. Manag. J. 2007, 6, 175–187. [Google Scholar] [CrossRef]
- Karcher, S.; Kornmüller, A.; Jekel, M. Anion Exchange Resins for Removal of Reactive Dyes from Textile Wastewaters. Water Res. 2002, 36, 4717–4724. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.P.; Santana, S.A.A.; Bezerra, C.W.B.; Silva, H.A.S.; Chaves, J.A.P.; de Melo, J.C.P.; da Silva Filho, E.C.; Airoldi, C. Kinetics and Thermodynamics of Textile Dye Adsorption from Aqueous Solutions Using Babassu Coconut Mesocarp. J. Hazard. Mater. 2009, 166, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Ogugbue, C.J.; Sawidis, T. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas Hydrophila Isolated from Industrial Effluent. Biotechnol. Res. Int. 2011, 2011, 967925. [Google Scholar] [CrossRef]
- Petcu, A.R.; Lazar, C.A.; Rogozea, E.A.; Olteanu, N.L.; Meghea, A.; Mihaly, M. Nonionic Microemulsion Systems Applied for Removal of Ionic Dyes Mixtures from Textile Industry Wastewaters. Sep. Purif. Technol. 2016, 158, 155–159. [Google Scholar] [CrossRef]
- Wang, J.; Yao, J.; Wang, L.; Xue, Q.; Hu, Z.; Pan, B. Multivariate Optimization of the Pulse Electrochemical Oxidation for Treating Recalcitrant Dye Wastewater. Sep. Purif. Technol. 2020, 230, 115851. [Google Scholar] [CrossRef]
- Liu, J.; Liu, A.; Wang, W.; Li, R.; Zhang, W. xian Feasibility of Nanoscale Zero-Valent Iron (NZVI) for Enhanced Biological Treatment of Organic Dyes. Chemosphere 2019, 237, 124470. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, T.; Shen, M.; Huang, Z.; Chong, Y.; Cui, L. Coagulation Treatment of Swine Wastewater by the Method of In-Situ Forming Layered Double Hydroxides and Sludge Recycling for Preparation of Biochar Composite Catalyst. Chem. Eng. J. 2019, 369, 784–792. [Google Scholar] [CrossRef]
- Visa, M.; Carcel, R.A.; Andronic, L.; Duta, A. Advanced Treatment of Wastewater with Methyl Orange and Heavy Metals on TiO2, Fly Ash and Their Mixtures. Catal. Today 2009, 144, 137–142. [Google Scholar] [CrossRef]
- Rondina, D.J.G.; Ymbong, D.V.; Cadutdut, M.J.M.; Nalasa, J.R.S.; Paradero, J.B.; Mabayo, V.I.F.; Arazo, R.O. Utilization of a Novel Activated Carbon Adsorbent from Press Mud of Sugarcane Industry for the Optimized Removal of Methyl Orange Dye in Aqueous Solution. Appl. Water Sci. 2019, 9, 181. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, R.; Wang, J. Adsorption of Methyl Orange from Aqueous Solution Using Chitosan/Diatomite Composite. Water Sci. Technol. 2017, 75, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Chaukura, N.; Murimba, E.C.; Gwenzi, W. Synthesis, Characterisation and Methyl Orange Adsorption Capacity of Ferric Oxide–Biochar Nano-Composites Derived from Pulp and Paper Sludge. Appl. Water Sci. 2017, 7, 2175–2186. [Google Scholar] [CrossRef]
- Krika, F.; Benlahbib, O.e.F. Removal of Methyl Orange from Aqueous Solution via Adsorption on Cork as a Natural and Low-Coast Adsorbent: Equilibrium, Kinetic and Thermodynamic Study of Removal Process. Desalination Water Treat. 2015, 53, 3711–3723. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef]
- Aguayo-Villarreal, I.A.; Ramírez-Montoya, L.A.; Hernández-Montoya, V.; Bonilla-Petriciolet, A.; Montes-Morán, M.A.; Ramírez-López, E.M. Sorption Mechanism of Anionic Dyes on Pecan Nut Shells (Carya illinoinensis) Using Batch and Continuous Systems. Ind. Crops Prod. 2013, 48, 89–97. [Google Scholar] [CrossRef]
- Arshadi, M.; Salimivahid, F.; Salvacion, J.W.L.; Soleymanzadeh, M. Adsorption Studies of Methyl Orange on an Immobilized Mn-Nanoparticle: Kinetic and Thermodynamic. RSC Adv. 2014, 4, 16005–16017. [Google Scholar] [CrossRef]
- Oloo, C.M.; Onyari, J.M.; Wanyonyi, W.C.; Wabomba, J.N.; Muinde, V.M. Adsorptive Removal of Hazardous Crystal Violet Dye Form Aqueous Solution Using Rhizophora Mucronata Stem-Barks: Equilibrium and Kinetics Studies. Environ. Chem. Ecotoxicol. 2020, 2, 64–72. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.-M. Application of Chitosan, a Natural Aminopolysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Haitham, K.; Razak, S.; Nawi, M.A. Kinetics and Isotherm Studies of Methyl Orange Adsorption by a Highly Recyclable Immobilized Polyaniline on a Glass Plate. Arab. J. Chem. 2019, 12, 1595–1606. [Google Scholar] [CrossRef]
- Vučurović, V.M.; Razmovski, R.N.; Miljić, U.D.; Puškaš, V.S. Removal of Cationic and Anionic Azo Dyes from Aqueous Solutions by Adsorption on Maize Stem Tissue. J. Taiwan Inst. Chem. Eng. 2014, 45, 1700–1708. [Google Scholar] [CrossRef]
- Salih, S.J.; Abdul Kareem, A.S.; Anwer, S.S. Adsorption of Anionic Dyes from Textile Wastewater Utilizing Raw Corncob. Heliyon 2022, 8, e10092. [Google Scholar] [CrossRef] [PubMed]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.N.M.A.; Sultana, N.; Sayem, A.S.M.; Smriti, S.A. Sustainable Adsorbents from Plant-Derived Agricultural Wastes for Anionic Dye Removal: A Review. Sustainability 2022, 14, 11098. [Google Scholar] [CrossRef]
- Bhomick, P.C.; Supong, A.; Kumar, S.; Sema, A.I.; Merry, T.; Sinha, D. Utilization of Pinus Kesiya and Schima Wallichii Biomass-Derived Activated Carbon for Methylene Blue Removal: Adsorption Performance and Mechanistic Insights. Water Conserv. Sci. Eng. 2023, 8, 48. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Yan, C.; Guo, W.; Yang, T.; Fu, J.; Tang, J.; Hu, C. Optimization of Methyl Orange Removal from Aqueous Solution by Response Surface Methodology Using Spent Tea Leaves as Adsorbent. Front. Environ. Sci. Eng. 2014, 8, 496–502. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Zarei, A.A.; Nadi, H.; Zazouli, M.A. Adsorptive Removal of Methyl Orange and Reactive Red 198 Dyes by Moringa Peregrina Ash. Indian J. Chem. Technol. 2014, 21, 105–113. [Google Scholar]
- Ahmaruzzaman, M. Removal of Methyl Orange from Aqueous Solution Using Activated Papaya Leaf. Sep. Sci. Technol. 2012, 47, 2381–2390. [Google Scholar]
- Fadhil, O.H.; Eisa, M.Y. Removal of Methyl Orange from Aqueous Solutions by Adsorption Using Corn Leaves as Adsorbent Material. J. Eng. 2019, 25, 55–69. [Google Scholar] [CrossRef]
- Jawad, A.H.; Ngoh, Y.S.; Radzun, K.A. Utilization of Watermelon (Citrullus lanatus) Rinds as a Natural Low-Cost Biosorbent for Adsorption of Methylene Blue: Kinetic, Equilibrium and Thermodynamic Studies. J. Taibah Univ. Sci. 2018, 12, 371–381. [Google Scholar] [CrossRef]
- Jawad, A.H.; Mamat, N.F.H.; Abdullah, M.F.; Ismail, K. Adsorption of Methylene Blue onto Acid-Treated Mango Peels: Kinetic, Equilibrium and Thermodynamic Study. Desalination Water Treat. 2017, 59, 210–219. [Google Scholar] [CrossRef]
- Jawad, A.H.; Waheeb, A.S.; Rashid, R.A.; Nawawi, W.I.; Yousif, E. Equilibrium Isotherms, Kinetics, and Thermodynamics Studies of Methylene Blue Adsorption on Pomegranate (Punica granatum) Peels as a Natural Low-Cost Biosorbent. Desalination Water Treat. 2018, 105, 322–331. [Google Scholar] [CrossRef]
- Amel, K.; Hassen, M.A.; Kerroum, D. Isotherm and Kinetics Study of Biosorption of Cationic Dye onto Banana Peel. Energy Procedia 2012, 19, 286–295. [Google Scholar] [CrossRef]
- Jawad, A.H.; Kadhum, A.M.; Ngoh, Y.S. Applicability of Dragon Fruit (Hylocereus polyrhizus) Peels as Low-Cost Biosorbent for Adsorption of Methylene Blue from Aqueous Solution: Kinetics, Equilibrium and Thermodynamics Studies. Desalination Water Treat. 2018, 109, 231–240. [Google Scholar] [CrossRef]
- Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728–747. [Google Scholar] [CrossRef]
- Baruah, A.; Bordoloi, M.; Deka Baruah, H.P. Aloe vera: A Multipurpose Industrial Crop. Ind. Crops Prod. 2016, 94, 951–963. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, S.K. Plant-Mediated Synthesis of Silver and Gold Nanoparticles and Their Applications. J. Chem. Technol. Biotechnol. 2009, 84, 151–157. [Google Scholar] [CrossRef]
- Soltanizadeh, N.; Ghiasi-Esfahani, H. Qualitative Improvement of Low Meat Beef Burger Using Aloe vera. Meat Sci. 2014, 99, 75–80. [Google Scholar] [CrossRef]
- Alğin Yapar, E. Herbal Cosmetics and Novel Drug Delivery Systems. Indian J. Pharm. Educ. Res. 2017, 51, S152–S158. [Google Scholar] [CrossRef]
- Hanafiah, M.A.K.M.; Mohd Jamaludin, S.Z.; Khalid, K.; Ibrahim, S. Methylene Blue Adsorption on Aloe vera Rind Powder: Kinetics, Isotherm and Mechanisms. Nat. Environ. Pollut. Technol. 2018, 17, 1055–1064. [Google Scholar]
- Noli, F.; Kapashi, E.; Kapnisti, M. Biosorption of Uranium and Cadmium Using Sorbents Based on Aloe vera Wastes. J. Environ. Chem. Eng. 2019, 7, 102985. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Hosseini-Bandegharaei, A.; Tsafrakidou, P.; Triantafyllidis, K.S.; Kornaros, M.; Anastopoulos, I. Aloe vera Waste Biomass-Based Adsorbents for the Removal of Aquatic Pollutants: A Review. J. Environ. Manag. 2018, 227, 354–364. [Google Scholar] [CrossRef]
- El-Azazy, M.; Dimassi, S.; El-Shafie, A.; Issa, A. Bio-Waste Aloe vera Leaves as an Efficient Adsorbent for Titan Yellow from Wastewater: Structuring of a Novel Adsorbent Using Plackett-Burman Factorial Design. Appl. Sci. 2019, 9, 4856. [Google Scholar] [CrossRef]
- Sharif, K.M.; Rahman, M.M.; Azmir, J.; Mohamed, A.; Jahurul, M.H.A.; Sahena, F.; Zaidul, I.S.M. Experimental Design of Supercritical Fluid Extraction—A Review. J. Food Eng. 2014, 124, 105–116. [Google Scholar] [CrossRef]
- Tripathi, P.; Srivastava, V.C.; Kumar, A. Optimization of an Azo Dye Batch Adsorption Parameters Using Box-Behnken Design. Desalination 2009, 249, 1273–1279. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 978-1-118-09793-9. [Google Scholar]
- Liu, X.; Han, B.; Su, C.-L.; Han, Q.; Chen, K.-J.; Chen, Z.-Q. Optimization and Mechanisms of Biosorption Process of Zn(II) on Rape Straw Powders in Aqueous Solution. Environ. Sci. Pollut. Res. 2019, 26, 32151–32164. [Google Scholar] [CrossRef]
- Ravikumar, K.; Krishnan, S.; Ramalingam, S.; Balu, K. Optimization of Process Variables by the Application of Response Surface Methodology for Dye Removal Using a Novel Adsorbent. Dye. Pigment. 2007, 72, 66–74. [Google Scholar] [CrossRef]
- Katubi, K.M.; Amari, A.; Harharah, H.N.; Eldirderi, M.M.; Tahoon, M.A.; Rebah, F. Ben Aloe vera as Promising Material for Water Treatment: A Review. Processes 2021, 9, 782. [Google Scholar] [CrossRef]
- Meseguer, V.F.; Ortuño, J.F.; Aguilar, M.I.; Pinzón-Bedoya, M.L.; Lloréns, M.; Sáez, J.; Pérez-Marín, A.B. Biosorption of Cadmium (II) from Aqueous Solutions by Natural and Modified Non-Living Leaves of Posidonia Oceanica. Environ. Sci. Pollut. Res. 2016, 23, 24032–24046. [Google Scholar] [CrossRef] [PubMed]
- Fiol, N.; Villaescusa, I. Determination of Sorbent Point Zero Charge: Usefulness in Sorption Studies. Environ. Chem. Lett. 2009, 7, 79–84. [Google Scholar] [CrossRef]
- Wang, Y.X.; Ngo, H.H.; Guo, W.S. Preparation of a Specific Bamboo Based Activated Carbon and Its Application for Ciprofloxacin Removal. Sci. Total Environ. 2015, 533, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Bouchelkia, N.; Tahraoui, H.; Amrane, A.; Belkacemi, H.; Bollinger, J.C.; Bouzaza, A.; Zoukel, A.; Zhang, J.; Mouni, L. Jujube Stones Based Highly Efficient Activated Carbon for Methylene Blue Adsorption: Kinetics and Isotherms Modeling, Thermodynamics and Mechanism Study, Optimization via Response Surface Methodology and Machine Learning Approaches. Process Saf. Environ. Prot. 2023, 170, 513–535. [Google Scholar] [CrossRef]
- Largitte, L.; Pasquier, R. A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G. Adsorption of Pollutants by Plant Bark Derived Adsorbents: An Empirical Review. J. Water Process Eng. 2020, 35, 101228. [Google Scholar] [CrossRef]
- Majd, M.M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption Isotherm Models: A Comprehensive and Systematic Review (2010−2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Z. Application of Dubinin–Radushkevich Isotherm Model at the Solid/Solution Interface: A Theoretical Analysis. J. Mol. Liq. 2019, 277, 646–648. [Google Scholar] [CrossRef]
- Reddy, A.V.B.; Rafiq, R.; Ahmad, A.; Maulud, A.S.; Moniruzzaman, M. Cross-Linked Ionic Liquid Polymer for the Effective Removal of Ionic Dyes from Aqueous Systems: Investigation of Kinetics and Adsorption Isotherms. Molecules 2022, 27, 7775. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, Y.; Xie, Z.; Feng, S.; Li, B.; Mi, X. Characterization of Biosorption Process of Acid Orange 7 on Waste Brewery’s Yeast. Appl. Biochem. Biotechnol. 2011, 163, 882–894. [Google Scholar] [CrossRef]
- Ray, A.; Ghosh, S. Chemometrics for Functional Group Distribution, and UV Absorption Potential of Aloe vera L. Gel at Different Growth Periods. Mater. Today Proc. 2018, 5, 22245–22253. [Google Scholar] [CrossRef]
- Jamoussi, B.; Chakroun, R.; Jablaoui, C.; Rhazi, L. Efficiency of Acacia Gummifera Powder as Biosorbent for Simultaneous Decontamination of Water Polluted with Metals. Arab. J. Chem. 2020, 13, 7459–7481. [Google Scholar] [CrossRef]
- Kousha, M.; Daneshvar, E.; Dopeikar, H.; Taghavi, D.; Bhatnagar, A. Box-Behnken Design Optimization of Acid Black 1 Dye Biosorption by Different Brown Macroalgae. Chem. Eng. J. 2012, 179, 158–168. [Google Scholar] [CrossRef]
- Lin, Z.; Hu, Y.; Yuan, Y.; Hu, B.; Wang, B. Comparative Analysis of Kinetics and Mechanisms for Pb(II) Sorption onto Three Kinds of Microplastics. Ecotoxicol. Environ. Saf. 2021, 208, 111451. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.M.; Shin, D.H.; Kim, C.-H. An Optimized Methodology to Observe Internal Microstructures of Aloe vera by Cryo-Scanning Electron Microscope. Appl. Microsc. 2016, 46, 76–82. [Google Scholar] [CrossRef]
- Khuri, A.I.; Cornell, J.A. Response Surfaces: Designs and Analyses, 2nd ed.; CRC Taylor & Francis Group: New York, NY, USA, 1996. [Google Scholar]
- Salman, M.; Shahid, M.; Sahar, T.; Naheed, S.; Mahmood-ur-Rahman; Arif, M.; Iqbal, M.; Nazir, A. Development of Regression Model for Bacteriocin Production from Local Isolate of Lactobacillus Acidophilus MS1 Using Box-Behnken Design. Biocatal. Agric. Biotechnol. 2020, 24, 101542. [Google Scholar] [CrossRef]
- Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M.; Taitai, A. Use of Response Surface Methodology for Optimization of Fluoride Adsorption in an Aqueous Solution by Brushite. Arab. J. Chem. 2017, 10, S3292–S3302. [Google Scholar] [CrossRef]
- Zhang, B.; Han, X.; Gu, P.; Fang, S.; Bai, J. Response Surface Methodology Approach for Optimization of Ciprofloxacin Adsorption Using Activated Carbon Derived from the Residue of Desilicated Rice Husk. J. Mol. Liq. 2017, 238, 316–325. [Google Scholar] [CrossRef]
- Zaheer, Z.; AbuBaker Bawazir, W.; Al-Bukhari, S.M.; Basaleh, A.S. Adsorption, Equilibrium Isotherm, and Thermodynamic Studies to the Removal of Acid Orange 7. Mater. Chem. Phys. 2019, 232, 109–120. [Google Scholar] [CrossRef]
- Al-Zawahreh, K.; Barral, M.T.; Al-Degs, Y.; Paradelo, R. Comparison of the Sorption Capacity of Basic, Acid, Direct and Reactive Dyes by Compost in Batch Conditions. J. Environ. Manag. 2021, 294, 113005. [Google Scholar] [CrossRef]
- Khataee, A.R.; Vafaei, F.; Jannatkhah, M. Biosorption of Three Textile Dyes from Contaminated Water by Filamentous Green Algal Spirogyra sp.: Kinetic, Isotherm and Thermodynamic Studies. Int. Biodeterior. Biodegrad. 2013, 83, 33–40. [Google Scholar] [CrossRef]
- Bourikas, K.; Stylidi, M.; Kondarides, D.I.; Verykios, X.E. Adsorption of Acid Orange 7 on the Surface of Titanium Dioxide. Langmuir 2005, 21, 9222–9230. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, E.; Kousha, M.; Sohrabi, M.S.; Khataee, A.; Converti, A. Biosorption of Three Acid Dyes by the Brown Macroalga Stoechospermum Marginatum: Isotherm, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2012, 195–196, 297–306. [Google Scholar] [CrossRef]
- Makrygianni, M.; Lada, Z.G.; Manousou, A.; Aggelopoulos, C.A.; Deimede, V. Removal of Anionic Dyes from Aqueous Solution by Novel Pyrrolidinium-Based Polymeric Ionic Liquid (PIL) as Adsorbent: Investigation of the Adsorption Kinetics, Equilibrium Isotherms and the Adsorption Mechanisms Involved. J. Environ. Chem. Eng. 2019, 7, 103163. [Google Scholar] [CrossRef]
- Podder, M.S.; Majumder, C.B. Studies on the Removal of As(III) and As(V) through Their Adsorption onto Granular Activated Carbon/MnFe2O4 Composite: Isotherm Studies and Error Analysis. Compos. Interfaces 2016, 23, 327–372. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Jin, X.; Jiang, M.-Q.; Shan, X.-Q.; Pei, Z.-G.; Chen, Z. Adsorption of Methylene Blue and Orange II onto Unmodified and Surfactant-Modified Zeolite. J. Colloid Interface Sci. 2008, 328, 243–247. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Mangwandi, C. Mechanisms of Alizarin Red S and Methylene Blue Biosorption onto Olive Stone By-Product: Isotherm Study in Single and Binary Systems. J. Environ. Manag. 2015, 164, 86–93. [Google Scholar] [CrossRef]
- Hamzeh, Y.; Ashori, A.; Azadeh, E.; Abdulkhani, A. Removal of Acid Orange 7 and Remazol Black 5 Reactive Dyes from Aqueous Solutions Using a Novel Biosorbent. Mater. Sci. Eng. C 2012, 32, 1394–1400. [Google Scholar] [CrossRef]
- Silva, J.P.; Sousa, S.; Rodrigues, J.; Antunes, H.; Porter, J.J.; Gonçalves, I.; Ferreira-Dias, S. Adsorption of Acid Orange 7 Dye in Aqueous Solutions by Spent Brewery Grains. Sep. Purif. Technol. 2004, 40, 309–315. [Google Scholar] [CrossRef]
- Sheshmani, S.; Ashori, A.; Hasanzadeh, S. Removal of Acid Orange 7 from Aqueous Solution Using Magnetic Graphene/Chitosan: A Promising Nano-Adsorbent. Int. J. Biol. Macromol. 2014, 68, 218–224. [Google Scholar] [CrossRef]
- Carmalin, S.A.; Lima, E.C. Removal of Emerging Contaminants from the Environment by Adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Yu, G.; Pan, L.; Li, C.; You, F.; Xie, S.; Wang, Y.; Ma, J.; Shang, X. Study of Ciprofloxacin Removal by Biochar Obtained from Used Tea Leaves. J. Environ. Sci. 2018, 73, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Abramian, L.; El-Rassy, H. Adsorption Kinetics and Thermodynamics of Azo-Dye Orange II onto Highly Porous Titania Aerogel. Chem. Eng. J. 2009, 150, 403–410. [Google Scholar] [CrossRef]
Kinetic Model | Equation | Parameters |
---|---|---|
Pseudo—first order | qe, adsorption capacity at equilibrium | |
k1, adsorption rate constant | ||
Pseudo—second order | qe, adsorption capacity at equilibrium | |
k2, adsorption rate constant | ||
h = k2·qe2, initial adsorption rate | ||
Elovich equation | α, initial adsorption rate | |
β, constant related to the extent of surface coverage and activation energy for chemisorption | ||
Intraparticle diffusion | kd, rate constant | |
C, constant related with the thickness of boundary layer | ||
Bangham | kB, constant parameter | |
σ, constant parameter (<1) |
Isotherm Models | Equation | Parameter |
---|---|---|
Langmuir | qmL, maximum sorption capacity | |
KL, Langmuir isotherm constant | ||
Freundlich | KF, Freundlich isotherm constant | |
n, Freundlich isotherm exponent constant | ||
Redlich–Peterson | KR, Redlich–Peterson isotherm constant | |
αR, Redlich–Peterson isotherm constant | ||
β, Redlich–Peterson isotherm exponent | ||
Sips | qmS, maximum sorption capacity | |
KS, Sips isotherm constant | ||
nS, Sips isotherm exponent | ||
Toth | qmT, maximum sorption capacity | |
KT, constant that characterize the adsorptive potential | ||
TT, Toth parameter related with the heterogeneity of the adsorbent (dimensionless) | ||
Dubinin–Radushkevich | qmDR, maximum sorption capacity | |
KDR, constant related to the adsorption energy | ||
ε, Polanyi potential, calculated from: |
Test | Coded Variable | Real Variable | Response | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X1 | X2 | X3 | ||
Dose | [O-II] | Time | Dose (g·L−1) | [O-II] (mg·L−1) | Time (min) | q (mg·g−1) | |
1 | −1 | −1 | 0 | 1 | 10 | 35 | 5.29 |
2 | 1 | −1 | 0 | 4 | 10 | 35 | 2.21 |
3 | −1 | 1 | 0 | 1 | 50 | 35 | 8.45 |
4 | 1 | 1 | 0 | 4 | 50 | 35 | 6.78 |
5 | −1 | 0 | −1 | 1 | 30 | 10 | 7.14 |
6 | 1 | 0 | −1 | 4 | 30 | 10 | 4.97 |
7 | −1 | 0 | 1 | 1 | 30 | 60 | 7.98 |
8 | 1 | 0 | 1 | 4 | 30 | 60 | 5.43 |
9 | 0 | −1 | −1 | 2.5 | 10 | 10 | 3.01 |
10 | 0 | 1 | −1 | 2.5 | 50 | 10 | 6.80 |
11 | 0 | −1 | 1 | 2.5 | 10 | 60 | 3.31 |
12 | 0 | 1 | 1 | 2.5 | 50 | 60 | 7.78 |
13 | 0 | 0 | 0 | 2.5 | 30 | 35 | 6.53 |
14 | 0 | 0 | 0 | 2.5 | 30 | 35 | 6.58 |
15 | 0 | 0 | 0 | 2.5 | 30 | 35 | 6.53 |
Term | Coef | SE Coef | t | p |
---|---|---|---|---|
Constant | 6.54843 | 0.04874 | 134.3680 | 0.0000 |
X1 | −1.18414 | 0.02984 | −39.6780 | 0.0000 |
X2 | 1.99931 | 0.02984 | 66.9920 | 0.0000 |
X3 | 0.32172 | 0.02984 | 10.7800 | 0.0000 |
X1·X1 | 0.14376 | 0.04393 | 3.2730 | 0.0220 |
X2·X2 | −1.01200 | 0.04393 | −23.0370 | 0.0000 |
X3·X3 | −0.31235 | 0.04393 | −7.1100 | 0.0010 |
X1·X2 | 0.35243 | 0.04221 | 8.3500 | 0.0000 |
X1·X3 | −0.09561 | 0.04221 | −2.2650 | 0.0730 |
X2·X3 | 0.16723 | 0.04221 | 3.9620 | 0.0110 |
Source | Degrees of Freedom (DF) | Seq SS | Adj SS | Adj MS | F | p |
---|---|---|---|---|---|---|
Regression | 9 | 48.8666 | 48.8666 | 5.4296 | 762.02 | 0.0000 |
Linear | 3 | 44.0235 | 44.0235 | 14.6745 | 2059.49 | 0.0000 |
Square | 3 | 4.1978 | 4.1978 | 13.9930 | 196.38 | 0.0000 |
Interaction | 3 | 0.6452 | 0.6452 | 0.2151 | 30.19 | 0.0010 |
Residual error | 5 | 0.0356 | 0.0356 | 0.0071 | ||
Lack of fit | 3 | 0.0342 | 0.0342 | 0.0114 | 16.31 | 0.0580 |
Pure error | 2 | 0.0014 | 0.0014 | 0.0007 | ||
Total | 14 | 48.9023 |
Kinetic Model | Parameters | |
---|---|---|
Pseudo—first order | qe (mg·g−1) | 7.8 |
k1 (min−1) | 0.308 | |
ARE (%) | 7.87 | |
Pseudo—second order | qe (mg·g−1) | 9.22 |
k2 (g·mg−1·min−1) | 0.0229 | |
h (mg·g−1·min−1) | 1.95 | |
ARE (%) | 6.43 | |
Elovich | α (mg·g−1·min−1) | 1449 |
β (g·mg−1) | 1.506 | |
ARE (%) | 1.46 | |
Intraparticle diffusion | kd (mg·g−1·min−0.5) | 0.1406 |
C (mg·g−1) | 6.46 | |
ARE (%) | 2.23 | |
Bangham | kB (L·g−1) | 0.122 |
σ | 0.119 | |
ARE (%) | 1.063 |
Isotherm Model | Parameters | |
---|---|---|
Langmuir | qmL (mg·g−1) | 11.064 |
KL (L·mg−1) | 0.248 | |
ARE (%) | 6.99 | |
Freundlich | KF ((mg·g−1)·(mg·L−1) −1/n) | 3.961 |
n | 4.13 | |
ARE (%) | 4.86 | |
Redlich–Peterson | KR (L·g−1) | 20.26 |
αR (L·mg−1)β | 4.37 | |
β | 0.79 | |
ARE (%) | 3.62 | |
Sips | qmS (mg·g−1) | 13.29 |
Ks (L1/nS·mmol−1/nS) | 0.326 | |
ns | 1.68 | |
ARE (%) | 2.11 | |
Toth | qmT (mg·g−1) | 15.87 |
KT (L·mg−1)TT | 1.903 | |
TT | 2.67 | |
ARE (%) | 1.67 | |
Dubinin–Radushkevich | qmDR (mmol·g−1) | 0.0341 |
KDR (mol2·kJ−2) | 0.0060 | |
E (kJ·mol−1) | 9.118 | |
ARE (%) | 1.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar, M.I.; Lloréns, M.; Ortuño, J.F.; Meseguer, V.F.; Pérez-Marín, A.B.; Cases, A. Use of the Box–Behnken Experimental Design for the Optimization of Orange II (Acid Orange 7) Adsorption on Aloe vera. Sustainability 2023, 15, 15727. https://doi.org/10.3390/su152215727
Aguilar MI, Lloréns M, Ortuño JF, Meseguer VF, Pérez-Marín AB, Cases A. Use of the Box–Behnken Experimental Design for the Optimization of Orange II (Acid Orange 7) Adsorption on Aloe vera. Sustainability. 2023; 15(22):15727. https://doi.org/10.3390/su152215727
Chicago/Turabian StyleAguilar, María Isabel, Mercedes Lloréns, Juan Francisco Ortuño, Víctor Francisco Meseguer, Ana Belén Pérez-Marín, and Alejandro Cases. 2023. "Use of the Box–Behnken Experimental Design for the Optimization of Orange II (Acid Orange 7) Adsorption on Aloe vera" Sustainability 15, no. 22: 15727. https://doi.org/10.3390/su152215727
APA StyleAguilar, M. I., Lloréns, M., Ortuño, J. F., Meseguer, V. F., Pérez-Marín, A. B., & Cases, A. (2023). Use of the Box–Behnken Experimental Design for the Optimization of Orange II (Acid Orange 7) Adsorption on Aloe vera. Sustainability, 15(22), 15727. https://doi.org/10.3390/su152215727