A Subsurface Horizontal Constructed Wetland Design Approach for Wastewater Treatment: Application in Ar Riyadh, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Wastewater Treatment System Description
2.3. Design Procedure of the HSSF-CW
2.4. Pollutants Removal Efficiency
Sizing a New HSSF-CW
- Define the wastewater characteristics such as air temperature in the winter season is 18.6 °C and in the summer season is 32.7 °C, the wastewater flow per person (q) is 150 L/d, demonstrating an inlet design discharge of 300 m3/d, the influent pollutants concentration for biological oxygen demand (BOD), total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and fecal coliforms (FC) are 350, 1000, 700, 50, 12 mg/L, and 106 CFU/100 mL, respectively.
- Design the septic tank based on a retention time of two days and a surfacing load rate of 1.5 m/d,
- Design the HSSF-CW utilizing common reed (Phragmites australis) and papyrus plant beds and gravel with a size range of 40 to 80 mm is used in the entrance zone, 16 to 32 mm in the treatment zone, and 40 to 80 mm in the outflow zone to prevent HSSF-CW clogging. In addition, an anti-seepage layer PVC membrane lining was constructed to prevent wastewater seepage and safeguard the groundwater aquifer.
- Using an Excel spreadsheet to solve Equation (1) yields the surface area of the HSSF-CW for BOD, TP, and FC in.
- Using Equation (2), calculate LR for BOD, TP, and FC as well as the related hydraulic residence time (RT), assuming that the porosity n = 0.3 and y = 0.6 m for the water depth.
- Determine L and W for a length to width (L/W) ratio of 2.5, and then divide the length into cells with a width of 8.0 m to determine the number of cells.
3. Results and Discussion
3.1. Design of Primary Treatment (Septic Tank) and the New HSSF-CW
3.2. Methodology Validation with Existing Data
3.3. Vegetation and Type of Substrate
3.4. HSSF-CW Cost Estimation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabr, M.E. Design methodology for sewage water treatment system comprised of Imhoff ‘s tank and a subsurface horizontal flow constructed wetland: A case study Dakhla Oasis, Egypt. J. Environ. Sci. Health Part A 2022, 57, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Gabr, M.E.; Salem, M.; Mahanna, H.; Mossad, M. Floating wetlands for sustainable drainage wastewater treatment. Sustainability 2022, 14, 6101. [Google Scholar] [CrossRef]
- Merriman, L.S.; Hathaway, J.M.; Burchell, M.R.; Hunt, W.F. Adapting the relaxed tanks-in-series model for stormwater wetland water quality performance. Water 2017, 9, 691. [Google Scholar] [CrossRef]
- Hassan, I.; Chowdhury, S.R.; Prihartato, P.K.; Razzak, S.A. Processes wastewater treatment using constructed wetland: Current Trends and Future Potential. Processes 2021, 9, 1917. [Google Scholar] [CrossRef]
- Masi, F.; Bresciani, R.; Martinuzzi, N.; Cigarini, G.; Rizzo, A. Constructed Wetland at Orhei’s wastewater treatment plant, Moldova. Water Sci. Technol. 2017, 76, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Stefanakis, A.; Bardiau, M.; Trajano, D.; Couceiro, F.; Williams, J.; Taylor, H. Presence of bacteria and bacteriophages in full-scale trickling filters and an aerated constructed wetland. Sci. Total Environ. 2019, 659, 1135–1145. [Google Scholar] [CrossRef]
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of its Applications and Health Implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Nyieku, F.E.; Essandoh, H.M.K.; Armah, F.A.; Awuah, E. Environmental conditions and the performance of free water surface flow constructed wetland: A multivariate statistical approach. Wetl. Ecol. Manag. 2021, 29, 381–395. [Google Scholar] [CrossRef]
- Hdidou, M.; Necibi, M.C.; Labille, J.; El Hajjaji, S.; Dhiba, D.; Chehbouni, A.; Roche, N. Potential use of constructed wetland systems for rural sanitation and wastewater reuse in agriculture in the Moroccan context. Energies 2022, 15, 156. [Google Scholar] [CrossRef]
- Zidan, A.R.A.; El-Gamal, M.A.; Rashed, A.A.; El-Hady, M.A. BOD treatment in HSSF constructed wetlands using different media (Set-up stage). MEJ Mansoura Eng. J. 2020, 38, 36–46. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Wastewater Technology Fact Sheet—Wetlands: Subsurface Flow; United States Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Sudarsan, J.S.; Roy, R.L.; Baskar, G.; Deeptha, V.T.; Nithiyanantham, S. Domestic wastewater treatment performance using constructed wetland. Sustain. Water Resour. Manag. 2015, 1, 89–96. [Google Scholar] [CrossRef]
- Rozema, E.R.; VanderZaag, A.C.; Wood, J.D.; Drizo, A.; Zheng, Y.; Madani, A.; Gordon, R.J. Constructed wetlands for agricultural wastewater treatment in Northeastern North America: A review. Water 2016, 8, 173. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Stefanakis, A.I. The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef]
- Vera, I.; Verdejo, N.; Chávez, W.; Jorquera, C.; Olave, J. Influence of hydraulic retention time and plant species on performance of mesocosm subsurface constructed wetlands during municipal wastewater treatment in super-arid areas. J. Environ. Sci. Health Part A 2015, 51, 105–113. [Google Scholar] [CrossRef]
- Tondera, K. Case Study 1—CSO Treatment Wetland (Germany). In Wetland Technology, Practical Information on the Design and Application of Treatment Wetlands, 1st ed.; Langergraber, G., Dotro, G., Nivala, J., Rizzo, A., Stein, O.R., Eds.; Scientific and Technical Report No. 27; IWA Publishing: London, UK, 2009; p. 129. [Google Scholar]
- Al-Obaid, S.; Samraoui, B.; Thomas, J.; El-Serehy, H.A.; Alfarhan, A.H.; Schneider, W.; O’connell, M. An overview of wetlands of Saudi Arabia: Values, threats, and perspectives. Ambio 2017, 46, 98–108. [Google Scholar] [CrossRef]
- Madleen, S.; Gabr, M.E.; Mohamed, M.; Hani, M. Random Forest modelling and evaluation of the efficiency of a full-scale subsurface constructed wetland plant in Egypt. Ain Shams Eng. J. 2022, 13, 101778. [Google Scholar]
- Baaij, B.M.; Kooijman, J.; Limpens, J.; Marijnissen, R.J.C.; Van Loon-Steensma, J.M. Monitoring impact of salt-marsh vegetation characteristics on sedimentation: An Outlook for Nature-Based Flood Protection. Wetlands 2021, 41, 76. [Google Scholar] [CrossRef]
- Crites, R.W.; Reed, S.C.; Middlebrooks, E.J. Natural Wastewater Treatment Systems; CRC: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2006. [Google Scholar]
- Kumar, M.; Singh, R. Assessment of pollutant removal processes and kinetic modelling in vertical flow constructed wetlands at elevated pollutant loading. Environ. Sci. Pollut. Res. 2019, 26, 18421–18433. [Google Scholar] [CrossRef]
- Shukla, R.; Gupta, D.; Singh, G.; Mishra, V.K. Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustain. Environ. Res. 2021, 31, 13. [Google Scholar] [CrossRef]
- Alayu, E.; Leta, S. Effectiveness of two-stage horizontal subsurface flow constructed wetland planted with Cyperus alternifolius and Typha latifolia in treating anaerobic reactor brewery effluent at different hydraulic residence times. Environ. Syst. Res. 2020, 9, 25. [Google Scholar] [CrossRef]
- Rana, V.; Maiti, S.K. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland. Environ. Monit. Assess. 2018, 190, 328. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, R.V.; Boralkar, D.B.; Chavhan, R.D. Remediation capabilities of pilot-scale wetlands planted with Typha aungstifolia and Acorus calamus to treat landfill leachate. J. Ecol. Environ. 2018, 42, 23. [Google Scholar] [CrossRef]
- Sudarsan, J.S.; Srihari, V. Evaluation of adsorption capacity of biochar mixed substrate to treat tannery wastewater by con-structed wetland. AIP Conf. Proc. 2019, 2112, 020176. [Google Scholar]
- Paruch, A.M.; Mæhlum, T.; Haarstad, K.; Blankenberg, A.G.B.; Hensel, G. Performance of constructed wetlands treating domestic wastewater in Norway over a quarter of a century–options for nutrient removal and recycling. In Natural and Constructed Wetlands; Vymazal, J., Ed.; Springer: Cham, Switzerland, 2016; pp. 41–55. [Google Scholar]
- Prochaska, C.; Zouboulis, A. Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecol. Eng. 2006, 26, 293–303. [Google Scholar] [CrossRef]
- Manios, T.; Millner, P.; Stentiford, E. Effect of rain and temperature on the performance of constructed reed beds. Water Environ. Res. 2000, 72, 305–312. [Google Scholar] [CrossRef]
- Jawad, L.A. (Ed.) The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Salam, A.A.; Elsegaey, I.; Khraif, R.; Al-Mutairi, A. Population distribution and household conditions in Saudi Arabia: Reflections from the 2010 Census. SpringerPlus 2014, 3, 530. [Google Scholar] [CrossRef]
- Wu, H.; Gao, X.; Wu, M.; Zhu, Y.; Xiong, R.; Ye, S. The efficiency and risk to groundwater of constructed wetland system for domestic sewage treatment—A case study in Xiantao, China. J. Clean. Prod. 2020, 277, 123384. [Google Scholar] [CrossRef]
- El-Rawy, M.; Batelaan, O.; Al-Arifi, N.; Alotaibi, A.; Abdalla, F.; Gabr, M.E. Climate Change Impacts on Water Resources in Arid and Semi-Arid Regions: A Case Study in Saudi Arabia. Water 2023, 15, 606. [Google Scholar] [CrossRef]
- Ghanim, A.A. Water Resources Crisis in Saudi Arabia, Challenges and Possible Management Options: An Analytic Review. Int. J. Environ. Ecol. Eng. 2019, 13, 51–56. [Google Scholar] [CrossRef]
- Nnajia, C.C.; Agunwambab, J.C. A rational approach to septic tank design. Niger. J. Technol. 2012, 31, 68–78. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Al-Jasser, A. Saudi wastewater reuse standards for agricultural irrigation: Riyadh treatment plants effluent compliance. J. King Saud Univ. Eng. Sci. 2011, 23, 1–8. [Google Scholar] [CrossRef]
- Khashogji, M.S.; El Maghraby, M.M.S. Evaluation of groundwater resources for drinking and agricultural purposes, Abar Al Mashi area, south Al Madinah Al Munawarah City, Saudi Arabia. Arab. J. Geosci. 2013, 6, 3929–3942. [Google Scholar] [CrossRef]
- Rashed, A.A. Reciprocating Subsurface Wetlands for Drainage Water Treatment A Case Study in Egypt. MEJ. Mansoura Eng. J. 2020, 32, 12–22. [Google Scholar] [CrossRef]
- Economopoulou, M.A.; Tsihrintzis, V.A. Design methodology and area sensitivity analysis of horizontal subsurface flow constructed wetlands. Water Resour. Manag. 2003, 17, 147–174. [Google Scholar] [CrossRef]
- Tang, Z.; Wood, J.; Smith, D.; Thapa, A.; Aryal, N. A review on constructed treatment wetlands for removal of pollutants in the agricultural runoff. Sustainability 2021, 13, 13578. [Google Scholar] [CrossRef]
- Masharqa, A.; Al-Tardeh, S.; Mlih, R.; Bol, R. Vertical and hybrid constructed wetlands as a sustainable technique to improve domestic wastewater quality. Water 2023, 15, 3348. [Google Scholar] [CrossRef]
- Parihar, P.; Chand, N.; Suthar, S. Treatment of high nutrient-loaded wastewater in a constructed floating wetland with different configurations: Role of Lantana biochar addition. Sustainability 2022, 14, 16049. [Google Scholar] [CrossRef]
- Abdelhakeem, S.G.; Aboulroos, S.A.; Kamel, M.M. Performance of a vertical subsurface flow constructed wetland under different operational conditions. J. Adv. Res. 2016, 7, 803–814. [Google Scholar] [CrossRef]
- Barco, A.; Borin, M. Treatment performance and macrophytes growth in a restored hybrid constructed wetland for municipal wastewater treatment. Ecol. Eng. 2017, 107, 160–171. [Google Scholar] [CrossRef]
- Bruch, I.; Alewell, U.; Hahn, A.; Hasselbach, R.; Alewell, C. Influence of soil physical parameters on removal efficiency and hydraulic conductivity of vertical flow constructed wetlands. Ecol. Eng. 2014, 68, 124–132. [Google Scholar] [CrossRef]
- García-Ávila, F.; Patiño-Chávez, J.; Zhinín-Chimbo, F.; Donoso-Moscoso, S.; del Pino, L.F.; Avilés-Añazco, A. Performance of Phragmites Australis and Cyperus Papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands. Int. Soil Water Conserv. Res. 2019, 7, 286–296. [Google Scholar] [CrossRef]
Parameter | Design Values | Design Criteria [36] |
---|---|---|
Inlet raw water discharge (Q) (m3/d) | 300 | - |
Hydraulic residence time (RT) (day) | 2 | 2–4 |
Sedimentation volume (VT) (m3) = | 600 | |
Tank sedimentation water depth (d) (m) | 3 | 5–8 |
Tank surface area (SA) = (m2) | 200 | |
Number of tanks | 2 | |
Dimensions of sedimentation tank: | ||
Length (L) m, | 10 m | |
Width (B) m, | 10 m | |
Water depth (d) m | 3.0 m | |
Length to width ratio | 1:1 | |
Tank sludge zone dimensions: | ||
Rate of sludge and scum accumulation (L/year/capita) | 40 | |
Emptying the tank every two years in a warm climate (day) | 2 | |
Sludge volume, (m3) | 160 | |
Number of tanks | 2 | |
Length (L) m, | 10 | |
Width (B) m, | 10 | |
Sludge depth (m) | 0.8 | |
Inlet raw wastewater BOD (mg/L) | 350 | |
Predictable effluent after primary sedimentation for BOD (mg/L) | 245 | Removal efficiency = 30% |
Inlet raw wastewater COD (Mg/L) | 700 | |
Expected effluent after primary treatment for COD (mg/L) | 490 | Removal efficiency = 30% |
Inlet raw wastewater TN (mg/L) | 50 | |
Predictable effluent after primary sedimentation for TN (mg/L) | 35 | Removal efficiency = 30% |
Inlet raw wastewater TP (mg/L) | 12 | |
Predictable effluent after primary sedimentation for TP (mg/L) | 8.4 | Removal efficiency = 30% |
Inlet raw wastewater TSS (mg/L) | 1000 | |
Predictable effluent after primary sedimentation for TSS (mg/L) | 400 | Removal efficiency = 60% |
Inlet raw wastewater FC CFU/100 mL | 106 | |
Predictable effluent after primary sedimentation for FC CFU/100 mL | 105 | Removal efficiency = 10% |
Parameter | Value |
---|---|
Population | 2000 Capita |
Unit wastewater flow | 0.15 m3/capita/d |
Design discharge | 300 m3/d |
Design average winter air temperature | 18.6 °C |
Design average summer air temperature | 32.7 °C |
Design influent (BOD) after septic tank | 245 mg/L |
Water density ρ = 1000 kg/m3 | 1000 kg/m3 |
Number of tanks (N) | 3 |
C* for the BOD, | 1 mg/L |
C* for TP, | 0.119 mg/L |
C* for FC | 4 CFU/100 mL |
KT for BOD | 0.662 m/d |
KT for TP | 0.16 m/d |
KT for FC | 1.492 m/d |
Design influent Fecal coliforms (FC) | 105 CFU/100 mL |
Influent total Nitrogen (TN) after sedimentation Septic tank | 35 mg/L |
Inlet total Phosphorus (TP) post Septic tanks | 7.0 mg/L |
Influent (TSS) after Septic tanks | 400 mg/L |
Water depth (y) | 0.6 m |
Porosity medium for gravelly sand () | 0.3 |
Effluent (BOD) | 20 mg/L |
Effluent FC | 2000 CFU/100 mL |
Effluent (TP) | 3 mg/L |
Parameter | Value |
---|---|
Design residence time (RT) is for BOD | 1.1 d |
Design area (A) | 1824 m2 |
Design hydraulic load (LR) | 0.16 m/d |
Subsurface wetland length (L) = area (A)/width (W) | 60.42 m |
Length to width actual ratio (L: W) | 2.5 |
Subsurface wetland total width (W) = area (A)/length (L) | 26 m |
L | 72 m |
Width of cell (wi) | 8 m |
Number of cells (n) = L/wi | 9 |
Actual area | 1872 m2 |
BOD removal efficiency | 92% |
TN removal efficiency | 70% |
TP removal efficiency | 57% |
FC removal efficiency | 98.5% |
System Name | Temperature (°C) | Reed Beds | Discharge (m3/d) | Pollutant’s Concentrations | Wetland Surface Area Existing A (m2) | |
---|---|---|---|---|---|---|
Influent (mg/L) | Effluent (mg/L) | |||||
Current HSSF-CW | 18.6–32.7 | Phragmites australis and Papyrus | 300 | BOD = 245 | BOD = 20 | 1874 |
TP = 7 | TP = 3 | |||||
FC = 105 (CFU/100 mL) | FC = 1500 (CFU/100 mL) | |||||
Agaa wastewater treatment, Delta of Egypt [19] | 18 | Phragmites australis and Papyrus | 1500 | BOD = 250 | BOD = 60 | 1840 |
Lake Manzala reciprocating wetland system, Egypt [39] | 14.1–27.8 | Unplanted | 250 | BOD = 25 | BOD = 4 | 324 |
FC = 3342 (CFU/100 mL) | FC = 153 (CFU/100 mL) | |||||
Campus of Indira Gandhi National Tribal University (IGNTU), Amarkantak, MP, India [3] | 18.2–31.6 | T. latifolia | 6 | BOD = 375 | BOD = 147 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabr, M.E.; El-Rawy, M.; Al-Arifi, N.; Zijl, W.; Abdalla, F. A Subsurface Horizontal Constructed Wetland Design Approach for Wastewater Treatment: Application in Ar Riyadh, Saudi Arabia. Sustainability 2023, 15, 15927. https://doi.org/10.3390/su152215927
Gabr ME, El-Rawy M, Al-Arifi N, Zijl W, Abdalla F. A Subsurface Horizontal Constructed Wetland Design Approach for Wastewater Treatment: Application in Ar Riyadh, Saudi Arabia. Sustainability. 2023; 15(22):15927. https://doi.org/10.3390/su152215927
Chicago/Turabian StyleGabr, Mohamed Elsayed, Mustafa El-Rawy, Nassir Al-Arifi, Wouter Zijl, and Fathy Abdalla. 2023. "A Subsurface Horizontal Constructed Wetland Design Approach for Wastewater Treatment: Application in Ar Riyadh, Saudi Arabia" Sustainability 15, no. 22: 15927. https://doi.org/10.3390/su152215927
APA StyleGabr, M. E., El-Rawy, M., Al-Arifi, N., Zijl, W., & Abdalla, F. (2023). A Subsurface Horizontal Constructed Wetland Design Approach for Wastewater Treatment: Application in Ar Riyadh, Saudi Arabia. Sustainability, 15(22), 15927. https://doi.org/10.3390/su152215927