Spatiotemporal Variation in Water-Related Ecosystem Services during 2000–2020 and Ecological Management Zoning in the Xiangjiang River Basin, China
Abstract
:1. Introduction
1.1. Importance of Ecosystem Services Related to Water
1.2. Aim of the Article
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Ecosystem Services Quantification
2.3.1. Water Conservation
2.3.2. Soil Retention
2.3.3. Water Purification
2.3.4. Bivariate Spatial Autocorrelation
3. Results
3.1. Alterations in Land Use and Land Cover
3.2. Spatiotemporal Changes of WESs
3.3. Trades-Offs and Synergies of WESs
3.3.1. Temporal Variations of Trades-Offs and Synergies
3.3.2. Spatial Distribution of Trades-Offs and Synergies
3.4. Ecological Management Zoning Based on the Clustering Characteristics
3.4.1. Constructing Zoning Rules
3.4.2. Water Ecological Management Zones
4. Discussion
4.1. Assessment of WESs and Variation in Trade-Off and Synergy
4.2. Implications of Zoning Management
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CGCS2000 | China Geodetic Coordinate System 2000 |
DEM | Digital Elevation Model |
HH | High–High |
HL | High–Low |
InVEST | Integrated Valuation of Ecosystem Services and Trade-offs |
LH | Low–High |
LL | Low–Low |
MA | Millennium Ecosystem Assessment |
MU | Management Units |
NN | Non-correlation |
SR | Soil Retention |
WC | Water Conservation |
WESs | Water-related Ecosystem Services |
WP | Water Purification |
XJRB | Xiangjiang River Basin |
References
- Sahle, M.; Saito, O.; Fürst, C.; Yeshitela, K. Quantifying and Mapping of Water-Related Ecosystem Services for Enhancing the Security of the Food-Water-Energy Nexus in Tropical Data–Sparse Catchment. Sci. Total Environ. 2019, 646, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Théau, J. Spatiotemporal Analysis of Water-Related Ecosystem Services under Ecological Restoration Scenarios: A Case Study in Northern Shaanxi, China. Sci. Total Environ. 2020, 720, 137477. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, S.; Zhu, Z.; Gao, X.; Li, X.; Tang, W.; Liang, J. Identification of Priority Conservation Areas Based on Ecosystem Services and Systematic Conservation Planning Analysis. Environ. Sci. Pollut. Res. 2022, 30, 36573–36587. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, K.; Lei, M.; Li, X.; Li, X.; Jiang, L.; Gao, X.; Li, S.; Liang, J. Identification of Priority Areas for Water Ecosystem Services by a Techno-Economic, Social and Climate Change Modeling Framework. Water Res. 2022, 221, 118766. [Google Scholar] [CrossRef] [PubMed]
- Bennett, E.M.; Cramer, W.; Begossi, A.; Cundill, G.; Díaz, S.; Egoh, B.N.; Geijzendorffer, I.R.; Krug, C.B.; Lavorel, S.; Lazos, E.; et al. Linking Biodiversity, Ecosystem Services, and Human Well-Being: Three Challenges for Designing Research for Sustainability. Curr. Opin. Environ. Sustain. 2015, 14, 76–85. [Google Scholar] [CrossRef]
- Pinto, R.; Jonge, V.N.; de Marques, J.C. Linking Biodiversity Indicators, Ecosystem Functioning, Provision of Services and Human Well-Being in Estuarine Systems: Application of a Conceptual Framework. Ecol. Indic. 2014, 36, 644–655. [Google Scholar] [CrossRef]
- He, X.; Liang, J.; Zeng, G.; Yuan, Y.; Li, X. The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services. Glob. Chall. 2019, 3, 1800095. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Q.; Zhang, H.; Li, X.; Qian, Z.; Lei, M.; Li, X.; Peng, Y.; Li, S.; Zeng, G. Interactive Effects of Climate Variability and Human Activities on Blue and Green Water Scarcity in Rapidly Developing Watershed. J. Clean. Prod. 2020, 265, 121834. [Google Scholar] [CrossRef]
- Cui, F.; Wang, B.; Zhang, Q.; Tang, H.; De Maeyer, P.; Hamdi, R.; Dai, L. Climate Change versus Land-Use Change—What Affects the Ecosystem Services More in the Forest-Steppe Ecotone? Sci. Total Environ. 2021, 759, 143525. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, J.; Dong, J.; Liu, Y.; Liu, Q.; Lyu, D.; Qiao, R.; Zhang, Z. Spatial Correlation between the Changes of Ecosystem Service Supply and Demand: An Ecological Zoning Approach. Landsc. Urban Plan. 2022, 217, 104258. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Liang, J.; Li, S.; Li, X.; Li, X.; Liu, Q.; Meng, Q.; Lin, A.; Li, J. Trade-off Analyses and Optimization of Water-Related Ecosystem Services (WRESs) Based on Land Use Change in a Typical Agricultural Watershed, Southern China. J. Clean. Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
- Lei, J.; Wang, S.; Wu, J.; Wang, J.; Xiong, X. Land-Use Configuration Has Significant Impacts on Water-Related Ecosystem Services. Ecol. Eng. 2021, 160, 106133. [Google Scholar] [CrossRef]
- Hu, X.; Li, Z.; Nie, X.; Wang, D.; Huang, J.; Deng, C.; Shi, L.; Wang, L.; Ning, K. Regionalization of Soil and Water Conservation Aimed at Ecosystem Services Improvement. Sci. Rep. 2020, 10, 3469. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Hu, J.; Sun, F.; Zhang, L. Water Retention and Hydrological Regulation: Harmony but Not the Same in Terrestrial Hydrological Ecosystem Services. Acta Ecol. Sin. 2015, 35, 5191–5196. (In Chinese) [Google Scholar]
- Gong, S.; Yang, X.; Zheng, H. Spatial Patterns of Ecosystem Water Conservation in China and Its Impact Factors Analysis. Acta Ecol. Sin. 2017, 37, 2455–2462. (In Chinese) [Google Scholar]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST Models to Determine Hydrological Ecosystem Service Spatial Patterns, Priorities and Trade-Offs in a Complex Basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Jia, L. Soil Retention Service: Concept, Assessment, and Outlook. Acta Ecol. Sin. 2019, 39, 432–440. (In Chinese) [Google Scholar]
- Guo, M.; Ma, S.; Wang, L.J.; Lin, C. Impacts of Future Climate Change and Different Management Scenarios on Water-Related Ecosystem Services: A Case Study in the Jianghuai Ecological Economic Zone, China. Ecol. Indic. 2021, 127, 107732. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhang, J.; Liu, G.; Fang, Z.; Wang, D. Exploring Interactions in Water-Related Ecosystem Services Nexus in Loess Plateau. J. Environ. Manag. 2023, 336, 117550. [Google Scholar] [CrossRef]
- Cano, D.; Cacciuttolo, C.; Custodio, M.; Nosetto, M. Effects of Grassland Afforestation on Water Yield in Basins of Uruguay: A Spatio-Temporal Analysis of Historical Trends Using Remote Sensing and Field Measurements. Land 2023, 12, 185. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbagy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Buytaert, W.; Iñiguez, V.; De Bièvre, B. The effects of afforestation and cultivation on water yield in the Andean páramo. For. Ecol. Manag. 2007, 251, 22–30. [Google Scholar] [CrossRef]
- Nosetto, M.D.; Jobbagy, E.G.; Paruelo, J.M. Land-use change and water losses: The case of grassland afforestation across a soil textural gradient in central Argentina. Glob. Chang. Biol. 2005, 11, 1101–1117. [Google Scholar] [CrossRef]
- Hejduk, L.; Kaznowska, E.; Wasilewicz, M.; Hejduk, A. Dynamics of the Natural Afforestation Process of a Small Lowland Catchment and Its Possible Impact on Runoff Changes. Sustainability 2021, 13, 10339. [Google Scholar] [CrossRef]
- Pan, J.; Wei, S.; Li, Z. Spatiotemporal Pattern of Trade-Offs and Synergistic Relationships among Multiple Ecosystem Services in an Arid Inland River Basin in NW China. Ecol. Indic. 2020, 114, 106345. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping Ecosystem Service Supply, Demand and Budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Mao, B.; Wang, X.; Liao, Z.; Miao, Y.; Yan, S. Spatiotemporal Variations and Tradeoff-Synergy Relations of Ecosystem Services under Ecological Water Replenishment in Baiyangdian Lake, North China. J. Environ. Manag. 2023, 343, 118229. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Wang, N.; Huang, C.; Zhang, K.; Qiao, B.; Wang, Y.; Wen, P. Trade-Off and Synergy Relationships and Spatial Bundle Analysis of Ecosystem Services in the Qilian Mountains. Remote Sens. 2023, 15, 2950. [Google Scholar] [CrossRef]
- Zhang, Y.; She, J.; Long, X.; Zhang, M. Spatio-Temporal Evolution and Driving Factors of Eco-Environmental Quality Based on RSEI in Chang-Zhu-Tan Metropolitan Circle, Central China. Ecol. Indic. 2022, 144, 109436. [Google Scholar] [CrossRef]
- Deng, C.; Zhu, D.; Nie, X.; Liu, C.; Zhang, G.; Liu, Y.; Li, Z.; Wang, S.; Ma, Y. Precipitation and Urban Expansion Caused Jointly the Spatiotemporal Dislocation between Supply and Demand of Water Provision Service. J. Environ. Manag. 2021, 299, 113660. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Yang, X.; Zhou, Z.; Pan, Y.; Li, M. Quantifying Water Provision Service Supply, Demand and Spatial Flow for Land Use Optimization: A Case Study in the YanHe Watershed. Ecosyst. Serv. 2020, 43, 101117. [Google Scholar] [CrossRef]
- Men, D.; Pan, J.; Sun, X. Spatial and Temporal Patterns of Supply and Demand Risk for Ecosystem Services in the Weihe River Main Stream, NW China. Environ. Sci. Pollut. Res. 2022, 30, 36952–36966. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.; Zhang, J.; Huang, Y. Investigating the Trade-Offs between the Supply and Demand for Ecosystem Services for Regional Spatial Management. J. Environ. Manag. 2023, 325, 116591. [Google Scholar] [CrossRef]
- Zhao, J.; Li, C. Investigating Ecosystem Service Trade-Offs/Synergies and Their Influencing Factors in the Yangtze River Delta Region, China. Land 2022, 11, 106. [Google Scholar] [CrossRef]
- Liu, J.; Pei, X.; Zhu, W.; Jiao, J. Scenario Modeling of Ecosystem Service Trade-Offs and Bundles in a Semi-Arid Valley Basin. Sci. Total Environ. 2023, 896, 166413. [Google Scholar] [CrossRef]
- Wang, L.J.; Ma, S.; Jiang, J.; Zhao, Y.-G.; Zhang, J.-C. Spatiotemporal Variation in Ecosystem Services and Their Drivers among Different Landscape Heterogeneity Units and Terrain Gradients in the Southern Hill and Mountain Belt, China. Remote Sens. 2021, 13, 1375. [Google Scholar] [CrossRef]
- Li, G.; Jiang, C.; Gao, Y.; Du, J. Natural Driving Mechanism and Trade-off and Synergy Analysis of the Spatiotemporal Dynamics of Multiple Typical Ecosystem Services in Northeast Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 374, 134075. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, J.; Li, X.; Song, L.; Zhang, Z.; Zhang, S.; Zhang, W.; Dong, J.; Dong, X. Ecological Security Assessment and Ecological Management Zoning Based on Ecosystem Services in the West Liao River Basin. Ecol. Eng. 2023, 192, 106973. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, G. Urban Watershed Ecosystem Health Assessment and Ecological Management Zoning Based on Landscape Pattern and SWMM Simulation: A Case Study of Yangmei River Basin. Environ. Impact Assess. Rev. 2022, 95, 106794. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, H.; Tang, J.; Yan, S. Zoning and Optimization Strategies of Land Spatial Ecological Restoration in Liangjiang New Area of Chongqing Based on the Supply–Demand Relationship of Ecosystem Services. Land 2023, 12, 1255. [Google Scholar] [CrossRef]
- Meacham, M.; Norström, A.V.; Peterson, G.D.; Andersson, E.; Bennett, E.M.; Crouzat, E.; Cord, A.F.; Felipe-Lucia, M.R.; Fischer, J.; Hamann, M.; et al. Advancing Research on Ecosystem Service Bundles for Comparative Assessments and Synthesis. Ecosyst. People 2022, 18, 99–111. [Google Scholar] [CrossRef]
- Chen, T.Q.; Zhao, H.F.; Wu, K.N.; Feng, Z. Identification of Ecosystem Service Bundles and Driving Factors in Beijing and Its Surrounding Areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Liu, D.Q.; Zhu, Y.H.; Yan, L.L.; Jin, T.T. Are Ecosystem Service Bundles Useful for Mountainous Landscape Function Zoning and Management? A Case Study of Bailongjiang Watershed in Western China. Ecol. Indic. 2022, 134, 108495. [Google Scholar] [CrossRef]
- Shao, X.; Liu, X.; Cai, J.; Cai, Y.; Cui, B. Identifying Priority Areas of Four Major Chinese Carps’ Species in the Pearl River Basin Based on the MaxEnt Model. Watershed Ecol. Environ. 2023, 5, 18–23. [Google Scholar] [CrossRef]
- Raman, S.; Shameer, T.T.; Pooja, U.; Hughes, A.C. Identifying Priority Areas for Bat Conservation in the Western Ghats Mountain Range, Peninsular India. J. Mammal. 2023, 104, 49–61. [Google Scholar] [CrossRef]
- Guzman, B.K.; Cotrina-Sánchez, A.; Guzmán, C.T.; Oliva, M.; Tarifeño, C.M.O.; Cerna, M.Y.H.; Sandoval, J.D.R. Predicting Potential Distribution and Identifying Priority Areas for Conservation of the Lowland Tapir (Tapirus Terrestris) in Peruvian Amazon. J. Nat. Conserv. 2023, 73, 126397. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; Zhou, Y.; Sun, X. Spatial Identification of Restored Priority Areas Based on Ecosystem Service Bundles and Urbanization Effects in a Megalopolis Area. J. Environ. Manag. 2022, 308, 114627. [Google Scholar] [CrossRef]
- Xu, J.; Liu, S.; Zhao, S.; Wu, X.; Hou, X.; An, Y.; Shen, Z. Spatiotemporal Dynamics of Water Yield Service and Its Response to Urbanisation in the Beiyun River Basin, Beijing. Sustainability 2019, 11, 4361. [Google Scholar] [CrossRef]
- Yang, R.; Chen, H.; Chen, S.; Ye, Y. Spatiotemporal Evolution and Prediction of Land Use/Land Cover Changes and Ecosystem Service Variation in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109579. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, D.; Li, L.; Jia, M.; Dong, Z.; Miao, Z.; Ren, C.; Song, C. Quantifying Changes in Multiple Ecosystem Services during 1992–2012 in the Sanjiang Plain of China. Sci. Total Environ. 2015, 514, 119–130. [Google Scholar] [CrossRef]
- Deng, C.; Liu, Y.; Liu, J.; Li, Z.; Nie, X.; Hu, X.; Wang, L.; Zhang, Y.; Zhang, G.; Zhu, D.; et al. Spatiotemporal Dislocation of Urbanization and Ecological Construction Increased the Ecosystem Service Supply and Demand Imbalance. J. Environ. Manag. 2021, 288, 112478. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of Water Provision Service for Monsoon Catchments of South China: Applicability of the InVEST Model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal Change Detection of Ecological Quality and the Associated Affecting Factors in Dongting Lake Basin, Based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Ma, C.; Pan, S.; Wang, G.; Liao, Y.; Xu, Y.-P. Changes in Precipitation and Temperature in Xiangjiang River Basin, China. Theor. Appl. Climatol. 2016, 123, 859–871. [Google Scholar] [CrossRef]
- Deng, Z.; Quan, B.; Zhang, H.; Xie, H.; Zhou, Z. Scenario Simulation of Land Use and Cover under Safeguarding Ecological Security: A Case Study of Chang-Zhu-Tan Metropolitan Area, China. Forests 2023, 14, 2131. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, Z.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Wu, S.; Shi, X. Content and Development of the 5-Year Interval Land Ecosystem Spatial Distribution Dataset in China (1990–2010). J. Glob. Chan. Data Disc. 2017, 1, 52. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X.; Huang, L. Spatial and Temporal Variability of Soil Erosion in Northeast China from 2000 to 2020. Remote Sens. 2023, 15, 225. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Deng, X.; Zhuang, D.; Zhang, Z.; Luo, D. The land use and land cover change database and its relative studies in China. J. Geogr. Sci. 2002, 12, 275. [Google Scholar]
- Liu, C.; Zou, L.; Xia, J.; Chen, X.; Zuo, L.; Yu, J. Spatiotemporal Heterogeneity of Water Conservation Function and Its Driving Factors in the Upper Yangtze River Basin. Remote Sens. 2023, 15, 5246. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Li, C.; Xu, Y.; Hao, F.; Yin, G. Ecosystem service trade-offs and synergies under influence of climate and land cover change in an afforested semiarid basin, China. Ecol. Eng. 2021, 159, 106083. [Google Scholar] [CrossRef]
- Lu, L.; Liu, C. Chinese Soil Dataset Based on the World Soil Database (HWSD) (v1.1). Environmental and Ecological Science Data Center for West China. 2020. Available online: http://westdc.westgis.ac.cn/ (accessed on 9 May 2022).
- Zhou, J.; Zhang, B.; Zhang, Y.; Su, Y.; Chen, J.; Zhang, X. Research on the Trade-Offs and Synergies of Ecosystem Services and Their Impact Factors in the Taohe River Basin. Sustainability 2023, 15, 9689. [Google Scholar] [CrossRef]
- Yang, M.; Gao, X.; Zhao, X.; Wu, P. Scale effect and spatially explicit drivers of interactions between ecosystem services—A case study from the Loess Plateau. Sci. Total Environ. 2021, 785, 147389. [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.; Feng, Q.; Gui, J.; Zhang, B. Spatiotemporal variations of water conservation and its influencing factors in ecological barrier region, Qinghai-Tibet Plateau. J. Hydrol. Reg. Stud. 2022, 42, 101164. [Google Scholar] [CrossRef]
- Stanford University; University of Minnesota; Chinese Academy of Sciences; The Nature Conservancy; World Wildlife Fund; Stockholm Resilience Centre. User’s Guide. 2022. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/index.html (accessed on 16 October 2022).
- Bai, Y. Impact of Land Use and Climate Change on Water-Related Ecosystem Services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Fuh, B.P. On the Calculation of the Evaporation from Land Surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Edward, T. A Simple Formula for Estimating Evaporation Rates in Various Climates, Using Temperature Data Alone. Agric. For. Meteorol. 1977, 18, 409–424. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, A.; Peng, D.; Miao, C.; Di, Z.; Gong, W. Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model. J. Hydrol. Reg. Stud. 2022, 41, 101064. [Google Scholar] [CrossRef]
- Machado, R.E.; Cardoso, T.O.; Mortene, M.H. Determination of Runoff Coefficient (C) in Catchments Based on Analysis of Precipitation and Flow Events. Int. Soil Water Conserv. Res. 2022, 10, 208–216. [Google Scholar] [CrossRef]
- Sriwongsitanon, N.; Taesombat, W. Effects of Land Cover on Runoff Coefficient. J. Hydrol. 2011, 410, 226–238. [Google Scholar] [CrossRef]
- Li, J. Identification of Ecosystem Services Supply and Demand and Driving Factors in Taihu Lake Basin. Environ. Sci. Pollut. Res. 2022, 29, 29735–29745. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Department of Agriculture: Washington, DC, USA, 1997; No. 703; p. 404.
- Zhang, W.; Xie, Y.; Liu, B. Rainfall Erosivity Estimation Using Daily Rainfall Amounts. Sci. Geogr. Sin. 2002, 22, 705. [Google Scholar]
- Huang, L.; Cao, W.; Xu, X.L.; Fan, J.W.; Wang, J.B. Linking the benefits of ecosystem services to sustainable spatial planning of ecological conservation strategies. J. Environ. Manag. 2018, 222, 385–395. [Google Scholar] [CrossRef]
- Liu, M.; Min, L.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China. Sustainability 2021, 13, 716. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Sminov, O. Visualizing Multivariate Spatial Correlation with Dynamically Linked Windows. In Proceedings of the CSISS Workshop on New Tools for Spatial Data Analysis, Santa Barbara, CA, USA, 10–11 May 2002. [Google Scholar]
- Yang, Q.; Pu, L.; Jiang, C.; Gong, G.; Tan, H.; Wang, X.; He, G. Unveiling the spatial-temporal variation of urban land use efficiency of Yangtze River Economic Belt in China under carbon emission constraints. Front. Environ. Sci. 2023, 10, 1096087. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Zhang, Z.; Zhao, Y.; Green, S.M.; Quine, T.A.; Liu, H.; Meersmans, J. Distinguishing the Impacts of Land Use and Climate Change on Ecosystem Services in a Karst Landscape in China. Ecosyst. Serv. 2020, 46, 101199. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.J.; Liu, Z.; Wang, L.; Zhang, W.; Zou, Y.; Jiang, M. Combined Effects of Multi-Land Use Decisions and Climate Change on Water-Related Ecosystem Services in Northeast China. J. Environ. Manag. 2022, 315, 115131. [Google Scholar] [CrossRef]
- Deng, C.; Liu, J.; Nie, X.; Li, Z.; Liu, Y.; Xiao, H.; Hu, X.; Wang, L.; Zhang, Y.; Zhang, G.; et al. How Trade-Offs between Ecological Construction and Urbanization Expansion Affect Ecosystem Services. Ecol. Indic. 2021, 122, 107253. [Google Scholar] [CrossRef]
- Gao, H.; Liu, J.; Gao, G.; Xia, J. Ecological and Hydrological Perspectives of the Water Retention Concept. Acta Geogr. Sin. 2023, 78, 139–148. (In Chinese) [Google Scholar]
- Bai, Y.; Ouyang, Z.Y.; Zheng, H.; Li, X.; Zhuang, C.; Jiang, B. Modeling soil conservation, water conservation and their tradeoffs: A case study in Beijing. J. Environ. Sci. 2012, 24, 419–426. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, H.-H.; Chen, S.-M.; Tang, Y.; Lan, Z.-S.; Hou, G.-L.; Jiang, Z.-Y. Ecosystem Services Response to the Grain-for-Green Program and Urban Development in a Typical Karstland of Southwest China over a 20-Year Period. Forests 2023, 14, 1637. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, D.; Tang, L.; Qiao, Z.; Ma, L.; Chen, M. Exploring the Impact of Grain-for-Green Program on Trade-Offs and Synergies among Ecosystem Services in West Liao River Basin, China. Remote Sens. 2023, 15, 2490. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Z.; Li, Y.; Sun, G.; Cen, Y.; Lou, Y.; Yao, Y.; Liu, W. Eco-Environment Quality Response to Climate Change and Human Activities on the Loess Plateau, China. Land 2023, 12, 1792. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Wu, W.; Yu, L. Effects of landscape pattern change on ecosystem services and its interactions in karst cities: A case study of Guiyang City in China. Ecol. Indic. 2022, 145, 109646. [Google Scholar] [CrossRef]
- Sertel, E.; Imamoglu, M.Z.; Cuceloglu, G.; Erturk, A. Impacts of Land Cover/Use Changes on Hydrological Processes in a Rapidly Urbanizing Mid-latitude Water Supply Catchment. Water 2019, 11, 1075. [Google Scholar] [CrossRef]
- Zhou, B.T.; Qian, J. Changes of weather and climate extremes in the IPCC sixth assessment report. Clim. Chang. Res. 2021, 17, 713–718. [Google Scholar] [CrossRef]
- Liu, L.; Sun, W.; Liu, J. Spatio-Temporal Analysis of Simulated Summer Extreme Precipitation Events under RCP4.5 Scenario in the Middle and Lower Reaches of the Yangtze River Basin. Sustainability 2023, 15, 9218. [Google Scholar] [CrossRef]
- Li, J.; Xie, B.; Gao, C.; Zhou, K.; Liu, C.; Zhao, W.; Xiao, J.; Xie, J. Impacts of natural and human factors on water-related ecosystem services in the Dongting Lake Basin. J. Clean. Prod. 2022, 370, 133400. [Google Scholar] [CrossRef]
- Yu, Z.; Deng, X.; Cheshmehzangi, A. The Grain for Green Program Enhanced Synergies between Ecosystem Regulating Services in Loess Plateau, China. Remote Sens. 2022, 14, 5940. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E.; Qi, Y.; Fan, Y. Study on the Ecosystem Service Supply–Demand Relationship and Development Strategies in Mountains in Southwest China Based on Different Spatial Scales. Land 2023, 12, 2007. [Google Scholar] [CrossRef]
- Tian, P.; Liu, Y.; Li, J.; Pu, R.; Cao, L.; Zhang, H. Spatiotemporal patterns of urban expansion and trade-offs and synergies among ecosystem services in urban agglomerations of China. Ecol. Indic. 2023, 148, 110057. [Google Scholar] [CrossRef]
- Canelas, J.V.; Pereira, H.M. Impacts of land-use intensity on ecosystems stability. Ecol. Model. 2022, 472, 110093. [Google Scholar] [CrossRef]
- Wei, C.; Zeng, J.; Wang, J.; Jiang, X.; You, Y.; Wang, L.; Zhang, Y.; Liao, Z.; Su, K. Assessing the Impact of Climate and Human Activities on Ecosystem Services in the Loess Plateau Ecological Screen, China. Remote Sens. 2023, 15, 4717. [Google Scholar] [CrossRef]
Data | Type | Resolution | Data Source |
---|---|---|---|
Land Use Data [59] | Raster | 1 km × 1 km | Resources and Environmental Science and Data Center, Chinese Academy of Sciences, http://www.resdc.cn (accessed on 8 May 2022) |
Meteorological Data [60] | point | Daily | China Meteorological Data Network, http://data.cma.cn (accessed on 10 May 2022) |
Soil Data [61,62] | Raster | 1 km × 1 km | Chinese Soil Data Set (v1.1) of the Harmonized World Soil Database (HWSD), http://westdc.westgis.ac.cn (accessed on 9 May 2022) |
Digital Elevation Model [63] | Raster | 90 m × 90 m | Geospatial Data Cloud, https://www.gscloud.cn (accessed on 8 May 2022) |
Boundaries [19] | Vector | - | National Earth System Science Data Center, http://www.geodata.cn (accessed on 8 May 2022) |
Year | WC–SR | WC–WP (N) | WC–WP (P) | SR–WP (N) | SR–WP (P) |
---|---|---|---|---|---|
2000 | 0.0655 | 0.0904 | 0.12 | 0.1679 | 0.1437 |
2005 | 0.1046 | 0.0817 | 0.115 | 0.1748 | 0.1498 |
2010 | 0.1799 | 0.0621 | 0.1094 | 0.1693 | 0.1485 |
2015 | 0.3237 | 0.1303 | 0.1687 | 0.1593 | 0.1426 |
2020 | 0.072 | 0.0141 | 0.0835 | 0.1805 | 0.1574 |
Zoning Types | Management Units (MU) | Bivariate Local Spatial Autocorrelation Types | ||
---|---|---|---|---|
WC–SR | WC–WP | SR–WP | ||
Core water management zones | Core_MU | HH | HH | HH/LH |
Key_MU | HH | NN | NN | |
Sub-key_MU | NN | HH | HH/LH | |
General water management zones | Priority_MU | NN | LH | HH/LH |
General_MU | ELSE | ELSE | ELSE | |
Restoration water management zones | Sub-key restoration_MU | LH | LH | HH |
Key restoration_MU | LL/LH | LH | LH | |
Core restoration_MU | LL/HL | LL/HL | LL |
Zoning Types | Management Units (MU) | County |
---|---|---|
Core water management zones | Core_MU | Chaling, Yanling, Rucheng, Guidong, and Zixing |
Key_MU | ||
Sub-key_MU | You, Dao, Jiangyong, and Jianghua Yao autonomous county | |
General water management zones | Priority_MU | Beihu and Lengshuitan districts; Leiyang, Changning, Guiyang, Jiahe, Linwu, Lingling, Qiyang, Shuangpai, Ningyuan, Lanshan, and Xintian |
General_MU | Liuyang, Liling, Xiangtan, Hengyang, Hengnan, Hengshan, Hengdong, Qidong, Xinshao, Shaoyang, Xinning, Shaodong, Lengshuijiang and Dongan country; Hetang, Lusong, Tianyuan, Lukou, Zhuhui, Zhengxiang, Nanyue, Shuangqing, Daxiang, Beita, and Louxing Districts. | |
Restoration water management zones | Sub-key restoration_MU | Suxian, Yizhang, and Anren |
Key restoration_MU | Yongxing | |
Core restoration_MU | Changsha, Ningxiang, Xiangxiang, Shaoshan, Xiangyin, Miluo, Lianyuan and Shuangfeng; Tianxin, Furong, Yuelu, Kaifu, Yuhua, Wangcheng, Shifeng, Yuhu, and Yuetang Districts. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, M.; Mao, D.; Li, Y.; Wang, T.; Hu, Z. Spatiotemporal Variation in Water-Related Ecosystem Services during 2000–2020 and Ecological Management Zoning in the Xiangjiang River Basin, China. Sustainability 2023, 15, 16012. https://doi.org/10.3390/su152216012
Deng M, Mao D, Li Y, Wang T, Hu Z. Spatiotemporal Variation in Water-Related Ecosystem Services during 2000–2020 and Ecological Management Zoning in the Xiangjiang River Basin, China. Sustainability. 2023; 15(22):16012. https://doi.org/10.3390/su152216012
Chicago/Turabian StyleDeng, Meirong, Dehua Mao, Yeye Li, Ting Wang, and Zui Hu. 2023. "Spatiotemporal Variation in Water-Related Ecosystem Services during 2000–2020 and Ecological Management Zoning in the Xiangjiang River Basin, China" Sustainability 15, no. 22: 16012. https://doi.org/10.3390/su152216012
APA StyleDeng, M., Mao, D., Li, Y., Wang, T., & Hu, Z. (2023). Spatiotemporal Variation in Water-Related Ecosystem Services during 2000–2020 and Ecological Management Zoning in the Xiangjiang River Basin, China. Sustainability, 15(22), 16012. https://doi.org/10.3390/su152216012