Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones
Abstract
:1. Introduction
2. Methods
2.1. Physical Model
2.2. Climate Zones of Five Representative Cities in China
2.3. Mathematical Model
- (1)
- Only the height and thickness of glazing windows are considered, and the heat transfer process is considered a two-dimensional unsteady state.
- (2)
- The effect of window frames on the heat transfer process is ignored. The upper and lower walls and the remaining surfaces of glazing windows are determined to be adiabatic and conjugate heat transfer boundary conditions, respectively.
- (3)
- All materials in glazing windows are considered isotropic, and the heat transferred and solar radiation absorbed during the heat transfer process are considered uniformly distributed.
- (4)
- The absorption coefficients for solid and liquid phases of the same phase change material are different constants, and the rest of the physical parameters of the material are fixed values.
2.3.1. Governing Equations
2.3.2. Boundary Equations
2.4. Evaluation Index
2.5. Simulation Details and Model Validation
3. Results and Discussion
3.1. Severe Cold Zone
3.2. Cold Zone
3.3. Hot Summer and Cold Winter Zone
3.4. Hot Summer and Warm Winter Zone
3.5. Mild Zone
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
λ | thermal conductivity, W/(m·K) |
cp | specific heat, J/(kg·K) |
ρ | density, kg/m3 |
n | refractive index, - |
α | absorption coefficient, 1/m |
αs/αl | solid absorption coefficient and liquid absorption coefficient of PCM, 1/m |
QL | latent heat, kJ/kg |
transmittance, - | |
source term from solar radiation | |
I | solar radiation energy of the selected typical day, W/m2 |
Iout | total radiation heat flux from the outside boundary to the ambient, W/m2 |
Ia | heat radiation flux from the outside boundary to atmosphere, W/m2 |
Is | heat radiation flux from the outside boundary to sky, W/m2 |
Ig | heat radiation flux from the outside boundary to ground, W/m2 |
Iin | total radiation heat flux from the inside boundary to the indoor ambient, W/m2 |
qi,h | inner surface heat flux of each time step during heating period, kJ/(m2·d) |
qi,c | inner surface heat flux of each time step during cooling period, kJ/(m2·d) |
dm | thickness of each layer, m |
Eτ | transmitted energy in solar radiation, kJ/m2 |
ωi,j | interface reflectance, - |
fraction of liquid present, - | |
t | temperature, K |
t0 | standard temperature, K |
tm | initial melting temperature, K |
ts | initial solidification temperature, K |
tout | outside boundary temperature, K |
te | outdoor environment temperature, K |
tin | inside boundary temperature, K |
te,i | indoor environment temperature, K |
h0 | heat transfer coefficient on outside boundary, W/(m2·K) |
hi | heat transfer coefficient on inside boundary, W/(m2·K) |
σ | Stefan Boltzmann constant, W/(m2⋅K4) |
ε | surface emissivity of external glass layer, - |
Qh | cumulative hourly heat of heating period, kJ/(m2·d) |
Qc | cumulative hourly heat of cooling period, kJ/(m2·d) |
Q | total heat gain through glazing windows, kJ/m2 |
QD | heat through the double-glazing PCM windows, kJ/m2 |
QM | heat through the multilayer PCM glazing windows, kJ/m2 |
Dh/Dc | numbers of days during heating and cooling period, d |
r | energy-saving rate, - |
References
- Alabid, J.; Bennadji, A.; Seddiki, M. A review on the energy retrofit policies and improvements of the uk existing buildings, challenges and benefits. Renew. Sustain. Energy Rev. 2022, 159, 112161. [Google Scholar] [CrossRef]
- Fan, Y.; Xia, X. Energy-efficiency building retrofit planning for green building compliance. Build. Environ. 2018, 136, 312–321. [Google Scholar] [CrossRef]
- Freire, R.Z.; Mazuroski, W.; Abadie, M.O.; Mendes, N. Capacitive effect on the heat transfer through building glazing systems. Appl. Energy 2011, 88, 4310–4319. [Google Scholar] [CrossRef]
- Aritra, G. Diffuse transmission dominant smart and advanced windows for less energy-hungry building: A review. J. Build. Eng. 2023, 64, 105604. [Google Scholar]
- Ghosh, A.; Norton, B. Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings. Renew. Energy 2018, 126, 1003–1031. [Google Scholar] [CrossRef]
- Moran, P.; O’Connell, J.; Goggins, J. Sustainable energy efficiency retrofits as residenial buildings move towards nearly zero energy building (nzeb) standards. Energy Build. 2020, 211, 109816. [Google Scholar] [CrossRef]
- Suresh, C.; Hotta, T.K.; Saha, S.K. Phase change material incorporation techniques in building envelopes for enhancing the building thermal comfort-a review. Energy Build. 2022, 268, 112225. [Google Scholar] [CrossRef]
- Márta, Q.A. Experimental study of pcm-enhanced building envelope towards energy-saving and decarbonisation in a severe hot climate. Energy Build. 2023, 279, 112680. [Google Scholar]
- Guo, J.; Zou, B.; Wang, Y.; Jiang, Y. Space heating performance of novel ventilated mortar blocks integrated with phase change material for floor heating. Build. Environ. 2020, 185, 107175. [Google Scholar] [CrossRef]
- Al-Absi, Z.A.; Hafizal MI, M.; Ismail, M. Experimental study on the thermal performance of pcm-based panels developed for exterior finishes of building walls. J. Build. Eng. 2022, 52, 104379. [Google Scholar] [CrossRef]
- Hu, J.; Yu, X.B. Adaptive building roof by coupling thermochromic material and phase change material: Energy performance under different climate conditions. Constr. Build. Mater. 2020, 262, 120481. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Gupta, N.K.; Yadav, D.; Shukla, S.K.; Kaul, S. Thermal performance of the building envelope integrated with phase change material for thermal energy storage: An updated review. Sustain. Cities Soc. 2022, 79, 103690. [Google Scholar] [CrossRef]
- Wieprzkowicz, A.; Heim, D. Modelling of thermal processes in a glazing structure with temperature dependent optical properties—An example of pcm-window. Renew. Energy 2020, 160, 653–662. [Google Scholar] [CrossRef]
- Li, S.; Zou, K.; Sun, G.; Zhang, X. Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with pcm. Sustain. Cities Soc. 2018, 40, 266–273. [Google Scholar] [CrossRef]
- Silva, T.; Vicente, R.; Amaral, C.; Figueiredo, A. Thermal performance of a window shutter containing pcm: Numerical validation and experimental analysis. Appl. Energy 2016, 179, 64–84. [Google Scholar] [CrossRef]
- Goia, F.; Perino, M.; Serra, V. Improving thermal comfort conditions by means of pcm glazing systems. Energy Build. 2013, 60, 442–452. [Google Scholar] [CrossRef]
- Goia, F.; Perino, M.; Serra, V. Experimental analysis of the energy performance of a full-scale pcm glazing prototype. Sol. Energy 2014, 100, 217–233. [Google Scholar] [CrossRef]
- Bolteya, A.M.; Elsayad, M.A.; Belal, A.M. Thermal efficiency of PCM filled double glazing units in Egypt. Ain Shams Eng. J. 2021, 12, 1523–1534. [Google Scholar] [CrossRef]
- Liu, C.; Bian, J.; Zhang, G.; Li, D.; Liu, X. Influence of optical parameters on thermal and optical performance of multi-layer glazed roof filled with pcm. Appl. Therm. Eng. Des. Proc. Equip. Econ. 2018, 134, 615–625. [Google Scholar] [CrossRef]
- Arranz, B.; Ruiz-Valero, L.; Gonzlez, M.; Snchez, S. Comprehensive experimental assessment of an industrialized modular innovative active glazing and heat recovery system. Energy 2020, 212, 118748. [Google Scholar] [CrossRef]
- Li, S.; Sun, G.; Zou, K.; Zhang, X. Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with pcm. Sustain. Cities Soc. 2016, 27, 15–22. [Google Scholar] [CrossRef]
- Berthou, Y.; Biwole, P.H.; Achard, P.; Sallee, H.; Tantot-Neirac, M.; Jay, F. Full scale experimentation on a new translucent passive solar wall combining silica aerogels and phase change materials. Sol. Energy 2015, 115, 733–742. [Google Scholar] [CrossRef]
- Souayfane, F.; Biwole, P.H.; Fardoun, F. Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime. Appl. Energy 2018, 217, 390–408. [Google Scholar] [CrossRef]
- Hamzat, A.K.; Omisanya, M.I.; Sahin, A.Z.; Oyetunji, O.R.; Olaitan, N.A. Application of nanofluid in solar energy harvesting devices: A comprehensive review. Energy Convers. Manag. 2022, 266, 115790. [Google Scholar] [CrossRef]
- Moghaieb, H.S.; Padmanaban, D.B.; Kumar, P.; Haq, A.U.; Maddi, C.; McGlynn, R.; Mariotti, D. Efficient solar-thermal energy conversion with surfactant-free cu-oxide nanofluids. Nano Energy 2023, 108, 108112. [Google Scholar] [CrossRef]
- Li, Z.R.; Hu, N.; Fan, L.W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review. Energy Storage Mater. 2023, 55, 727–753. [Google Scholar] [CrossRef]
- Li, D.; Yang, R.; Arc, M.; Wang, B.; Tunbilek, E.; Wu, Y.; Liu, C.; Ma, Z.; Ma, Y. Incorporating phase change materials into glazing units for building applications: Current progress and challenges. Appl. Therm. Eng. 2022, 210, 118374. [Google Scholar] [CrossRef]
- Karlessi, T.; Santamouris, M.; Synnefa, A.; Assimakopoulos, D.; Didaskalopoulos, P.; Apostolakis, K. Development and testing of pcm doped cool colored coatings to mitigate urban heat island and cool buildings. Build. Environ. 2011, 46, 570–576. [Google Scholar] [CrossRef]
- Lei, J.; Kumarasamy, K.; Zingre, K.T.; Yang, J.; Wan, M.P.; Yang, E.H. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics. Appl. Energy 2017, 190, 57–63. [Google Scholar] [CrossRef]
- Ji, R.; Li, X. Numerical analysis on the energy performance of the pcms-integrated thermochromic coating building envelopes. Build. Environ. 2023, 233, 110113. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S. Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization. Renew. Energy 2020, 153, 110113. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Akbari, H. Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions—Sciencedirect. Energy Build. 2007, 39, 1167–1174. [Google Scholar] [CrossRef]
- Li, C.; Wen, X.; Cai, W.; Wu, J.; Shao, J.; Yang, Y.; Wang, M. Energy performance of buildings with composite phase-change material wallboards in different climatic zones of china. Energy Build. 2022, 273, 112398. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Zhang, X.; Zhang, H.; Chen, X.; Zhang, L. Adaptive building roof combining variable transparency shape-stabilized phase change material: Application potential and adaptability in different climate zones. Build. Environ. 2022, 222, 109436. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Merli, F.; Zinzi, M. Aerogel glazing systems for building applications: A review. Energy Build. 2020, 231, 110587. [Google Scholar] [CrossRef]
- Zheng, D.; Chen, Y.; Liu, Y.; Li, Y.; Zheng, S.; Lu, B. Experimental comparisons on optical and thermal performance between aerogel glazed skylight and double glazed skylight under real climate condition. Energy Build. 2020, 222, 110028. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, Y.; Zheng, S.; Liu, Y.; Li, Y. Dynamic heat transfer model and applicability evaluation of aerogel glazing system in various climates of china. Energy 2018, 163, 1115–1124. [Google Scholar] [CrossRef]
- Jelle, B.P.; Kalnaes, S.E.; Gao, T. Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives. Energy Build. 2015, 96, 329–356. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, Y.; Li, D.; Liu, C.; Yang, R. Thermal performance of a reversible multiple-glazing roof filled with two pcm. Renew. Energy 2022, 182, 1080–1093. [Google Scholar] [CrossRef]
- GB50176-1993; Code for the Thermal Design of Civil Buildings. China Ministry of Construction: Beijing, China, 1993.
- GBT50176-2016; Thermal Design Code for Civil Building. China Building Publishing House: Beijing, China, 2016.
- Available online: https://energyplus.net/ (accessed on 26 October 2023).
- Zhang, G.; Wang, Z.; Li, D.; Wu, Y.; Arıcı, M. Seasonal thermal performance analysis of glazed window filled with paraffin including various nanoparticles. Int. J. Energy Res. 2020, 44, 3008–3019. [Google Scholar] [CrossRef]
- Goia, F.; Perino, M.; Haase, M. A numerical model to evaluate the thermal behaviour of PCM glazing system configurations. Energy Build. 2012, 54, 141–153. [Google Scholar] [CrossRef]
- Ismail, K.A.R.; Salinas, C.T.; Henriquez, J.R. Comparison between PCM filled glass windows and absorbing gas filled windows. Energy Build. 2008, 40, 710–719. [Google Scholar] [CrossRef]
- Wang, F.; Shuai, Y.; Tan, H.; Lin, R.; Cheng, P. Researches on a new type of solar surface cladding reactor with concentration quartz window. Sol. Energy 2013, 94, 177–181. [Google Scholar] [CrossRef]
- Li, D.; Wu, Y.; Liu, C.; Zhang, G. Energy investigation of glazed windows containing nano-pcm in different seasons. Energy Convers. Manag. 2018, 172, 119–128. [Google Scholar] [CrossRef]
- Yang, C.; Wu, H.; Cai, M.; Zhou, Y.; Guo, C.; Han, Y.; Zhang, L. Valorization of Biomass-Derived Polymers to Functional Biochar Materials for Supercapacitor Applications via Pyrolysis: Advances and Perspectives. Polymers 2023, 15, 2741. [Google Scholar] [CrossRef]
Glazing Windows | Construction (from Outside to Inside) |
---|---|
DP | 6 mm Glass + 4 mm PCM + 6 mm Glass |
TAGP | 6 mm Glass + 4 mm Air + 6 mm Glass + 4 mm PCM + 6 mm Glass |
TAEP | 6 mm Glass + 4 mm Air + 6 mm Low-e glass + 4 mm PCM + 6 mm Glass |
TPGA | 6 mm Glass + 4 mm PCM + 6 mm Glass + 4 mm Air + 6 mm Glass |
TSGP | 6 mm Glass + 4 mm Silica aerogel + 6 mm Glass + 4 mm PCM + 6 mm Glass |
Materials | λ (W/(m·°C)) | Cp (J/kg·°C) | ρ (kg/m3) | n | α (1/m) | |
---|---|---|---|---|---|---|
Traditional glass | 0.96 | 840 | 2500 | 1.5 | 19 | |
Low-e glass [40] | 0.96 | 840 | 2500 | 0–2.5 μm 1.5 2.5–∞ μm 10 | 2.5–∞ μm 12 2.5–∞ μm 3.4 | |
Silica aerogel [24] | 0.018 | 1500 | 100 | 1.01 | 12 | |
Thermal and optical parameters of PCM. | ||||||
PCM | λ (W/(m·°C)) | cp (J/kg·°C) | ρ (kg/m3) | n | αs/αl (1/m) | QL (kJ) |
PCM 23–25 | 0.25 | 2230 | 890 | 1.3 | 80/20 | 185,000 |
PCM 27–29 | 0.21 | 2230 | 850 | 1.3 | 80/20 | 205,000 |
PCM 38–40 | 0.225 | 2230 | 892 | 1.3 | 80/20 | 174,000 |
Representative City | Climate Zone | Heating Period | Cooling Period | PCM Melting Temperature (°C) |
---|---|---|---|---|
Harbin | Severe cold | 20 October–20 April next year | - | 23–25 |
Beijing | Cold | 15 November–15 March next year | 1 June–15 September | 27–29 |
Wuhan | Hot summer and cold winter | 15 November–15 March next year | 15 May–15 September | 27–29 |
Guangzhou | Hot summer and warm winter | - | 15 May–15 October | 38–40 |
Kunming | Mild | 15 November–15 March next year | - | 27–29 |
Glazing Window | Peak Value Tmax (K) | Peak Time (h) | Valley Value Tmin (K) | ΔT (K) = Tmax − Tmin | Average Value (K) | Q (kJ/(m2·d)) |
---|---|---|---|---|---|---|
DP | 300.76 | 13.17 | 275.69 | 25.07 | 285.37 | 6076.40 |
TAGP | 299.72 | 13.48 | 281.85 | 17.86 | 288.90 | 7311.36 |
TAEP | 297.43 | 13.73 | 283.33 | 14.10 | 289.42 | 4039.24 |
TPGA | 299.91 | 13.10 | 282.74 | 17.17 | 288.53 | 6603.68 |
TSGP | 300.44 | 13.45 | 282.48 | 17.96 | 289.35 | 8524.07 |
DP | TAGP | TAEP | TPGA | TSGP | |
---|---|---|---|---|---|
Heating Q (kJ/m2) | 3464.93 | 4175.58 | 2426.92 | 4082.15 | 4897.79 |
Cooling Q (kJ/m2) | 27,324.67 | 21,795.87 | 16,803.50 | 21,333.99 | 22,835.91 |
QEq.19 (kJ/m2) | 1,657,418.09 | 1,151,240.48 | 983,408.12 | 1,127,443.87 | 1,142,896.12 |
DP | TAGP | TAEP | TPGA | TSGP | |
---|---|---|---|---|---|
Heating Q (kJ/(m2·d)) | 11,603.80 | 9727.57 | 6329.18 | 10,193.08 | 10,501.51 |
Cooling Q (kJ/(m2·d)) | 27,019.94 | 21,347.48 | 14,587.94 | 20,912.04 | 22,284.34 |
QEq.19 (kJ/m2) | 1,919,393.59 | 1,448,711.51 | 1,028,485.88 | 1,338,818.61 | 1,470,291.68 |
Glazing Window | Peak Value Tmax (K) | Peak Time (h) | Valley Value Tmin (K) | ΔT (K) = Tmax − Tmin | Average Value (K) | Q (kJ/(m2·d)) |
---|---|---|---|---|---|---|
DP | 323.16 | 14.00 | 282.94 | 40.22 | 304.45 | 19,056.73 |
TAGP | 314.70 | 14.03 | 289.44 | 25.26 | 303.54 | 14,706.41 |
TAEP | 311.56 | 14.52 | 295.70 | 15.87 | 303.24 | 10,101.16 |
TPGA | 315.79 | 14.55 | 291.65 | 24.15 | 302.62 | 15,147.30 |
TSGP | 314.37 | 14.73 | 289.66 | 24.70 | 303.52 | 15,306.98 |
Glazing Window | Peak Value Tmax (K) | Peak Time (h) | Valley Value Tmin (K) | ΔT (K) = Tmax − Tmin | Average Value (K) | Q (kJ/(m2·d)) |
---|---|---|---|---|---|---|
DP | 308.29 | 15.88 | 285.78 | 22.51 | 292.11 | 12,829.52 |
TAGP | 303.70 | 16.85 | 287.83 | 15.88 | 292.83 | 10,596.22 |
TAEP | 300.95 | 16.48 | 288.40 | 12.54 | 292.75 | 6809.96 |
TPGA | 303.50 | 15.92 | 288.18 | 15.32 | 292.24 | 10,655.70 |
TSGP | 303.72 | 16.90 | 288.03 | 15.69 | 292.97 | 11,314.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Aldawood, F.K.; Hu, W.; Ma, Y.; Kchaou, M.; Zhang, C.; Yang, X.; Yang, R.; Qi, Z.; Li, D. Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones. Sustainability 2023, 15, 16267. https://doi.org/10.3390/su152316267
Lu Y, Aldawood FK, Hu W, Ma Y, Kchaou M, Zhang C, Yang X, Yang R, Qi Z, Li D. Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones. Sustainability. 2023; 15(23):16267. https://doi.org/10.3390/su152316267
Chicago/Turabian StyleLu, Yao, Faisal Khaled Aldawood, Wanyu Hu, Yuxin Ma, Mohamed Kchaou, Chengjun Zhang, Xinpeng Yang, Ruitong Yang, Zitong Qi, and Dong Li. 2023. "Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones" Sustainability 15, no. 23: 16267. https://doi.org/10.3390/su152316267
APA StyleLu, Y., Aldawood, F. K., Hu, W., Ma, Y., Kchaou, M., Zhang, C., Yang, X., Yang, R., Qi, Z., & Li, D. (2023). Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones. Sustainability, 15(23), 16267. https://doi.org/10.3390/su152316267