Residual Stand Structure and Topography Predict Initial Survival and Animal Browsing of Redwood and Douglas-Fir Seedlings Planted in Coastal Forests of Northern California
Abstract
:1. Introduction
- (1)
- How does the spatial arrangement and density of the residual overstory affect the survival and herbivory of planted seedlings?
- (2)
- How does the location of planted seedlings on the landscape (aspect, elevation, etc.) influence seedling survival and herbivory?
- (3)
- Which treatment results in low browsing occurrence while also providing high seedling survival rates?
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Data Collection and Analysis
3. Results
3.1. Survival of Planted Seedlings
3.2. Browsing of Planted Seedlings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paquette, A.; Bouchard, A.; Cogliastro, A. Survival and growth of under-planted trees: A meta-analysis across four biomes. Ecol. Appl. 2006, 16, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
- Comita, L.S.; Uriarte, M.; Thompson, J.; Jonckheere, I.; Canham, C.D.; Zimmerman, J.K. Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. J. Ecol. 2009, 97, 1346–1359. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, C.; Wang, Y.; Zhao, X.; Von Gadow, K. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecol. Evol. 2015, 5, 4287–4299. [Google Scholar] [CrossRef] [PubMed]
- Frei, E.R.; Bianchi, E.; Bernareggi, G.; Bebi, P.; Dawes, M.A.; Brown, C.D.; Trant, A.J.; Mamet, S.D.; Rixen, C. Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Sci. Rep. 2018, 8, 10894. [Google Scholar] [CrossRef]
- Kern, C.C.; Reich, P.B.; Montgomery, R.A.; Strong, T.F. Do deer and shrubs override canopy gap size effects on growth and survival of yellow birch, northern red oak, eastern white pine, and eastern hemlock seedlings? For. Ecol. Manag. 2012, 267, 134–143. [Google Scholar] [CrossRef]
- O’Hara, K.L. Multiaged Silviculture: Managing for Complex Forest Stand Structures; Oxford University Press: New York, NY, USA, 2014; ISBN 978-0-19-870306-8. [Google Scholar]
- Brousseau, M.; Thiffault, N.; Beguin, J.; Roy, V.; Tremblay, J.P. Deer browsing outweighs the effects of site preparation and mechanical release on balsam fir seedlings performance: Implications to forest management. For. Ecol. Manag. 2017, 405, 360–366. [Google Scholar] [CrossRef]
- Redick, C.H.; McKenna, J.R.; Carlson, D.E.; Jenkins, M.A.; Jacobs, D.F. Silviculture at establishment of hardwood plantations is relatively ineffective in the presence of deer browsing. For. Ecol. Manag. 2020, 474, 118339. [Google Scholar] [CrossRef]
- Brandeis, T.J.; Newton, M.; Cole, E.C. Underplanted conifer seedling survival and growth in thinned Douglas-fir stands. Can. J. For. Res. 2001, 31, 302–312. [Google Scholar] [CrossRef]
- Palik, B.J.; Mitchell, R.J.; Pecot, S.; Battaglia, M.; Pu, M. Spatial distribution of overstory retention influences resources and growth of longleaf pine seedlings. Ecol. Appl. 2003, 13, 674–686. [Google Scholar] [CrossRef]
- Dumais, D.; Larouche, C.; Raymond, P.; Bédard, S.; Lambert, M.C. Survival and growth dynamics of red spruce seedlings planted under different forest cover densities and types. New For. 2019, 50, 573–592. [Google Scholar] [CrossRef]
- Gratzer, G.; Darabant, A.; Chhetri, P.B.; Rai, P.B.; Eckmüllner, O. Interspecific variation in the response of growth, crown morphology, and survivorship to light of six tree species in the conifer belt of the Bhutan Himalayas. Can. J. For. Res. 2004, 34, 1093–1107. [Google Scholar] [CrossRef]
- Stancioiu, P.T.; O’Hara, K.L. Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur. J. For. Res. 2006, 125, 151–162. [Google Scholar] [CrossRef]
- Berrill, J.-P.; Dagley, C.M.; Gorman, A.J.; Obeidy, C.S.; Powell, H.K.; Wright, J.C. Variable-density retention promotes spatial heterogeneity and structural complexity in a Douglas-fir/tanoak stand. Cur. Trends For. Res. 2018, 2018, CTFR-108. [Google Scholar]
- Berrill, J.-P.; Webb, L.A.; DeYoung, K.L.; Dagley, C.M.; Bodle, C.G.; Simpson, S.M. Development of redwood regeneration after conifer partial harvest and hardwood management. For. Sci. 2020, 67, 72–82. [Google Scholar] [CrossRef]
- Lindquist, J.; Palley, M.N. Prediction of stand growth of young Redwood. In Bulletin of the California Agricultural Experiment Station; University of California: Santa Barbara, CA, USA, 1967; p. 64. [Google Scholar]
- Lieffers, V.J.; Stadt, K.J. Growth of understory Picea glauca, Calamagrostis canadensis, and Epilobium angustifolium in relation to overstory light transmission. Can. J. For. Res. 1994, 24, 1193–1198. [Google Scholar] [CrossRef]
- Lin, F.; Comita, L.S.; Wang, X.; Bai, X.; Yuan, Z.; Xing, D.; Hao, Z. The contribution of understory light availability and biotic neighborhood to seedling survival in secondary versus old-growth temperate forest. Plant Ecol. 2014, 215, 795–807. [Google Scholar] [CrossRef]
- Santiago, L.S.; Dawson, T.E. Light use efficiency of California redwood forest understory plants along a moisture gradient. Oecologia 2014, 174, 351–363. [Google Scholar] [CrossRef]
- Nuñez, H.R.; Gouvenain, R.C. Seasonal variation in understory light near a gap edge and its association with conifer seedling survival in a southern New England forest. Nor. Nat. 2015, 22, 613–630. [Google Scholar] [CrossRef]
- Walters, M.B.; Farinosi, E.J.; Willis, J.L.; Gottschalk, K.W. Managing for diversity: Harvest gap size drives complex light, vegetation, and deer herbivory impacts on tree seedlings. Ecosphere 2016, 7, e01397. [Google Scholar] [CrossRef]
- Marshall, L.A.; Fornwalt, P.J.; Stevens-Rumann, C.S.; Rodman, K.C.; Rhoades, C.C.; Zimlinghaus, K.; Chapman, T.B.; Schloegel, C.A. North-facing aspects, shade objects, and microtopographic depressions promote the survival and growth of tree seedlings planted after wildfire. Fire Eco. 2023, 19, 26. [Google Scholar] [CrossRef]
- Spies, T.A.; McComb, B.C.; Kennedy, R.S.; McGrath, M.T.; Olsen, K.; Pabst, R.J. Potential effects of forest policies on terrestrial biodiversity in a multi-ownership province. Ecol. Appl. 2007, 17, 48–65. [Google Scholar] [CrossRef]
- Cook, J.G.; Cook, R.C.; Davis, R.W.; Irwin, L.L. Nutritional ecology of elk during summer and autumn in the Pacific Northwest. Wild. Mono. 2016, 195, 1–81. [Google Scholar] [CrossRef]
- Geary, A.B.; Merrill, E.H.; Cook, J.G.; Cook, R.C.; Irwin, L.L. Elk nutritional resources: Herbicides, herbivory and forest succession at Mount St. Helens. For. Ecol. Manag. 2017, 401, 242–254. [Google Scholar] [CrossRef]
- Konig, E. Game damage and woodland regeneration. Schweiz. Zeits. Forst. 1967, 127, 40–57. [Google Scholar]
- Healy, W.M. Influence of deer on the structure and composition of oak forests in central Massachusetts. In The Science of Overabundance: Deer Ecology and Population Management; McShea, W.J., Underwood, H.B., Rappole, J.H., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1997; pp. 249–266. [Google Scholar]
- Peebles-Spencer, J.R.; Gorchov, D.L. Are native tree seedlings facilitated by an invasive shrub where white-tailed deer are abundant? Nat. Areas J. 2017, 37, 540–549. [Google Scholar] [CrossRef]
- Wasserman, L. All of Statistics: A Concise Course in Statistical Inference; Springer: New York, NY, USA, 2004; Volume 26, ISBN 978-0-387-21736-9. [Google Scholar]
- Molyneux, R.J.; Ralphs, M.H. Plant toxins and palatability to herbivores. J. Range Manag. 1992, 45, 13–18. [Google Scholar] [CrossRef]
- Barbosa, P.; Hines, J.; Kaplan, I.; Martinson, H.; Szczepaniec, A.; Szendrei, Z. Associational resistance and associational susceptibility: Having right or wrong neighbors. Ann. Rev. Ecol. Evol. Syst. 2009, 40, 1–20. [Google Scholar] [CrossRef]
- Bee, J.N.; Tanentzap, A.J.; Lee, W.G.; Lavers, R.B.; Mark, A.F.; Mills, J.A.; Coomes, D.A. The benefits of being in a bad neighbourhood: Plant community composition influences red deer foraging decisions. Oikos 2009, 118, 18–24. [Google Scholar] [CrossRef]
- Herfindal, I.; Tremblay, J.P.; Hester, A.J.; Lande, U.S.; Wam, H.K. Associational relationships at multiple spatial scales affect forest damage by moose. For. Ecol. Manag. 2015, 348, 97–107. [Google Scholar] [CrossRef]
- Bryant, J.P.; Kuropat, P.J. Selection of winter forage by subarctic browsing vertebrates: The role of plant chemistry. Ann. Rev. Ecol. Syst. 1980, 11, 261–285. [Google Scholar] [CrossRef]
- Harper, J.L. The value of a leaf. Oecologia 1989, 80, 53–58. [Google Scholar] [CrossRef]
- Harper, J.L. Population Biology of Plants; Academic Press: London, UK, 1997. [Google Scholar]
- Gill, R.M.A. A review of damage by mammals in north temperate forests: 1. Deer. Forestry 1992, 65, 145–169. [Google Scholar] [CrossRef]
- Gerber, R.; Schmidt, W. Influence of roe deer on the vegetation of oak–hornbeam forests in southern Steigerwald. Verh. Ges. Okol. 1996, 26, 345–353. [Google Scholar]
- Cermak, P. Influence of ungulates on forest ecosystems in Moravia. Lesn. UZPI 1998, 44, 278–287. [Google Scholar]
- Gill, R.M.A.; Beardall, V. The impact of deer on woodlands: The effects of browsing and seed dispersal on vegetation structure and composition. Forestry 2001, 74, 209–218. [Google Scholar] [CrossRef]
- Crouch, G.L. Deer and reforestation in the Pacific northwest. In Proceedings of the 7th Vertebrate Pest Conference, Monterey, CA, USA, 9–11 March 1976; Siebe, C.C., Ed.; University of California Davis: Davis, CA, USA, 1976; pp. 298–301. [Google Scholar]
- Rochelle, J.A. Deer and elk. In Silvicultural Approaches to Animal Damage, Management in Pacific Northwest Forests; Gen. Tech. Rep. PNW-GTR-287; U.S. Department of Agriculture, Forest Service; Pacific Northwestern Research Station: Portland, OR, USA, 1992; pp. 333–350. [Google Scholar]
- Taylor, J. Effects of black-tailed deer and Roosevelt elk herbivory in intensively managed Douglas-fir plantations. West. For. 2013, 58, 4–5. [Google Scholar]
- Dasmann, R.F. Factors influencing movement of non-migratory deer. In Proceedings of the 33rd Annual Conference West Association State Game Fish Commissioners; 1953; pp. 112–116. [Google Scholar]
- Crouch, G.L. Spring-Season Deer Browsing of Douglas-Fir on the Capitol Forest in Western Washington; Res. Note PNW-84; U.S. Department of Agriculture, Forest Service; Pacific Northwest Forest and Range Experiment Station: Portland, OR, USA, 1968; p. 8.
- Miller, F.L. Distribution patterns of black-tailed deer (Odocoileus hemionus columbianus) in relation to environment. J. Mamm. 1970, 51, 248–260. [Google Scholar] [CrossRef]
- Vourc’h, G.; Vila, B.; Gillon, D.; Escarré, J.; Guibal, F.; Fritz, H.; Clausen, T.P.; Martin, J.L. Disentangling the causes of damage variation by deer browsing on young Thuja plicata. Oikos 2002, 98, 271–283. [Google Scholar] [CrossRef]
- Lawrence, W.H. The impact of intensive forest management on wildlife populations. In Proceedings of the Symposium on Wildlife and Reforestation in the Pacific Northwest; Black, B.C., Ed.; Oregon State University: Corvallis, OR, USA, 1969; pp. 72–74. [Google Scholar]
- Resler, R.A. Clearcutting: Beneficial aspects for wildlife resources. J. Soil Water Cons. 1972, 27, 250–254. [Google Scholar]
- Hobbs, N.T. Modification of ecosystems by ungulates. J. Wild. Manag. 1996, 60, 695–713. [Google Scholar] [CrossRef]
- Olson, D.F.; Roy, D.F., Jr.; Walters, G.A. Sequoia sempervirens (D. Don) Endl. Redwood. In Silvics of North America; US Department of Agriculture, Forest Service: Lakewood, CO, USA, 1990; Volume 1, pp. 541–551. [Google Scholar]
- O’Hara, K.L.; Cox, L.E.; Nikolaeva, S.; Bauer, J.J.; Hedges, R. Regeneration dynamics of coast redwood, a sprouting conifer species: A review with implications for management and restoration. Forests 2017, 8, 144. [Google Scholar] [CrossRef]
- Dawson, T.E. Fog in the California redwood forest: Ecosystem inputs and use by plants. Oecologia 1998, 117, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.; Seymour, R.; Fraver, S.; Berrill, J.-P.; Kenefic, L.; Rogers, N.; Weiskittel, A. Relative density as a standardizing metric for the development of size-density management charts. J. For. 2023, 121, 443–456. [Google Scholar] [CrossRef]
- Shaw, J.D. Application of stand density index to irregularly structured stands. West. J. Appl. For. 2000, 15, 40–42. [Google Scholar] [CrossRef]
- Reineke, L.H. Perfecting a stand density index for even-aged forests. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Berrill, J.-P.; Schneider, K.A.; Dagley, C.M.; Webb, L.A. Understory light predicts stump sprout growth in mixed multiaged stands in north coastal California. New For. 2018, 49, 815–828. [Google Scholar] [CrossRef]
- Anderson, D.R. Model Based Inference in the Life Sciences: A Primer on Evidence; Springer Science & Business Media: New York, NY, USA, 2007; p. 184. [Google Scholar]
- Crawley, M.J. The R Book; John Wiley & Sons: Hoboken, NJ, USA, 2012; p. 576. [Google Scholar]
- Faraway, J. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models; CRC Press: Boca Raton, FL, USA; p. 399.
- Hobbs, S.D.; Byars, R.H.; Henneman, D.C.; Frost, C.R. First-Year Performance of 1-0 Containerized Douglas-Fir Seedlings on Droughty Sites in Southwestern Oregon; Research Paper 42; Forest Research Lab, School of Forestry, Oregon State University: Corvalis, OR, USA, 1980. [Google Scholar]
- Stage, A.R.; Boyd, R.J., Jr. Evaluation of growth and yield responses to vegetation management of the mixed-conifer forests in the Inland Northwest. In Forest Vegetation Management for Conifer Production; Walstad, J.D., Kuch, P.J., Eds.; John Wiley and Sons, Inc.: New York, NY, USA, 1987; pp. 295–324. [Google Scholar]
- Schneider, W.G.; Knowe, S.A.; Harrington, T.B. Predicting survival of planted Douglas-fir and ponderosa pine seedlings on dry, low-elevation sites in southwestern Oregon. New For. 1998, 15, 139–159. [Google Scholar] [CrossRef]
- Germino, M.J.; Smith, W.K.; Resor, A.C. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol. 2002, 162, 157–168. [Google Scholar] [CrossRef]
- Jameson, M.J.; Robards, T.A. Coast redwood regeneration survival and growth in Mendocino County, California. West. J. Appl. For. 2007, 22, 171–175. [Google Scholar] [CrossRef]
- Yu, F.; Wang, D.X.; Shi, X.X.; Yi, X.F.; Huang, Q.P.; Hu, Y.N. Effects of environmental factors on tree seedling regeneration in a pine-oak mixed forest in the Qinling Mountains, China. J. Mount. Sci. 2013, 10, 845–853. [Google Scholar] [CrossRef]
- Seidel, K.W. Tolerance of seedlings of ponderosa pine, Douglas-fir, grand fir, and Engelmann spruce for high temperatures. North. Sci. 1986, 60, 1–7. [Google Scholar]
- Helgerson, O.T. Heat damage in tree seedlings and its prevention. New For. 1989, 3, 333–358. [Google Scholar] [CrossRef]
- Teskey, R.; Wertin, T.; Bauweraerts, I.; Ameye, M.; McGuire, M.A.; Steppe, K. Responses of tree species to heat waves and extreme heat events. Plant Cell env. 2015, 38, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Hermann, R.K.; Lavender, D.P. Pseudotsuga menziesii (Mirb.) Franco Douglas-fir. In Silvics of North America; US Department of Agriculture, Forest Service: Lakewood, CO, USA, 1990; Volume 1, pp. 527–540. [Google Scholar]
- Allogio, J.A.; Fraver, S.; Kenefic, L.S.; Wason, J.W.; Berrill, J.-P. Microsite requirements for successful regeneration in lowland northern white-cedar (Thuja occidentalis L.) forests. For. Ecol. Manag. 2022, 499, 119639. [Google Scholar] [CrossRef]
- Morrison, W.M.; Armstrong, A.D.; Webb, L.A.; Dagley, C.M.; Cahill, K.G.; Berrill, J.-P. Performance and genetic analysis of coast redwood cultivars for afforestation of converted grassland in California. New For. 2021, 53, 1–16. [Google Scholar] [CrossRef]
- Tappeiner, J.C.; Newton, M.; McDonald, P.M.; Harrington, T.B. Ecology of Hardwoods, Shrubs, and Herbaceous Vegetation: Effects on Conifer Regeneration. Reforestation Practices in Southwestern Oregon and Northern California; Forest Research Laboratory, Oregon State University: Corvallis, OR, USA, 1992; pp. 136–164. [Google Scholar]
- Wagner, R.G.; Radosevich, S.R. Neighborhood approach for quantifying interspecific competition in coastal Oregon forests. Ecol. Appl. 1998, 8, 779–794. [Google Scholar] [CrossRef]
- Lauer, D.K.; Glover, G.R. Stand level pine response to occupancy of woody shrub and herbaceous vegetation. Can. J. For. Res. 1999, 29, 979–984. [Google Scholar] [CrossRef]
- Ward, J.S.; Williams, S.C.; Linske, M.A. Influence of invasive shrubs and deer browsing on regeneration in temperate deciduous forests. Can. J. For. Res 2017, 48, 58–67. [Google Scholar] [CrossRef]
- Campbell, T.A.; Laseter, B.R.; Ford, W.M.; Odom, R.H.; Miller, K.V. Abiotic factors influencing deer browsing in West Virginia. Nor. J. Appl. For. 2006, 23, 20–26. [Google Scholar] [CrossRef]
- Loft, E.R.; Menke, J.W.; Burton, T.S. Seasonal movements and summer habitats of female black-tailed deer. J. Wild. Manag. 1984, 38, 1317–1325. [Google Scholar] [CrossRef]
- McCorquodale, S.M. Movements, survival, and mortality of black-tailed deer in the Klickitat Basin of Washington. J. Wild. Manag. 1999, 63, 861–871. [Google Scholar] [CrossRef]
- Forrester, T.D.; Casady, D.S.; Wittmer, H.U. Home sweet home: Fitness consequences of site familiarity in female black-tailed deer. Behav. Ecol. Sociobiol. 2015, 69, 603–612. [Google Scholar] [CrossRef]
- Nicholson, M.C.; Bowyer, R.T.; Kie, J.G. Habitat selection and survival of mule deer: Tradeoffs associated with migration. J. Mamm. 1997, 78, 483–504. [Google Scholar] [CrossRef]
- Igota, H.; Sakuragi, M.; Uno, H.; Kaji, K.; Kaneko, M.; Akamatsu, R.; Maekawa, K. Seasonal migration patterns of female sika deer in eastern Hokkaido, Japan. Ecol. Res. 2004, 19, 169–178. [Google Scholar] [CrossRef]
- Crouch, G.L. Preferences of black-tailed deer for native forage and Douglas-fir seedlings. J. Wild. Manag. 1966, 30, 471–475. [Google Scholar] [CrossRef]
- Bunnell, F.L. Ecology of Black-tailed deer. In Deer and Elk Habitat in Coastal Forests of Southern B.C. Special Report Series; Nyberg, J.B., Janz, D.W., Eds.; Research Branch B.C. Ministry of Forests: Victoria, BC, Canada, 1990; pp. 31–63. [Google Scholar]
- Hanley, T.A. A nutritional view of understanding and complexity in the problem of diet selection by deer (Cervidae). Oikos 1997, 79, 209–218. [Google Scholar] [CrossRef]
- Schindler, J.R.; Fulbright, T.E.; Forbes, T.D.A. Influence of thorns and tannins on white-tailed deer browsing after mowing. J. Arid Env. 2003, 55, 361–377. [Google Scholar] [CrossRef]
- Chapman, G.A.; Bork, E.W.; Donkor, N.T.; Hudson, R.J. Effects of supplemental dietary tannins on the performance of white-tailed deer (Odocoileus virginianus). J. Anim. Phys. Anim. Nutr. 2010, 94, 65–73. [Google Scholar] [CrossRef]
- Bergvall, U.A.; Leimar, O. Directional associational plant defense from red deer (Cervus elaphus) foraging decisions. Ecosphere 2017, 8, e01714. [Google Scholar] [CrossRef]
- Kremsater, L.; Bunnell, F.L. Edge effects: Theory, evidence and implications to management of western North American forests. In Forest Fragmentation: Wildlife and Management Implications; Rochelle, J.A., Lehmann, L.A., Wisniewski, J., Eds.; Brill Publishers: Boston, MA, USA, 1999; pp. 117–153. [Google Scholar]
- Cadenasso, M.L.; Pickett, S.T.A. Linking forest edge structure to edge function: Mediation of herbivore damage. J. Ecol. 2000, 88, 31–44. [Google Scholar] [CrossRef]
- Tappeiner, J.C.; Maguire, D.A.; Harrington, T.B. Silviculture and Ecology of Western US Forests; Oregon State University Press: Corvalis, OR, USA, 2007; ISBN 978-0-870-71187-9. [Google Scholar]
- Devine, W.D.; Harrington, T.B. Belowground competition influences growth of natural regeneration in thinned Douglas-fir stands. Can. J. For. Res. 2008, 38, 3085–3097. [Google Scholar] [CrossRef]
- Harrington, T.B.; Dagley, C.M.; Edwards, M.B. Above- and belowground competition from longleaf pine plantations limits performance of reintroduced herbaceous species. For. Sci. 2003, 49, 681–695. [Google Scholar]
- Nolte, D.L. Efficacy of selected repellents to deter deer browsing on conifer seedlings. Inter. Biodet. Biodeg. 1998, 42, 101–107. [Google Scholar] [CrossRef]
- Barrere, J.; Petersson, L.K.; Boulanger, V.; Collet, C.; Felton, A.M.; Löf, M.; Saïd, S. Canopy openness and exclusion of wild ungulates act synergistically to improve oak natural regeneration. For. Ecol. Manag. 2021, 487, 118976. [Google Scholar] [CrossRef]
- Dagley, C.M.; Berrill, J.-P.; Fraver, S. Forest restoration mitigates drought vulnerability of coast Douglas-fir in a Mediterranean climate. Can. J. For. Res. 2022, 53, 210–216. [Google Scholar] [CrossRef]
- Berrill, J.-P.; Boston, K. Conifer retention and hardwood management affect interplay between harvest volume and carbon storage over 100 years in Douglas-fir/tanoak: A case study. Math. Comp. For. Nat. Res. Sci. 2019, 11, 286–293. [Google Scholar]
Treatment | n | Mean | s.d. | Min. | Max. | |
---|---|---|---|---|---|---|
Residual tree DBH (cm) | All | 17 | 44.9 | 8.6 | 31.9 | 60.1 |
Residual tree density (stems ha−1) | GS | 4 | 0.0 | 0.0 | 0.0 | 0.0 |
LD | 4 | 146.5 | 45.6 | 69.0 | 182.0 | |
HA | 4 | 208.3 | 25.6 | 172.0 | 237.0 | |
HD | 5 | 174.6 | 40.6 | 123.0 | 217.0 | |
Stand density index (metric) | GS | 4 | 0.0 | 0.0 | 0.0 | 0.0 |
LD | 4 | 332.8 | 23.9 | 306.0 | 363.0 | |
HA | 4 | 559.8 | 26.5 | 538.0 | 605.0 | |
HD | 5 | 542.4 | 20.7 | 523.0 | 580.0 | |
Planted density (seedlings ha−1) | All | 17 | 271.1 | 29.2 | 232.1 | 325.9 |
Elevation of seedling (m) | All | 934 | 236.2 | 39.4 | 176.0 | 326.0 |
Distance from watercourse (m) | All | 934 | 218.5 | 70.8 | 78.0 | 354.0 |
Redwood seedlings | ||||||
Planted height (cm) | All | 467 | 21.0 | 5.1 | 9.0 | 49.0 |
Height after 1 year (cm) | All | 427 | 23.9 | 6.3 | 4.0 | 49.0 |
Not browsed (cm) | All | 383 | 24.2 | 6.1 | 7.0 | 49.0 |
Browsed (cm) | All | 44 | 22.0 | 7.7 | 4.0 | 40.0 |
Browsed (%) | GS | 4 | 25.9 | 17.7 | 4.3 | 53.6 |
LD | 4 | 6.9 | 4.0 | 0.0 | 10.0 | |
HA | 4 | 8.5 | 3.0 | 5.6 | 13.3 | |
HD | 5 | 3.7 | 4.2 | 0.0 | 10.3 | |
Survival (%) | GS | 4 | 78.7 | 19.3 | 48.0 | 96.7 |
LD | 4 | 96.0 | 6.9 | 84.0 | 100.0 | |
HA | 4 | 93.6 | 9.0 | 78.3 | 100.0 | |
HD | 5 | 97.7 | 1.5 | 96.0 | 100.0 | |
Douglas-fir seedlings | ||||||
Planted height (cm) | All | 467 | 45.0 | 24.1 | 15.0 | 104.0 |
Height after 1 year (cm) | All | 383 | 42.4 | 23.9 | 8.0 | 103.0 |
Not browsed (cm) | All | 208 | 40.7 | 23.0 | 8.0 | 103.0 |
Browsed (cm) | All | 175 | 44.4 | 24.8 | 13.0 | 93.5 |
Browsed (%) | GS | 4 | 65.4 | 7.3 | 54.5 | 75.0 |
LD | 4 | 60.9 | 7.0 | 52.0 | 69.6 | |
HA | 4 | 42.5 | 11.2 | 24.1 | 52.9 | |
HD | 5 | 24.7 | 16.6 | 3.4 | 50.0 | |
Survival (%) | GS | 4 | 68.7 | 26.7 | 36.7 | 96.7 |
LD | 4 | 94.2 | 4.5 | 88.2 | 100.0 | |
HA | 4 | 82.2 | 17.3 | 57.1 | 100.0 | |
HD | 5 | 82.5 | 17.3 | 57.1 | 100.0 |
Aspect Model | Treatment Model | |
---|---|---|
Modeling Method | GLMM | GLMM |
Selection Method | AICc | AICc |
Intercept | 3.4744 (13%) | 1.0781 (76%) |
Treatment (LD) | 2.3663 (16%) | 2.3417 (16%) |
Treatment (HA) | 1.1822 (26%) | 1.2486 (24%) |
Treatment (HD) | 1.3654 (22%) | 1.4063 (21%) |
Species (Redwood) | 1.1187 (22%) | 1.1221 (22%) |
ln(Asp_trans+1) | −1.3693 (12%) | |
Brier Score (MSE) | 0.082 | 0.082 |
AICc | 506.81 | 519.09 |
AIC | 506.70 | 519.00 |
Log Likelihood | −250.10 | −253.50 |
SDI Aspect Model | SDI Model | PACL Model | |
---|---|---|---|
Modeling Method | GLMM | GLMM | GLMM |
Selection Method | AICc | AICc | AICc |
Intercept | 3.42765 (43%) | 1.34830 (58%) | 4.71737 (19%) |
Species (Redwood) | 1.12387 (24%) | 1.04710 (22%) | 1.04647 (22%) |
SDI | −0.01467 (0%) | 0.00247 (19%) | |
SDI0.5 | 0.40159 (8%) | ||
ln(Asp_trans+1) | −1.35206 (165%) | ||
PACL | −0.03537 (19%) | ||
Brier Score (MSE) | 0.080 | 0.088 | 0.089 |
AICc | 502.12 | 543.48 | 544.42 |
AIC | 502.00 | 543.40 | 544.00 |
Log Likelihood | −245.00 | −267.70 | −268.00 |
Watercourse Model | Elevation Model | Treatment Model | |
---|---|---|---|
Modeling Method | GLMM | GLMM | GLMM |
Selection Method | AICc | AICc | AICc |
Intercept | 1.53878 (20%) | 7.1962 (21%) | 0.9433 (22%) |
Treatment (LD) | −0.20480 (33%) | −0.8682 (29%) | −0.8733 (28%) |
Treatment (HA) | −1.18367 (22%) | −1.4034 (19%) | −1.2606 (21%) |
Treatment (HD) | −2.05548 (13%) | −2.2581 (13%) | −2.1691 (13%) |
Species (Redwood) | −2.14636 (9%) | −2.1952 (9%) | −2.1359 (9%) |
Elevation | −0.0264 (23%) | ||
Dist_stream0.5 | −0.00321 (38%) | ||
Brier Score (MSE) | 0.152 | 0.149 | 0.153 |
AICc | 763.01 | 753.44 | 767.81 |
AIC | 762.90 | 753.30 | 767.70 |
Log Likelihood | −374.40 | −369.70 | −377.90 |
Watercourse Model | Elevation Model | SDI Model | |
---|---|---|---|
Modeling method | GLMM | GLMM | GLMM |
Selection method | AICc | AICc | AICc |
Intercept | 2.80718 (24%) | 7.03573 (20%) | 0.96135 (20%) |
Species (Redwood) | −2.16879 (9%) | −1.95506 (9%) | −2.11262 (9%) |
SDI | −0.00262 (17%) | −0.00253 (13%) | −0.00306 (14%) |
Elevation | −0.02838 (18%) | ||
Dist_sream0.5 | −0.00896 (31%) | ||
Brier Score (MSE) | 0.154 | 0.150 | 0.155 |
AICc | 769.70 | 761.50 | 778.21 |
AIC | 769.76 | 761.40 | 778.20 |
Log Likelihood | −379.80 | −375.70 | −385.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, K.A.; Berrill, J.-P.; Dagley, C.M.; Webb, L.A.; Hohl, A. Residual Stand Structure and Topography Predict Initial Survival and Animal Browsing of Redwood and Douglas-Fir Seedlings Planted in Coastal Forests of Northern California. Sustainability 2023, 15, 16409. https://doi.org/10.3390/su152316409
Schneider KA, Berrill J-P, Dagley CM, Webb LA, Hohl A. Residual Stand Structure and Topography Predict Initial Survival and Animal Browsing of Redwood and Douglas-Fir Seedlings Planted in Coastal Forests of Northern California. Sustainability. 2023; 15(23):16409. https://doi.org/10.3390/su152316409
Chicago/Turabian StyleSchneider, Kurt A., John-Pascal Berrill, Christa M. Dagley, Lynn A. Webb, and Aaron Hohl. 2023. "Residual Stand Structure and Topography Predict Initial Survival and Animal Browsing of Redwood and Douglas-Fir Seedlings Planted in Coastal Forests of Northern California" Sustainability 15, no. 23: 16409. https://doi.org/10.3390/su152316409
APA StyleSchneider, K. A., Berrill, J. -P., Dagley, C. M., Webb, L. A., & Hohl, A. (2023). Residual Stand Structure and Topography Predict Initial Survival and Animal Browsing of Redwood and Douglas-Fir Seedlings Planted in Coastal Forests of Northern California. Sustainability, 15(23), 16409. https://doi.org/10.3390/su152316409