Critical Limit of Manganese for Soybean in Soils of Three Agro-Ecological Zones of Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling, Preparation and Analysis
2.2. Pot Trial
2.3. Determination of Critical Limit of Mn Using the Graphical Method
2.4. Determination of Critical Limit of Mn Using the Statistical Method
- R2 = {TCSS − (CSS1 + CSS2)}/TCSS where
- TCSS = Total Corrected Sum of Squares
- CSS1 = Corrected Sum of Squares of Population 1
- CSS2 = Corrected Sum of Squares of Population 2
2.5. Validation Study at Field Condition
2.6. Analysis of Data
3. Results
3.1. General Characteristics of Soils Used in the Study
3.2. Effect of Mn on Root, Shoot, and Seed Weight of Soybean
3.3. Critical Limit of Soil Mn for Soybean
3.4. Yield of Soybean in Case of Field Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, K.S.; Ali, M.M.; Shahrin, S.; Cheesman, S.; Alam, S.N.; Krupnik, T.J. Simple and effective management methods that can improve soybean production in Bangladesh. In Cereal Systems Initiative for South Asia, Phase III (CSISA III); CIMMYT: Dhaka, Bangladesh, 2022. [Google Scholar]
- USDA (United States Department of Agriculture). Basic Report: 16108, Soybeans, mature seeds, raw. Agricultural Research Service. In National Nutrient Database for Standard Reference Legacy Release; USDA (United States Department of Agriculture): Washington, DC, USA, 2018. [Google Scholar]
- BBS Year Book of Agricultural Statistics of Bangladesh; Bangladesh Bureau of Statistics, Ministry of Planning, Government of the Peoples’ Republic of Bangladesh: Dhaka, Bangladesh, 2022.
- Dong, S.; Jiang, Y.; Dong, Y.; Wang, L.; Wang, W.; Ma, Z.; Yan, C.; Ma, C.; Liu, L. A study on soybean responses to drought stress and rehydration. Saudi J. Biol. Sci. 2019, 26, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Shivakumar, B.G. The Role of Soybean in Agriculture Division of Agronomy; Indian Agricultural Research Institute: New Delhi, India, 2010. [Google Scholar]
- USDA (United States Department of Agriculture). Bangladesh Soybean Meal Domestic Consumption by Year. Available online: https://www.indexmundi.com/agriculture/?country=bd&commodity=soybean-meal&graph=domestic-consumption (accessed on 29 September 2022).
- USDA (United States Department of Agriculture). Bangladesh Soybean Meal Exports by Year. Available online: https://today.thefinancialexpress.com.bd/trade-market/govt-to-allow-soya-meal-export-1644254097 (accessed on 29 September 2022).
- Ghasemian, V.; Ghalavand, A.; Zadeh, A.S.; Pirzad, A. The Effect of iron, zinc and manganese on quality and quantity of soybean seed. J. Phytol. 2010, 2, 73–79. [Google Scholar]
- Heitholt, J.J.; Sloan, J.J.; MacKown, C.T. Copper, manganese, and zinc fertilization effects on growth of soybean on a calcareous soil. J. Plant Nutr. 2007, 25, 1727–1740. [Google Scholar] [CrossRef]
- Bansal, R.L.; Nayer, V.K. Differential tolerance of soybean (Glycin max) to manganese in Mn deficient soil. Indian J. Agric. Sci. 1994, 64, 604–607. [Google Scholar]
- Diedrick, K. Manganese fertility in soybean production. Crop Insights 2010, 20, 23–28. [Google Scholar]
- Heine, G.; Max, J.F.J.; Fuhrs, H.; Moran-Puente, D.W.; Heintz, D.; Horst, W.J. Effect of manganese on the resistance of tomato to Pseudocercospora fuligena. J. Soil Sci. Plant Nutr. 2011, 174, 827–836. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Jensen, P.E.; Husted, S. Manganese deficiency in plants: The impact on photosystem II. Trends Plant Sci. 2016, 21, 622–632. [Google Scholar] [CrossRef]
- Millaleo, R.; Reyes, D.M.; Ivanov, A.G.; Mora, M.L.; Lberdi, M.A. Manganese as essential and toxic element for plants transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 470–480. [Google Scholar] [CrossRef]
- Michael, W.S.; Becky, S.C.; Landgraf, B.S. Manganese deficiency in pecan. Hort. Sci. 2001, 36, 1075–1076. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 1995; pp. 330–355. [Google Scholar]
- Behera, S.K.; Shukla, A.K. Total and extractable manganese and iron in some cultivated acid soils of India: Status, distribution and relationship with some soil properties. Pedosphere 2014, 24, 196–208. [Google Scholar] [CrossRef]
- Kering, M.K.; Lukaszewska, K.; Blevins, D.G. Manganese requirement for optimum photosynthesis and growth in NAD-malic enzyme C-4 species. Plant Soil 2009, 316, 217–226. [Google Scholar] [CrossRef]
- Shuman, L.M.; Boswell, F.C.; Ohki, K.; Parker, M.B.; Wilson, D.O. Critical soil manganese deficiency levels for four extractants for soybeans Grown in Sandy Soil. Soil Sci. Soc. Am. J. 1980, 44, 1021–1025. [Google Scholar] [CrossRef]
- FRG. Fertilizer Recommendation Guide; Bangladesh Agriculture Research Council (BARC): Farmgate, Dhaka, 2018.
- Bansal, R.L.; Nayyar, V.K. Critical manganese deficiency level for soybean grown in Ustochrepts. Fertil. Res. 1990, 25, 153–157. [Google Scholar] [CrossRef]
- Goetz, A.; Hussein, H.; Thiel, A. Polycentric governance and agroecological practices in the MENA region: Insights from Lebanon, Morocco and Tunisia. Int. J. Water Resour. Dev. 2023, 1–16. [Google Scholar] [CrossRef]
- FAO-UNDP. Land Resources Appraisal of Bangladesh for Agricultural Development: Agroecological Regions of Bangladesh; Technical Report No. 2; FAO: Rome, Italy, 1988. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- McLean, E.O. Soil pH and Lime Requirement. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis, Advanced Course 2nd ed.; ML Jackson: Madison, WI, USA, 1973. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis, Part 3, Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Leoppert, R.H., Soltanpur, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Total nitrogen. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Fox, R.L.; Olson, R.A.; Rhoades, H.F. Evaluating the sulphur status of soils by plants and soil tests. Soil Sci. Soc. Am. Proc. 1964, 28, 243–246. [Google Scholar] [CrossRef]
- Schollenberger, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soil. Ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Bingham, F.H. Boron. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 431–446. [Google Scholar]
- Cate, R.B.; Nelson, L.A. Graphical procedure for critical limits of nutrients. Soil Sci. Soc. Am. J. 1965, 89, 658. [Google Scholar]
- Siva Prasad, P.N.; Subbarayappa, C.T.; Raghavendra Reddy, M.; Meena, H.M. Development of critical limits for different crops grown in different soils and its use in optimizing fertilizer rates. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 241–249. [Google Scholar] [CrossRef]
- Cate, R.B.; Nelson, L.A. A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Sci. Soc. Am. Proc. 1971, 35, 658–666. [Google Scholar] [CrossRef]
- Waugh, D.L.; Cate, J.R.; Nelson, L.A. International soil fertility evaluation and improvement program. Tech. Bull. 1973, 7, 1–77. [Google Scholar]
- Meena, R.K.; Amrutsagar, V.M.; Verma, M.K.; Vishalseth Meena, R.; Kumar, M.; Jat, L.K. Critical limits of potassium in soil and plant for increased productivity of Sorghum (Sorghum bicolor L.). Eco. Env. Cons. 2015, 21, 371–377. [Google Scholar]
- Gurjer, K.L.; Sharma, S.K.; Yadav, K.K.; Meena, S.C.; Meena, R.H.; Singh, D.P. Determination of critical limit of iron for soil and wheat crop in Rajsamand district of Rajasthan. Pharma Innov. J. 2022, SP-11, 145–149. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedure for Agricultural Research, 2nd ed.; John Willey & Blackwell: Hoboken, NJ, USA, 1984. [Google Scholar]
- Reddy, T.P.; Lakhsmi, V.; Kamalakar, J.; Rao, C.S. Critical levels of micro and secondary nutrients in soils and crops for optimum plant nutrition. Int. J. Sci. Res. 2017, 6, 594–595. [Google Scholar]
- Dahnke, W.C.; Olson, R.A. Soil test correlation, calibration, and recommendation. In Soil Testing and Plant Analysis; Westerman, R.L., Ed.; ASA, CSSA, and SSSA: Madison, WI, USA, 1990. [Google Scholar]
- Heckman, J.R.; Jokela, W.; Morris, T.; Beegle, D.B.; Sims, J.T.; Coale, F.J.; Herbert, S.; Griffin, T.; Hoskins, B.; Jemison, J.; et al. Soil test calibration for predicting corn response to phosphorus in the northeast USA. Agron. J. 2006, 98, 280–288. [Google Scholar] [CrossRef]
- Rahman, M.; Jahangir, M.M.R.; Kibria, M.G.; Hossain, M.; Hosenuzzaman, M.; Solaiman, Z.M.; Abedin, M.A. Determination of critical limit of zinc for rice (Oryza sativa L.) and potato (Solanum tuberosum L.) cultivation in floodplain soils of Bangladesh. Sustainability 2022, 14, 167. [Google Scholar] [CrossRef]
- Yesmin, R.; Hossain, M.; Kibria, M.G.; Jahiruddin, M.; Solaiman, Z.M.; Bokhtiar, S.M.; Hossain, M.B.; Satter, M.A.; Abedin, M.A. Evaluation of critical limit of sulphur in soils for wheat (Triticum aestivum L.) and mustard (Brassica napus L.). Sustainability 2021, 13, 8325. [Google Scholar] [CrossRef]
- Rashed, M.H.; Hoque, T.S.; Jahangir, M.M.R.; Hashem, M.A. Manganese as a micronutrient in agriculture: Crop requirement and management. J. Environ. Sci. Nat. Resour. 2019, 12, 225–242. [Google Scholar] [CrossRef]
- Randall, G.W.; Schulte, E.E.; Corey, R.B. Effect of soil and foliar-applied manganese on the micronutrient content and yield of soybeans. Agron. J. 1975, 67, 502–507. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Shahsavari, M.; Rezaei, M. A general overview on manganese (Mn) importance for crops production. Aust. J. Basic Appl. Sci. 2011, 5, 1799–1803. [Google Scholar]
- Kwano, B.H.; Moreira, A.; Moraes, L.A.C.; Nogueira, M.A. Magnesium-manganese interaction in soybean cultivars with different nutritional requirements. J. Plant Nutr. 2017, 40, 372–381. [Google Scholar] [CrossRef]
- Bottrill, D.E.; Possingham, J.V.; Kriedemann, P.E. The effect of nutrient deficiencies on photosynthesis and respiration in spinach. Plant Soil 1970, 32, 424–438. [Google Scholar] [CrossRef]
- Arya, S.K.; Roy, B.K. Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). J. Environ. Biol. 2011, 32, 707–711. [Google Scholar] [PubMed]
- Akay, A.; Uzun, F. Influence of manganese and sulphur fertilization on the mineral composition of Broccoli (Brassica oleracea L. var italica). J. Agric. Sci. 2017, 27, 481–487. [Google Scholar]
Soil Samples | Location | Series | AEZ | USDA Soil Taxonomy |
---|---|---|---|---|
S1 | Subornochar (22°42′ N 91°01′ E) | Ramgoti | 18 | Typic Haplaquepts |
S2 | Ramgoti (22°41′ N 90°54′ E) | Nilkamal | 18 | Typic Haplaquepts |
S3 | Kamalnagar (22°44′ N 90°51′ E) | Ramgoti | 18 | Typic Haplaquepts |
S4 | Ramgoti (22°43′ N 90°57′ E) | Ramgoti | 18 | Typic Haplaquepts |
S5 | Kustia Sadar (23°52′ N 89°08′ E) | Ishwardi | 11 | Aeric Haplaquepts |
S6 | Kamalnagar (22°47′ N 90°52′ E) | Ramgoti | 18 | Typic Haplaquepts |
S7 | Kustia Sadar (23°52′ N 89°08′ E) | Ishwardi | 11 | Aeric Haplaquepts |
S8 | Ramgoti (22°43′ N 91°01′ E) | Ramgoti | 18 | Typic Haplaquepts |
S9 | Kamalnagar (22°44′ N 90°51′ E) | Ramgoti | 18 | Typic Haplaquepts |
S10 | Dinajpur Sadar (25°43′ N 89°39′ E) | Gongachara | 1 | Typic Haplaquepts |
S11 | Dinajpur Sadar (25°43′ N 89°39′ E) | Gongachara | 1 | Typic Haplaquepts |
S12 | Kamalnagar (22°43′ N 90°54′ E) | Ramgoti | 18 | Typic Haplaquepts |
S13 | Kamalnagar (22°43′ N 90°51′ E) | Ramgoti | 18 | Typic Haplaquepts |
S14 | Ramgoti (22°43′ N 90°57′ E) | Ramgoti | 18 | Typic Haplaquepts |
S15 | Kamalnagar (22°45′ N 90°52′ E) | Ramgoti | 18 | Typic Haplaquepts |
S16 | Ramgoti (22°41′ N 90°54′ E) | Nilkamal | 18 | Typic Haplaquepts |
S17 | Ramgoti (22°41′ N 90°54′ E) | Nilkamal | 18 | Typic Haplaquepts |
S18 | Kamalnagar (22°43′ N 90°51′ E) | Ramgoti | 18 | Typic Haplaquepts |
S19 | Dinajpur Sadar (25°43′ N 89°39′ E) | Gongachara | 1 | Typic Haplaquepts |
S20 | Ramgoti (22°40′ N 90°54′ E) | Nilkamal | 18 | Typic Haplaquepts |
Soil Samples | pH | EC (dS m−1) | OM (%) | Textural Class |
---|---|---|---|---|
S1 | 5.37 | 1.01 | 1.72 | Silt loam |
S2 | 6.56 | 1.06 | 2.02 | Silt loam |
S3 | 5.76 | 4.01 | 1.97 | Silt loam |
S4 | 6.53 | 3.50 | 1.72 | Silt loam |
S5 | 7.79 | 0.27 | 2.32 | Clay loam |
S6 | 6.68 | 4.15 | 2.24 | Silt loam |
S7 | 7.85 | 0.23 | 2.81 | Clay loam |
S8 | 6.52 | 0.93 | 2.24 | Silt loam |
S9 | 5.89 | 3.86 | 2.45 | Silt loam |
S10 | 5.30 | 0.15 | 1.16 | Loam |
S11 | 5.20 | 0.11 | 0.86 | Sandy loam |
S12 | 6.59 | 1.20 | 2.42 | Silt loam |
S13 | 5.46 | 1.07 | 2.16 | Silt loam |
S14 | 6.61 | 4.08 | 2.24 | Silt loam |
S15 | 6.44 | 3.86 | 2.38 | Silt loam |
S16 | 6.60 | 1.00 | 2.19 | Silt loam |
S17 | 6.77 | 1.32 | 2.53 | Silt loam |
S18 | 5.31 | 1.34 | 2.16 | Silt loam |
S19 | 5.50 | 0.26 | 0.79 | Sandy loam |
S20 | 6.41 | 1.22 | 2.39 | Silt loam |
Mean | 6.26 | 2.04 | 1.73 |
Soil Samples | N % | K | Ca | Mg | P | B | S | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
cmol (+) Kg−1 | µg g−1 | ||||||||||
S1 | 0.09 | 0.12 | 4.11 | 1.97 | 7.40 | 0.12 | 55.7 | 1.34 | 55.6 | 1.78 | 0.88 |
S2 | 0.10 | 0.16 | 4.03 | 2.29 | 11.0 | 0.10 | 31.8 | 1.84 | 59.9 | 2.61 | 0.59 |
S3 | 0.10 | 0.24 | 4.62 | 2.57 | 6.90 | 0.11 | 35.9 | 2.06 | 87.1 | 2.72 | 0.37 |
S4 | 0.09 | 0.12 | 4.11 | 2.03 | 1.20 | 0.18 | 76.1 | 0.91 | 32.6 | 2.74 | 0.32 |
S5 | 0.12 | 0.52 | 16.0 | 3.53 | 6.02 | 0.65 | 23.1 | 5.29 | 71.1 | 2.81 | 1.05 |
S6 | 0.11 | 0.23 | 4.02 | 3.36 | 1.80 | 0.15 | 74.5 | 1.95 | 33.0 | 2.88 | 0.42 |
S7 | 0.14 | 0.57 | 15.3 | 3.28 | 5.53 | 0.60 | 28.1 | 5.56 | 76.5 | 3.07 | 1.39 |
S8 | 0.11 | 0.16 | 4.76 | 2.74 | 7.50 | 0.14 | 29.9 | 1.58 | 57.2 | 3.14 | 0.66 |
S9 | 0.12 | 0.22 | 4.37 | 2.61 | 8.20 | 0.09 | 27.8 | 2.55 | 135 | 3.19 | 0.63 |
S10 | 0.06 | 0.14 | 1.94 | 0.56 | 5.50 | 0.20 | 10.0 | 1.53 | 101 | 3.23 | 1.40 |
S11 | 0.04 | 0.11 | 1.15 | 0.36 | 7.60 | 0.24 | 12.1 | 0.78 | 57.6 | 3.86 | 0.60 |
S12 | 0.12 | 0.20 | 2.15 | 1.17 | 1.80 | 0.18 | 51.1 | 2.16 | 120 | 4.08 | 0.68 |
S13 | 0.11 | 0.21 | 2.51 | 1.24 | 2.00 | 0.15 | 49.0 | 2.34 | 118 | 4.11 | 0.70 |
S14 | 0.11 | 0.13 | 4.30 | 2.30 | 2.00 | 0.21 | 84.5 | 1.19 | 30.6 | 4.12 | 0.33 |
S15 | 0.12 | 0.20 | 4.01 | 3.23 | 2.20 | 0.16 | 55.3 | 2.65 | 35.7 | 4.13 | 0.62 |
S16 | 0.11 | 0.12 | 4.56 | 2.57 | 5.80 | 0.09 | 51.9 | 1.51 | 47.0 | 4.46 | 0.98 |
S17 | 0.13 | 0.12 | 5.95 | 2.52 | 3.20 | 0.16 | 74.6 | 1.43 | 32.2 | 5.33 | 1.22 |
S18 | 0.11 | 0.23 | 2.83 | 1.45 | 3.70 | 0.17 | 38.0 | 2.63 | 129 | 5.36 | 0.77 |
S19 | 0.04 | 0.27 | 2.48 | 1.16 | 3.50 | 0.15 | 17.9 | 1.28 | 53.2 | 5.99 | 1.70 |
S20 | 0.12 | 0.12 | 6.66 | 2.78 | 3.20 | 0.18 | 66.5 | 1.75 | 35.0 | 6.76 | 1.48 |
Mean | 0.10 | 0.21 | 4.99 | 2.12 | 4.80 | 0.20 | 44.7 | 2.12 | 68.3 | 3.82 | 0.84 |
Treatments | Root | Shoot | Seed |
---|---|---|---|
Dry Weight (g pot−1) | |||
AEZs | |||
AEZ 18 | 2.03 | 15.9 | 11.3 |
AEZ 11 | 2.08 | 15.9 | 11.3 |
AEZ 1 | 2.05 | 15.7 | 11.0 |
LSD | 0.17 | 0.49 | 0.66 |
SE (±) | 0.09 | 0.96 | 0.34 |
Mn level | |||
Mn0 | 1.89b | 14.2b | 10.0b |
Mn1 | 2.21a | 16.6a | 11.8a |
Mn2 | 2.08ab | 16.5a | 11.6a |
Mn4 | 2.02ab | 15.9a | 11.5a |
LSD | 0.20 | 1.11 | 0.76 |
SE (±) | 0.10 | 0.56 | 0.39 |
Level of significance | |||
AEZ | ns | ns | ns |
Mn level | ** | *** | *** |
AEZ × Mn level | ns | ns | ns |
Initial Soil Mn (µg g−1 soil) | Mn Levels (µg g−1 Soil) | Bray’s %Yield | |||
---|---|---|---|---|---|
Mn0 | Mn1 | Mn2 | Mn4 | ||
1.78 | 9.14 | 14.0 | 13.3 | 11.1 | 65.2 |
2.61 | 9.71 | 11.7 | 12.9 | 13.6 | 71.6 |
2.72 | 9.11 | 12.8 | 9.62 | 10.6 | 71.3 |
2.74 | 9.02 | 12.2 | 10.6 | 9.06 | 73.8 |
2.81 | 9.29 | 11.7 | 11.9 | 12.4 | 75.0 |
2.88 | 9.04 | 10.2 | 11.9 | 9.60 | 76.0 |
3.07 | 9.29 | 11.6 | 11.6 | 12.8 | 72.6 |
3.14 | 10.6 | 12.8 | 13.2 | 13.1 | 80.6 |
3.19 | 9.02 | 10.4 | 11.2 | 9.33 | 80.7 |
3.23 | 9.75 | 12.8 | 11.2 | 11.7 | 76.5 |
3.86 | 9.16 | 9.74 | 10.9 | 9.45 | 84.2 |
4.08 | 9.65 | 9.71 | 10.6 | 11.1 | 87.2 |
4.11 | 9.20 | 10.1 | 11.1 | 9.80 | 82.9 |
4.12 | 9.35 | 10.1 | 11.1 | 9.39 | 84.5 |
4.13 | 11.3 | 12.0 | 13.5 | 10.4 | 84.2 |
4.46 | 12.0 | 13.2 | 12.1 | 13.3 | 90.4 |
5.33 | 11.9 | 12.8 | 12.2 | 12.5 | 92.7 |
5.36 | 12.4 | 13.6 | 12.9 | 13.3 | 91.2 |
5.99 | 12.4 | 13.0 | 11.4 | 10.9 | 95.6 |
6.76 | 11.8 | 12.2 | 12.4 | 12.1 | 95.4 |
Soil Samples | Soil Available Mn | Bray’s %Yield | Last Value of Soil Mn in P1 | Mean Bray’s %Yield in P1 | CSS1 | Mean Bray’s %Yield in P2 | CSS2 | PCL | R2 |
---|---|---|---|---|---|---|---|---|---|
S1 | 1.78 | 65.19 | |||||||
S2 | 2.61 | 71.61 | 2.61 | 68.40 | 20.61 | 2437.55 | 1209.86 | 2.67 | 0.23 |
S3 | 2.72 | 71.34 | 2.72 | 71.48 | 26.37 | 2572.78 | 1075.05 | 2.73 | 0.31 |
S4 | 2.74 | 73.81 | 2.74 | 72.58 | 41.09 | 2724.16 | 979.61 | 2.78 | 0.36 |
S5 | 2.81 | 75.04 | 2.81 | 74.43 | 57.67 | 2894.81 | 896.25 | 2.85 | 0.40 |
S6 | 2.88 | 68.33 | 2.88 | 71.69 | 65.51 | 3088.93 | 617.17 | 2.98 | 0.57 |
S7 | 3.07 | 72.58 | 3.07 | 70.46 | 67.97 | 3311.39 | 433.99 | 3.11 | 0.69 |
S8 | 3.14 | 80.66 | 3.14 | 76.62 | 147.46 | 3568.59 | 395.43 | 3.17 | 0.66 |
S9 | 3.19 | 80.68 | 3.19 | 80.67 | 209.59 | 3869.77 | 350.16 | 3.21 | 0.65 |
S10 | 3.23 | 76.47 | 3.23 | 78.58 | 218.93 | 4227.62 | 211.23 | 3.55 | 0.73 |
S11 | 3.86 | 84.27 | 3.86 | 80.37 | 322.99 | 4659.14 | 188.10 | 3.97 | 0.68 |
S12 | 4.08 | 87.12 | 4.08 | 85.70 | 467.97 | 5189.93 | 182.57 | 4.10 | 0.59 |
S13 | 4.11 | 82.96 | 4.11 | 85.04 | 518.09 | 5859.40 | 131.93 | 4.12 | 0.59 |
S14 | 4.12 | 84.46 | 4.12 | 83.71 | 582.08 | 6729.70 | 88.42 | 4.13 | 0.58 |
S15 | 4.13 | 84.18 | 4.13 | 84.32 | 633.59 | 7907.13 | 22.62 | 4.30 | 0.59 |
S16 | 4.46 | 90.38 | 4.46 | 87.28 | 795.29 | 9588.51 | 13.60 | 4.90 | 0.49 |
S17 | 5.33 | 92.76 | 5.33 | 91.57 | 998.46 | 12,186.3 | 12.32 | 5.35 | 0.37 |
S18 | 5.36 | 91.2 | 5.36 | 91.98 | 1140.61 | 16,732.6 | 0.03 | 5.68 | 0.28 |
S19 | 5.99 | 95.61 | 5.99 | 93.41 | 1383.03 | 26,733.1 | 6.38 | ||
S20 | 6.76 | 95.38 | 6.76 | 95.50 | 1594.65 | 66,734.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashed, H.O.; Jahangir, M.M.R.; Hashem, M.A.; Ferdous, J.; Kader, M.A.; Solaiman, Z.M.; Hoque, T.S. Critical Limit of Manganese for Soybean in Soils of Three Agro-Ecological Zones of Bangladesh. Sustainability 2023, 15, 16410. https://doi.org/10.3390/su152316410
Rashed HO, Jahangir MMR, Hashem MA, Ferdous J, Kader MA, Solaiman ZM, Hoque TS. Critical Limit of Manganese for Soybean in Soils of Three Agro-Ecological Zones of Bangladesh. Sustainability. 2023; 15(23):16410. https://doi.org/10.3390/su152316410
Chicago/Turabian StyleRashed, Harun Or, Mohammad Mofizur Rahman Jahangir, M. Abul Hashem, Jannatul Ferdous, M. Abdul Kader, Zakaria M. Solaiman, and Tahsina Sharmin Hoque. 2023. "Critical Limit of Manganese for Soybean in Soils of Three Agro-Ecological Zones of Bangladesh" Sustainability 15, no. 23: 16410. https://doi.org/10.3390/su152316410
APA StyleRashed, H. O., Jahangir, M. M. R., Hashem, M. A., Ferdous, J., Kader, M. A., Solaiman, Z. M., & Hoque, T. S. (2023). Critical Limit of Manganese for Soybean in Soils of Three Agro-Ecological Zones of Bangladesh. Sustainability, 15(23), 16410. https://doi.org/10.3390/su152316410