Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches
Abstract
:1. Introduction
- i.
- It critically analyzes the degraded outputs of soiled PV modules from most of the reported work for different environmental conditions.
- ii.
- It also discusses the effect of atmospheric parameters accounted for in soiling as well as PV module output characteristics in different climatic conditions around the globe.
- iii.
- It presents a review of soiling loss investigations in outdoor (outdoor exposure) conditions.
- iv.
- It also presents the importance of soiling loss investigations in artificial environmental (emulator based) conditions.
- v.
- It compares the mitigation approaches developed so far in terms of practicality.
2. Dust Belt Areas
3. Physical Factors Influencing Soiling of PV Modules
3.1. Effect of Wind
3.2. Effect of Humidity and Dew
3.3. Effect of Rainfall
3.4. Effect of Tilt on Dust Deposition
3.5. Effect of Properties of Dust
Dust Types | Measured Particle Sizes (in µm) | Reference Particle Sizes (in µm) | Reference |
---|---|---|---|
Cement | 10 | 10 | [56] |
Soil | 128.466 | 100–300 | [58] |
Sand | 230.50 | 250 | [58] |
Salt (NaCl) | 3191 | >210 | [56] |
Gypsum | 18.332 | <60 | [58] |
Ash | 9.696 | <10 | [58] |
4. Power Loss of PV Modules Due to Soiling
4.1. Study of Soiling in Outdoors
4.2. Study of Soiling in an Artificial Environment
Experiment Sites (Latitude and Longitude) | Climate | Mounting Configuration | Experiment Period (Days) | Observed Parameter | Observed Loss (%) | Reference |
---|---|---|---|---|---|---|
Jordan, (32.1029° N, 36.1811° E) | Subtropical arid | 26° South | 179 | ηav/day | 0.768 | [75] |
Spain, (36.8°N, 2.4° W) | Mild oceanic | 22° South | 230 | Isc | 15 | [76] |
Saudi Arabia (24.71° N, 46.72° E) | Desert | Solar tracking | 30 | Isc | 35 | [77] |
Pakistan (33.766° N, 72.8232° E) | Continental | 15° South | 30 | T | 60 (coal dust) 31 (module dust) | [78] |
Kuwait (29.36° N, 47.97° E) | Desert | 30° South | 420 | Pout | 55 | [79] |
Arequipa (16.40° S, 71.53° W) | Subtropical desert | 16° South | 730 | E | ≈8 | [80] |
Nigeria (12.5° N, 4.3° E) | Tropical semi-arid | 12.5° South | 120 | Pmax | 60 | [81] |
Jeddah (21.4933° N, 39.2391° E) | Desert | 10° South | 20 | E | 27 | [82] |
Saudi Arabia(26.28° N, 50.11° E) | Desert | 26° South | 180 | η | 60 | [20] |
Nigeria (12.5° N, 4.3° E) | Tropical semi-arid | 13° South | 14 | Isc | 4.7 | [83] |
Thailand (16.8211° N, 100.2659° E) | Semi-arid | 17° East | 60 | Isc | 2.83–6.03 | [84] |
Bahrain (26.17° N, 50.54° E) | Desert | 0° | 60 | Isc | 41.4 | [85] |
Northern Poland (54.37° N, 18.62° E) | Moderate | 34° | 365 | η | 10 | [86] |
Atacama Desert (23.8634° S, 69.1328° W) | Desert | 20° South | 365 | Isc | 15–55 | [87] |
Spain (36.8296° N, 2.4048° W) | Mediterranean | 22° South | >30 | E | 10 | [88] |
India (22.57° N, 88.36° E) | Tropical wet and dry | 20° South | 30 | η | 43.3 | [89] |
Iran (35.69° N, 51.42° E) | Cold semi-arid | 45° South | 8 | Pout | 43 | [24] |
Egypt (28.07° N, 30.76° E) | Subtropical | 20°, 40°, 60°, South | 30 | T | 11–21 | [50] |
Egypt (29.84° N, 31.33° E) | Arid | 15° Northeast | 210 | T | 20.9 | [90] |
Palestine (32.370° N, 35.108° E) | Mediterranean | 29° South | 365 | Pout | 13.1 | [91] |
Cairo (30.0444° N, 31.2357° E) | Desert | 20° South | 21 | Isc Voc | 26 8 | [92] |
UAE (24.9° N and 55.5° E) | Desert | 22° South | 90 | Pout | 13 | [93] |
Greece (37.98° N, 23.72° E) | Hot summer Mediterranean | 30° South | 60 | E | 6.5 | [94] |
Kuwait (29.3117° N, 47.4818° E) | Desert | 30° North | 365 | T | 5 | [95] |
Mexico (29.09° S–110.96° W) | Desert | Sun tracker | 20 | Pout | 8.5 | [8] |
Santiago, Chile (33.4489° S, 70.6693° W) | Mild | 32° South | 365 | Pout | 1.29–2.77 | [96] |
Saudi Arabia (30.98° N, 41° E) | Continental | 31° North | 10 | Isc | 27.8 | [97] |
UAE (24.46° N, 54.36° E) | Desert | 25° South | 18 | Pout | 13 | [98] |
Italy (40.79° N, 17.10° E) | Mediterranean | 25° South | 240 | Pout | 6.9 | [67] |
Qatar (27.92° N, 15.54° W) | Desert | 28° South | 180 | Pout | 43 | [99] |
China (49.7448° N and 116° 21′49.0500″ E) | Simulator | 50° tilt | On 22 g/m2 dust | η | 26 | [68] |
Northern Nigeria (11°59′02.1″ N, 8°28′ 52.5″ E) | Tropical semi-arid | 12° South | 365 | η | 78 | [100] |
Libya (26.33° N, 17.22° E) | Desert | 40° North | 120 | Pout | 2.5 | [101] |
Bangladesh (23.70° N, 90.40° E) | Tropical | 23.5° South | 30 | Isc | 33 | [102] |
Arabia (26.28° N, 50.11° E) | Desert | 30° South | 30 | Pout | 5.9 | [103] |
Nigeria (8.13° N, 4.25° E) | Tropical | 0° | 70 | Pout | 25 | [104] |
Spain (36.72° N, 4.42° W) | Hot summer Mediterranean | 30° South | 365 | E | 20 | [105] |
China (37.87° N, 112.56° E) | Semi-arid | 45° South | 14 | Pout | 18.2 | [106] |
Cyprus (34.70° N, 33.02° E) | Mediterranean | 31° South | 70 | Pout | 8 | [107] |
USA (37.42° N, 120.59° W) | Desert | 25° South | 480 | Isc | 8.6 | [108] |
Saudi Arabia (26.28° N, 50.11° E) | Desert | 26° South | 240 | Pmax | 45.4 | [53] |
Spain (36.72° N, 4.42° W) | Hot summer Mediterranean | 21° South | 300 | Isc | 12.5 | [109] |
Egypt (26.8206° N, 30.8025° E) | Hot summer | 27° South | 120 | η | 50 | [110] |
Toluca, México (19°21′54.36″ N; 99°9′24.84″ W) | Cold, Mild | 20.3° South | 60, 365 | η | 15,3.6 | [111] |
India, latitude 12.97° N, longitude 77.56° E). | Semi-arid | 13° South | 30 | Isc | 4–5 | [60] |
UK (55.3781° N, 3.4360° W) | Mediterranean | 55° North | 30 | T | 5–6 | [25] |
Senegal, (12.5° and 16.5° North latitude and 12° and 17° West longitude) | Tropical | 4.43° North | 365 | Pmax | 2.6 | [112] |
Algeria (28.0339° N, 1.6596° E) | Desert | 32° South | 210 | T | 8 | [113] |
Northern Poland (51.9194° N, 19.1451° E) | Indoor | 37° Tilt | 365 | Pmax | 3 | [114] |
Gurgaon, India (28°37′ N, 77°14′ E) | Composite climate | 28° South | 365 | Voc and FF, Isc and Pmax | 1.4 and 2.6, 1.8 and 4.1 | [115] |
Kathmandu, Nepal (27°40′51″ N,85° 14′29″ E) | Composite climate, dry winter | 27° North | 150 | η | 29.76 | [116] |
Perth, Western Australia (31.95° S and 115.85° E) | Temperate climate | 32° South | 365 | Pmax | 2.3–2.7 | [117] |
Oman (Northern) (16°40′, 26°20′) N, (51°50′, 59°40′) E | Tropical desert | 16° North | 90 | Pmax | 40 | [118] |
Dhahran (Saudi Arabia) (26.2361° N, 50.0393° E) | Desert | 26° North | 7 | η | 7.34 | [70] |
Doha, Qatar (25.2854° N, 51.5310° E) | Semi-arid | 25° North | 150 | Pmax | 30 | [119] |
Ispra, Northern Italy (45°48′43.4″ N–8°37′37.4″ E) | Moderate subtropical | 45° North | 10,950 | Pmax, Isc | 19.4, 6.7 | [69] |
Surabaya, Indonesia (7.2575° S, 112.7521° E) | Tropical savannah | 7° and 23° South | 14 | Pmax | 10.8; in dry season. | [35] |
Baghdad, Iraq (33.3152° N, 44.3661° E) | Desert | 30° North | 7 | Isc | 6.9–16.4 | [120] |
Atacama Desert (23.8634° S, 69.1328° W) | Desert | 24° South | 120 | T | 55 | [121] |
China (49.7448″ N and 116°21′49.0500″ E) | Semi-arid | 45° South | 8 | T | 20 | [122] |
Minas Gerais, Brazil (18.5122° S, 44.5550° W) | Tropical | 8° South | 43 | Pmax | 6.5–13.7 | [123] |
Tehran, Iran (35.6892° N, 51.3890° E) | Cold semi-arid | 35° North | 70 | Pmax | 21.47 | [124] |
Doha Qatar (25.2854° N, 51.5310° E) | Desert | 22° North | 01 | Pmax | 0.5 | [125] |
5. Prevention and Restoration from Soiling of PV Modules
5.1. Manual Cleaning
5.2. Natural Cleaning
5.3. Passive Cleaning
5.3.1. Anti-Soiling Coatings
5.3.2. Electrodynamics Screens (EDSs)
5.3.3. Electrostatic Cleaning
5.3.4. Robotics-Based Cleaning
5.3.5. High-Pressure Water Jet
6. Recommendation for the Future Direction of Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
∂M | Deposition density (g/m2) |
∆m | Weight of dust collected (g) |
Ac | Area of module surface (m2) |
AOD | Aerosol optical depth |
Cd | Particle mass concentration |
E | Energy (J) |
FF | Fill factor |
G | Irradiance over PV module surface |
G0 | Irradiance at Standard Test Conditions (STC) |
Isc | Short-circuit current (A) |
Isc at STC of the dusty module (A) | |
Isc at STC of the clean module (A) | |
Isc of the clean PV module (A) | |
Md | Dust accumulation density (g/m2) |
MSE | Maximum mean-squared error |
PM | Particulate Matter (PMx) |
Pmax | Maximum power (W) |
Maximum power at clean condition (W) | |
Maximum power of the soiled PV module (W) | |
Pout | Output power (W) |
RM | Relative humidity |
SEM | Scanning Electron Microscope |
SR | Soiling Ratio |
SRIsc | Short-circuit current on soiling (A) |
SRPmax | Maximum power output on soiling (W) |
T | Transmission of light |
Cleaned module temperature (°C) | |
Soiled module temperature (°C) | |
T0 | Temperature at 25 °C |
Ti | Cleaning interval time (Day) |
Vd | Dust deposition velocity (m/s) |
Voc | Open circuit voltage |
Short-circuit temperature correction coefficient | |
γ | Maximum power temperature correction coefficient |
η | Efficiency of PV module (%) |
References
- Ghosh, A. Soiling losses: A barrier for India’s energy security dependency from photovoltaic power. Challenges 2020, 11, 9. [Google Scholar] [CrossRef]
- Solar Power Europe, Global Market Outlook 2023–2027. 2023. Available online: http://www.solarpowereurope.org/insights/global-market-outlook/ (accessed on 21 November 2023).
- Capellán-Pérez, I.; De Castro, C.; Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew. Sustain. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef]
- Serrano, D.; Margalida, A.; Pérez-García, J.M.; Juste, J.; Traba, J.; Valera, F.; Carrete, M.; Aihartza, J.; Real, J.; Mañosa, S. Renewables in Spain threaten biodiversity. Science 2020, 370, 1282–1283. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Recent advancement in BIPV product technologies: A review. Energy Build. 2017, 140, 188–195. [Google Scholar] [CrossRef]
- Fernandez, E.F.; Villar-Fernandez, A.; Montes-Romero, J.; Ruiz-Torres, L.; Rodrigo, P.M.; Manzaneda, A.J.; Almonacid, F. Global energy assessment of the potential of photovoltaics for greenhouse farming. Appl. Energy 2022, 309, 118474. [Google Scholar] [CrossRef]
- Kumar, M.; Niyaz, H.M.; Gupta, R. Challenges and opportunities towards the development of floating photovoltaic systems. Sol. Energy Mater. Sol. Cells 2021, 233, 111408. [Google Scholar] [CrossRef]
- Cabanillas, R.; Munguía, H. Dust accumulation effect on efficiency of Si photovoltaic modules. J. Renew. Sustain. Energy 2011, 3, 043114. [Google Scholar] [CrossRef]
- Comello, S.; Reichelstein, S.; Sahoo, A. The road ahead for solar PV power. Renew. Sustain. Energy Rev. 2018, 92, 744–756. [Google Scholar] [CrossRef]
- Sarver, T.; Al-Qaraghuli, A.; Kazmerski, L.L. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renew. Sustain. Energy Rev. 2013, 22, 698–733. [Google Scholar] [CrossRef]
- Toth, S.; Muller, M.; Miller, D.C.; Moutinho, H.; To, B.; Micheli, L.; Linger, J.; Engtrakul, C.; Einhorn, A.; Simpson, L. Soiling and cleaning: Initial observations from 5-year photovoltaic glass coating durability study. Sol. Energy Mater. Sol. Cells 2018, 185, 375–384. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.; Tang, Y.; Zheng, F.; Meng, M.; Miao, C. Criteria for particles to be levitated and to move continuously on traveling-wave electric curtain for dust mitigation on solar panels. Renew. Energy 2018, 119, 410–420. [Google Scholar] [CrossRef]
- Laarabi, B.; Sankarkumar, S.; Rajasekar, N.; El Baqqal, Y.; Barhdadi, A. Modeling investigation of soiling effect on solar photovoltaic systems: New findings. Sustain. Energy Technol. Assess. 2022, 52, 102126. [Google Scholar] [CrossRef]
- Dahlioui, D.; Laarabi, B.; Barhdadi, A. Review on dew water effect on soiling of solar panels: Towards its enhancement or mitigation. Sustain. Energy Technol. Assess. 2022, 49, 101774. [Google Scholar] [CrossRef]
- Raillani, B.; Chaatouf, D.; Salhi, M.; Amraqui, S.; Mezrhab, A. Effect of wind barrier height on the dust deposition rate of a ground-mounted photovoltaic panel. Sustain. Energy Technol. Assess. 2022, 52, 102035. [Google Scholar] [CrossRef]
- Khodakaram-Tafti, A.; Yaghoubi, M. Experimental study on the effect of dust deposition on photovoltaic performance at various tilts in semi-arid environment. Sustain. Energy Technol. Assess. 2020, 42, 100822. [Google Scholar] [CrossRef]
- Derakhshandeh, J.F.; AlLuqman, R.; Mohammad, S.; AlHussain, H.; AlHendi, G.; AlEid, D.; Ahmad, Z. A comprehensive review of automatic cleaning systems of solar panels. Sustain. Energy Technol. Assess. 2021, 47, 101518. [Google Scholar] [CrossRef]
- Ilse, K.; Micheli, L.; Figgis, B.W.; Lange, K.; Daßler, D.; Hanifi, H.; Wolfertstetter, F.; Naumann, V.; Hagendorf, C.; Gottschalg, R. Techno-economic assessment of soiling losses and mitigation strategies for solar power generation. Joule 2019, 3, 2303–2321. [Google Scholar] [CrossRef]
- Tsoar, H. Bagnold, RA 1941: The physics of blown sand and desert dunes. London: Methuen. Prog. Phys. Geogr. 1994, 18, 91–96. [Google Scholar] [CrossRef]
- Said, S. Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors. Appl. Energy 1990, 37, 73–84. [Google Scholar] [CrossRef]
- Al-Alawy, I.T. Wind and other factor requirements to solar energy applications in Iraq. Sol. Wind Technol. 1990, 7, 597–600. [Google Scholar] [CrossRef]
- Biryukov, S. An experimental study of the dry deposition mechanism for airborne dust. J. Aerosol Sci. 1998, 29, 129–139. [Google Scholar] [CrossRef]
- Arabatzis, I.; Todorova, N.; Fasaki, I.; Tsesmeli, C.; Peppas, A.; Li, W.X.; Zhao, Z. Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions. Sol. Energy 2018, 159, 251–259. [Google Scholar] [CrossRef]
- Asl-Soleimani, E.; Farhangi, S.; Zabihi, M. The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renew. Energy 2001, 24, 459–468. [Google Scholar] [CrossRef]
- Ghazi, S.; Sayigh, A.; Ip, K. Dust effect on flat surfaces–A review paper. Renew. Sustain. Energy Rev. 2014, 33, 742–751. [Google Scholar] [CrossRef]
- Li, X.; Mauzerall, D.L.; Bergin, M.H. Global reduction of solar power generation efficiency due to aerosols and panel soiling. Nat. Sustain. 2020, 3, 720–727. [Google Scholar] [CrossRef]
- Sulaiman, S.A.; Singh, A.K.; Mokhtar, M.M.M.; Bou-Rabee, M.A. Influence of dirt accumulation on performance of PV panels. Energy Procedia 2014, 50, 50–56. [Google Scholar] [CrossRef]
- Kaldellis, J.; Fragos, P.; Kapsali, M. Systematic experimental study of the pollution deposition impact on the energy yield of photovoltaic installations. Renew. Energy 2011, 36, 2717–2724. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef]
- Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Said, S.A.; Hassan, G.; Walwil, H.M.; Al-Aqeeli, N. The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renew. Sustain. Energy Rev. 2018, 82, 743–760. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 2012, 16, 2920–2925. [Google Scholar] [CrossRef]
- Goossens, D.; Offer, Z.Y.; Zangvil, A. Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors. Sol. Energy 1993, 50, 75–84. [Google Scholar] [CrossRef]
- Said, S.A.; Walwil, H.M. Fundamental studies on dust fouling effects on PV module performance. Sol. Energy 2014, 107, 328–337. [Google Scholar] [CrossRef]
- Ramli, M.A.; Prasetyono, E.; Wicaksana, R.W.; Windarko, N.A.; Sedraoui, K.; Al-Turki, Y.A. On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions. Renew. Energy 2016, 99, 836–844. [Google Scholar] [CrossRef]
- Corn, M. The adhesion of solid particles to solid surfaces, I. A review. J. Air Pollut. Control Assoc. 1961, 11, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Vuollekoski, H.; Vogt, M.; Sinclair, V.; Duplissy, J.; Järvinen, H.; Kyrö, E.; Makkonen, R.; Petäjä, T.; Prisle, N.; Räisänen, P. Estimates of global dew collection potential. Hydrol. Earth Syst. Sci. Discuss 2014, 11, 9519–9549. [Google Scholar] [CrossRef]
- Isaifan, R.J.; Johnson, D.; Ackermann, L.; Figgis, B.; Ayoub, M. Evaluation of the adhesion forces between dust particles and photovoltaic module surfaces. Sol. Energy Mater. Sol. Cells 2019, 191, 413–421. [Google Scholar] [CrossRef]
- Simsek, E.; Williams, M.J.; Pilon, L. Effect of dew and rain on photovoltaic solar cell performances. Sol. Energy Mater. Sol. Cells 2021, 222, 110908. [Google Scholar] [CrossRef]
- Beysens, D. Estimating dew yield worldwide from a few meteo data. Atmos. Res. 2016, 167, 146–155. [Google Scholar] [CrossRef]
- Pedersen, H.; Strauss, J.; Selj, J. Effect of soiling on photovoltaic modules in Norway. Energy Procedia 2016, 92, 585–589. [Google Scholar] [CrossRef]
- Mejia, F.; Kleissl, J.; Bosch, J. The effect of dust on solar photovoltaic systems. Energy Procedia 2014, 49, 2370–2376. [Google Scholar] [CrossRef]
- Valerino, M.; Ratnaparkhi, A.; Ghoroi, C.; Bergin, M. Seasonal photovoltaic soiling: Analysis of size and composition of deposited particulate matter. Sol. Energy 2021, 227, 44–55. [Google Scholar] [CrossRef]
- Del Pero, C.; Aste, N.; Leonforte, F. The effect of rain on photovoltaic systems. Renew. Energy 2021, 179, 1803–1814. [Google Scholar] [CrossRef]
- Conceição, R.; Silva, H.G.; Mirão, J.; Collares-Pereira, M. Organic soiling: The role of pollen in PV module performance degradation. Energies 2018, 11, 294. [Google Scholar] [CrossRef]
- Souza, G.; Santos, R.; Saraiva, E. A Log-Logistic Predictor for Power Generation in Photovoltaic Systems. Energies 2022, 15, 5973. [Google Scholar] [CrossRef]
- Negash, T.; Tadiwose, T. Experimental investigation of the effect of tilt angle on the dust photovoltaic module. Int. J. Energy Power Eng 2015, 4, 227–231. [Google Scholar] [CrossRef]
- Qasem, H.; Betts, T.R.; Müllejans, H.; AlBusairi, H.; Gottschalg, R. Dust-induced shading on photovoltaic modules. Prog. Photovolt. Res. Appl. 2014, 22, 218–226. [Google Scholar] [CrossRef]
- Costa, S.C.S.; Kazmerski, L.L.; Diniz, A.S.A. Impact of soiling on Si and CdTe PV modules: Case study in different Brazil climate zones. Energy Convers. Manag. X 2021, 10, 100084. [Google Scholar] [CrossRef]
- Hegazy, A.A. Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renew. Energy 2001, 22, 525–540. [Google Scholar] [CrossRef]
- Xu, R.; Ni, K.; Hu, Y.; Si, J.; Wen, H.; Yu, D. Analysis of the optimum tilt angle for a soiled PV panel. Energy Convers. Manag. 2017, 148, 100–109. [Google Scholar] [CrossRef]
- El-Shobokshy, M.S.; Hussein, F.M. Degradation of photovoltaic cell performance due to dust deposition on to its surface. Renew. Energy 1993, 3, 585–590. [Google Scholar] [CrossRef]
- Adinoyi, M.J.; Said, S.A. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renew. Energy 2013, 60, 633–636. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Ali, H.; Al-Aqeeli, N.; Khaled, M.M.; Said, S.; Abu-Dheir, N.; Merah, N.; Youcef-Toumi, K.; Varanasi, K.K. Characterization of environmental dust in the Dammam area and mud after-effects on bisphenol-A polycarbonate sheets. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Agnihotri, R.; Yadav, P.K.; Singh, S.; Prasad, M.; Praveen, P.S.; Tawale, J.S.; Mishra, N.D.; Arya, B.C.; Sharma, C. Morphology of atmospheric particles over Semi-Arid region (Jaipur, Rajasthan) of India: Implications for optical properties. Aerosol Air Qual. Res. 2015, 15, 974–984. [Google Scholar] [CrossRef]
- Appels, R.; Lefevre, B.; Herteleer, B.; Goverde, H.; Beerten, A.; Paesen, R.; De Medts, K.; Driesen, J.; Poortmans, J. Effect of soiling on photovoltaic modules. Sol. Energy 2013, 96, 283–291. [Google Scholar] [CrossRef]
- Abderrezek, M.; Fathi, M. Experimental study of the dust effect on photovoltaic panels’ energy yield. Sol. Energy 2017, 142, 308–320. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kapsali, M. Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements. Energy 2011, 36, 5154–5161. [Google Scholar] [CrossRef]
- Conceicao, R.; Silva, H.G.; Mirao, J.; Gostein, M.; Fialho, L.; Narvarte, L.; Collares-Pereira, M. Saharan dust transport to Europe and its impact on photovoltaic performance: A case study of soiling in Portugal. Sol. Energy 2018, 160, 94–102. [Google Scholar] [CrossRef]
- Rao, A.; Pillai, R.; Mani, M.; Ramamurthy, P. Influence of dust deposition on photovoltaic panel performance. Energy Procedia 2014, 54, 690–700. [Google Scholar] [CrossRef]
- Fernández-Solas, Á.; Montes-Romero, J.; Micheli, L.; Almonacid, F.; Fernández, E.F. Estimation of soiling losses in photovoltaic modules of different technologies through analytical methods. Energy 2022, 244, 123173. [Google Scholar] [CrossRef]
- Bessa, J.G.; Micheli, L.; Almonacid, F.; Fernández, E.F. Monitoring photovoltaic soiling: Assessment, challenges, and perspectives of current and potential strategies. Iscience 2021, 24, 102165. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B.; Figgis, B.; Aïssa, B. Dust potency in the context of solar photovoltaic (PV) soiling loss. Sol. Energy 2021, 220, 1040–1052. [Google Scholar] [CrossRef]
- Micheli, L.; Theristis, M.; Livera, A.; Stein, J.S.; Georghiou, G.E.; Muller, M.; Almonacid, F.; Fernández, E.F. Improved PV soiling extraction through the detection of cleanings and change points. IEEE J. Photovolt. 2021, 11, 519–526. [Google Scholar] [CrossRef]
- Nimmo, B.; Said, S.A. Effects of dust on the performance of thermal and photovoltaic flat plate collectors in Saudi Arabia: Preliminary results. In Proceedings of the Miami International Conference on Alternative Energy Sources, Miami Beach, FL, USA, 10 December 1979. [Google Scholar]
- Oh, W.; Kang, B.; Choi, S.; Bae, S.; Jeong, S.; Kim, S.M.; Lee, H.-S.; Kim, D.; Hwang, H.; Chan, S.-I. Evaluation of anti-soiling and anti-reflection coating for photovoltaic modules. J. Nanosci. Nanotechnol. 2016, 16, 10689–10692. [Google Scholar] [CrossRef]
- Pavan, A.M.; Mellit, A.; De Pieri, D. The effect of soiling on energy production for large-scale photovoltaic plants. Sol. Energy 2011, 85, 1128–1136. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, L.; Sun, K. Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 2011, 45, 4299–4304. [Google Scholar] [CrossRef]
- Lopez-Garcia, J.; Pozza, A.; Sample, T. Long-term soiling of silicon PV modules in a moderate subtropical climate. Sol. Energy 2016, 130, 174–183. [Google Scholar] [CrossRef]
- Al Shehri, A.; Parrott, B.; Carrasco, P.; Al Saiari, H.; Taie, I. Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications. Sol. Energy 2016, 135, 317–324. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Seasonal effect of dust on the degradation of PV modules performance deployed in different climate areas. Renew. Energy 2017, 111, 105–115. [Google Scholar] [CrossRef]
- Hussain, N.; Shahzad, N.; Yousaf, T.; Waqas, A.; Javed, A.H.; Khan, S.; Ali, M.; Liaquat, R. Designing of homemade soiling station to explore soiling loss effects on PV modules. Sol. Energy 2021, 225, 624–633. [Google Scholar] [CrossRef]
- Fernández-Solas, Á.; Micheli, L.; Almonacid, F.; Fernández, E.F. Indoor validation of a multiwavelength measurement approach to estimate soiling losses in photovoltaic modules. Sol. Energy 2022, 241, 584–591. [Google Scholar] [CrossRef]
- Rahman, M.; Hasanuzzaman, M.; Rahim, N.A. Effects of various parameters on PV-module power and efficiency. Energy Convers. Manag. 2015, 103, 348–358. [Google Scholar] [CrossRef]
- Al-Kouz, W.; Al-Dahidi, S.; Hammad, B.; Al-Abed, M. Modeling and analysis framework for investigating the impact of dust and temperature on PV systems’ performance and optimum cleaning frequency. Appl. Sci. 2019, 9, 1397. [Google Scholar] [CrossRef]
- Simal Pérez, N.; Alonso-Montesinos, J.; Batlles, F.J. Estimation of soiling losses from an experimental photovoltaic plant using artificial intelligence techniques. Appl. Sci. 2021, 11, 1516. [Google Scholar] [CrossRef]
- KHOSHAIM, B.H. Performance characteristics of 350 kW photovoltaic power system for Saudi Arabian villages. Int. J. Sol. Energy 1982, 1, 91–103. [Google Scholar] [CrossRef]
- Riaz, M.H.; Mahmood, T. Experimental Analysis of Soiling Loss on PV Module in Cement Plant Environment. Eng. Proc. 2022, 20, 13. [Google Scholar] [CrossRef]
- Sayyah, A.; Horenstein, M.N.; Mazumder, M.K. Energy yield loss caused by dust deposition on photovoltaic panels. Sol. Energy 2014, 107, 576–604. [Google Scholar] [CrossRef]
- Romero-Fiances, I.; Muñoz-Cerón, E.; Espinoza-Paredes, R.; Nofuentes, G.; De la Casa, J. Analysis of the performance of various pv module technologies in Peru. Energies 2019, 12, 186. [Google Scholar] [CrossRef]
- Bajpai, S.; Gupta, R. Performance of Silicon solar-cells under Hot and dusty environmental-conditions. Indian J. Pure Appl. Phys. 1988, 26, 364–369. [Google Scholar]
- Alghamdi, A.S.; Bahaj, A.S.; Blunden, L.S.; Wu, Y. Dust removal from solar PV modules by automated cleaning systems. Energies 2019, 12, 2923. [Google Scholar] [CrossRef]
- Yahya, H.; Sambo, A. The effect of dust on the performance of photovoltaic modules in Sokoto. Niger. J. Renew. Energy 1991, 2, 36–42. [Google Scholar]
- Ketjoy, N.; Konyu, M. Study of dust effect on photovoltaic module for photovoltaic power plant. Energy Procedia 2014, 52, 431–437. [Google Scholar] [CrossRef]
- Som, A.; Al-Alawi, S. Evaluation of efficiency and degradation of mono-and polycrystalline PV modules under outdoor conditions. Renew. Energy 1992, 2, 85–91. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E.; Rudnicka, M. The analysis of working parameters decrease in photovoltaic modules as a result of dust deposition. Energies 2020, 13, 4138. [Google Scholar] [CrossRef]
- Vásquez, P.; Devoto, I.; Ferrada, P.; Taquichiri, A.; Portillo, C.; Palma-Behnke, R. Inspection data collection tool for field testing of photovoltaic modules in the atacama desert. Energies 2021, 14, 2409. [Google Scholar] [CrossRef]
- López, G.; Ramírez, D.; Alonso-Montesinos, J.; Sarmiento, J.; Polo, J.; Martín-Chivelet, N.; Marzo, A.; Batlles, F.J.; Ferrada, P. Design of a low-cost multiplexer for the study of the impact of soiling on PV panel performance. Energies 2021, 14, 4186. [Google Scholar] [CrossRef]
- Sengupta, S.; Ghosh, A.; Mallick, T.K.; Chanda, C.K.; Saha, H.; Bose, I.; Jana, J.; Sengupta, S. Model based generation prediction of SPV power plant due to weather stressed soiling. Energies 2021, 14, 5305. [Google Scholar] [CrossRef]
- Elminir, H.K.; Ghitas, A.E.; Hamid, R.; El-Hussainy, F.; Beheary, M.; Abdel-Moneim, K.M. Effect of dust on the transparent cover of solar collectors. Energy Convers. Manag. 2006, 47, 3192–3203. [Google Scholar] [CrossRef]
- Abdallah, R.; Juaidi, A.; Abdel-Fattah, S.; Qadi, M.; Shadid, M.; Albatayneh, A.; Çamur, H.; García-Cruz, A.; Manzano-Agugliaro, F. The effects of soiling and frequency of optimal cleaning of PV panels in Palestine. Energies 2022, 15, 4232. [Google Scholar] [CrossRef]
- Alquthami, T.; Menoufi, K. Soiling of photovoltaic modules: Comparing between two distinct locations within the framework of developing the photovoltaic soiling index (PVSI). Sustainability 2019, 11, 4697. [Google Scholar] [CrossRef]
- Shah, A.H.; Hassan, A.; Laghari, M.S.; Alraeesi, A. The influence of cleaning frequency of photovoltaic modules on power losses in the desert climate. Sustainability 2020, 12, 9750. [Google Scholar] [CrossRef]
- Kaldellis, J.; Kokala, A. Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal. Energy 2010, 35, 4862–4869. [Google Scholar] [CrossRef]
- Aldihani, A. Performance and cost assessment of three different crystalline silicon PV modules in Kuwait environments. Int. J. Renew. Energy Res. 2017, 7, 128–136. [Google Scholar] [CrossRef]
- Urrejola, E.; Antonanzas, J.; Ayala, P.; Salgado, M.; Ramírez-Sagner, G.; Cortés, C.; Pino, A.; Escobar, R. Effect of soiling and sunlight exposure on the performance ratio of photovoltaic technologies in Santiago, Chile. Energy Convers. Manag. 2016, 114, 338–347. [Google Scholar] [CrossRef]
- Ibrahim, A. Effect of shadow and dust on the performance of silicon solar cell. J. Basic Appl. Sci. Res. 2011, 1, 222–230. [Google Scholar]
- Al Hanai, T.; Hashim, R.B.; El Chaar, L.; Lamont, L.A. Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system. Renew. Energy 2011, 36, 2615–2622. [Google Scholar] [CrossRef]
- Zeedan, A.; Barakeh, A.; Al-Fakhroo, K.; Touati, F.; Gonzales Jr, A.S. Quantification of PV power and economic losses due to soiling in Qatar. Sustainability 2021, 13, 3364. [Google Scholar] [CrossRef]
- Chanchangi, Y.N.; Ghosh, A.; Baig, H.; Sundaram, S.; Mallick, T.K. Soiling on PV performance influenced by weather parameters in Northern Nigeria. Renew. Energy 2021, 180, 874–892. [Google Scholar] [CrossRef]
- Mohamed, A.O.; Hasan, A. Effect of dust accumulation on performance of photovoltaic solar modules in Sahara environment. J. Basic Appl. Sci. Res. 2012, 2, 11030–11036. [Google Scholar]
- Rahman, M.M.; Islam, M.A.; Karim, A.; Ronee, A.H. Effects of natural dust on the performance of PV panels in Bangladesh. Int. J. Mod. Educ. Comput. Sci. 2012, 4, 26–32. [Google Scholar] [CrossRef]
- Rehman, S.; El-Amin, I. Performance evaluation of an off-grid photovoltaic system in Saudi Arabia. Energy 2012, 46, 451–458. [Google Scholar] [CrossRef]
- Sanusi, Y. The performance of amorphous silicon PV system under Harmattan dust conditions in a tropical area. Pac. J. Sci. Technol. 2012, 13, 168–175. [Google Scholar]
- Zorrilla-Casanova, J.; Piliougine, M.; Carretero, J.; Bernaola-Galván, P.; Carpena, P.; Mora-López, L.; Sidrach-de-Cardona, M. Losses produced by soiling in the incoming radiation to photovoltaic modules. Prog. Photovolt. Res. Appl. 2013, 21, 790–796. [Google Scholar] [CrossRef]
- Liqun, L.; Zhiqi, L.; Chunxia, S.Z.L. Degraded output characteristic at atmospheric air pollution and economy analysis of PV power system: A case study. Prz. Elektrotechniczny 2012, 88, 281–284. [Google Scholar]
- Kalogirou, S.A.; Agathokleous, R.; Panayiotou, G. On-site PV characterization and the effect of soiling on their performance. Energy 2013, 51, 439–446. [Google Scholar] [CrossRef]
- Caron, J.R.; Littmann, B. Direct monitoring of energy lost due to soiling on first solar modules in California. IEEE J. Photovolt. 2012, 3, 336–340. [Google Scholar] [CrossRef]
- Piliougine, M.; Canete, C.; Moreno, R.; Carretero, J.; Hirose, J.; Ogawa, S.; Sidrach-de-Cardona, M. Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates. Appl. Energy 2013, 112, 626–634. [Google Scholar] [CrossRef]
- Moharram, K.; Abd-Elhady, M.; Kandil, H.; El-Sherif, H. Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energy Convers. Manag. 2013, 68, 266–272. [Google Scholar] [CrossRef]
- Weber, B.; Quiñones, A.; Almanza, R.; Duran, M.D. Performance reduction of PV systems by dust deposition. Energy Procedia 2014, 57, 99–108. [Google Scholar] [CrossRef]
- Ndiaye, A.; Kébé, C.M.; Charki, A.; Ndiaye, P.A.; Sambou, V.; Kobi, A. Degradation evaluation of crystalline-silicon photovoltaic modules after a few operation years in a tropical environment. Sol. Energy 2014, 103, 70–77. [Google Scholar] [CrossRef]
- Semaoui, S.; Arab, A.H.; Boudjelthia, E.K.; Bacha, S.; Zeraia, H. Dust effect on optical transmittance of photovoltaic module glazing in a desert region. Energy Procedia 2015, 74, 1347–1357. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E. Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland. Renew. Energy 2015, 78, 418–426. [Google Scholar] [CrossRef]
- Rajput, P.; Tiwari, G.; Sastry, O.; Bora, B.; Sharma, V. Degradation of mono-crystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India. Sol. Energy 2016, 135, 786–795. [Google Scholar] [CrossRef]
- Paudyal, B.R.; Shakya, S.R. Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu. Sol. Energy 2016, 135, 103–110. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Dust effect and its economic analysis on PV modules deployed in a temperate climate zone. Energy Procedia 2016, 100, 65–68. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T. Experimental analysis of the effect of dust’s physical properties on photovoltaic modules in Northern Oman. Sol. Energy 2016, 139, 68–80. [Google Scholar] [CrossRef]
- Touati, F.; Al-Hitmi, M.; Chowdhury, N.A.; Hamad, J.A.; Gonzales, A.J.S.P. Investigation of solar PV performance under Doha weather using a customized measurement and monitoring system. Renew. Energy 2016, 89, 564–577. [Google Scholar] [CrossRef]
- Saidan, M.; Albaali, A.G.; Alasis, E.; Kaldellis, J.K. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renew. Energy 2016, 92, 499–505. [Google Scholar] [CrossRef]
- Olivares, D.; Ferrada, P.; de Matos, C.; Marzo, A.; Cabrera, E.; Portillo, C.; Llanos, J. Characterization of soiling on PV modules in the Atacama Desert. Energy Procedia 2017, 124, 547–553. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, H.; Xiao, B.; Zhou, Z.; Yan, X. In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules. Renew. Energy 2017, 101, 1273–1284. [Google Scholar] [CrossRef]
- Fraga, M.M.; de Oliveira Campos, B.L.; de Almeida, T.B.; da Fonseca, J.M.F.; Lins, V.d.F.C. Analysis of the soiling effect on the performance of photovoltaic modules on a soccer stadium in Minas Gerais, Brazil. Sol. Energy 2018, 163, 387–397. [Google Scholar] [CrossRef]
- Gholami, A.; Khazaee, I.; Eslami, S.; Zandi, M.; Akrami, E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Sol. Energy 2018, 159, 346–352. [Google Scholar] [CrossRef]
- Ilse, K.K.; Figgis, B.W.; Werner, M.; Naumann, V.; Hagendorf, C.; Pöllmann, H.; Bagdahn, J. Comprehensive analysis of soiling and cementation processes on PV modules in Qatar. Sol. Energy Mater. Sol. Cells 2018, 186, 309–323. [Google Scholar] [CrossRef]
- Syafiq, A.; Pandey, A.; Adzman, N.; Abd Rahim, N. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol. Energy 2018, 162, 597–619. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, L.; Lu, H. A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment. Sol. Energy 2016, 140, 236–240. [Google Scholar] [CrossRef]
- Gholami, A.; Alemrajabi, A.A.; Saboonchi, A. Experimental study of self-cleaning property of titanium dioxide and nanospray coatings in solar applications. Sol. Energy 2017, 157, 559–565. [Google Scholar] [CrossRef]
- Kawamoto, H.; Guo, B. Improvement of an electrostatic cleaning system for removal of dust from solar panels. J. Electrost. 2018, 91, 28–33. [Google Scholar] [CrossRef]
- Bake, A.; Merah, N.; Matin, A.; Gondal, M.; Qahtan, T.; Abu-Dheir, N. Preparation of transparent and robust superhydrophobic surfaces for self-cleaning applications. Prog. Org. Coat. 2018, 122, 170–179. [Google Scholar] [CrossRef]
- Sueto, T.; Ota, Y.; Nishioka, K. Suppression of dust adhesion on a concentrator photovoltaic module using an anti-soiling photocatalytic coating. Sol. Energy 2013, 97, 414–417. [Google Scholar] [CrossRef]
- Adak, D.; Ghosh, S.; Chakrabarty, P.; Mondal, A.; Saha, H.; Mukherjee, R.; Bhattacharyya, R. Self-cleaning V-TiO2: SiO2 thin-film coatings with enhanced transmission for solar glass cover and related applications. Sol. Energy 2017, 155, 410–418. [Google Scholar] [CrossRef]
- de Jesus, M.A.M.L.; Timò, G.; Agustín-Sáenz, C.; Braceras, I.; Cornelli, M.; de Mello Ferreira, A. Anti-soiling coatings for solar cell cover glass: Climate and surface properties influence. Sol. Energy Mater. Sol. Cells 2018, 185, 517–523. [Google Scholar] [CrossRef]
- Bhaduri, S.; Farkade, M.; Bajhal, R.; Mallick, S.; Shiradkar, N.; Kottantharayil, A. Abrasion resistance of spray coated anti-soiling coatings during waterless cleaning of PV modules. Mater. Today Commun. 2023, 35, 106168. [Google Scholar] [CrossRef]
- Khan, M.Z.; Ghaffar, A.; Bahattab, M.A.; Mirza, M.; Lange, K.; Abaalkheel, I.M.S.; Alqahtani, M.H.M.; Aldhuwaile, A.A.A.; Alqahtani, S.H.; Qasem, H. Outdoor performance of anti-soiling coatings in various climates of Saudi Arabia. Sol. Energy Mater. Sol. Cells 2022, 235, 111470. [Google Scholar] [CrossRef]
- Hossain, M.I.; Ali, A.; Bermudez Benito, V.; Figgis, B.; Aïssa, B. Anti-soiling coatings for enhancement of PV panel performance in desert environment: A critical review and market overview. Materials 2022, 15, 7139. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.; Zhang, J.; Feng, J. Transparent and superhydrophobic FHA/SiO2 coatings with obvious anti-soiling performance for photovoltaic modules. Prog. Org. Coat. 2023, 183, 107679. [Google Scholar] [CrossRef]
- Saeidpour, S.; Khoshnevisan, B.; Boroumand, Z.; Ahmady, N. Effect of electrode design and dust particle size on electrodynamics dust shield procedure. Phys. Open 2023, 14, 100131. [Google Scholar] [CrossRef]
- Nomeir, B.; Lakhouil, S.; Boukheir, S.; Ali, M.A.; Naamane, S. Recent progress on transparent and self-cleaning surfaces by superhydrophobic coatings deposition to optimize the cleaning process of solar panels. Sol. Energy Mater. Sol. Cells 2023, 257, 112347. [Google Scholar] [CrossRef]
- Sayyah, A.; Crowell, D.R.; Raychowdhury, A.; Horenstein, M.N.; Mazumder, M.K. An experimental study on the characterization of electric charge in electrostatic dust removal. J. Electrost. 2017, 87, 173–179. [Google Scholar] [CrossRef]
- Chesnutt, J.K.; Ashkanani, H.; Guo, B.; Wu, C.-Y. Simulation of microscale particle interactions for optimization of an electrodynamic dust shield to clean desert dust from solar panels. Sol. Energy 2017, 155, 1197–1207. [Google Scholar] [CrossRef]
- Guo, B.; Javed, W.; Pett, C.; Wu, C.-Y.; Scheffe, J.R. Electrodynamic dust shield performance under simulated operating conditions for solar energy applications. Sol. Energy Mater. Sol. Cells 2018, 185, 80–85. [Google Scholar] [CrossRef]
- Patel, S.; Veerasamy, V.; John, J.S.; Orlov, A. A comprehensive review on dust removal using electrodynamic shield: Mechanism, influencing factors, performance, and progress. Renew. Sustain. Energy Rev. 2023, 183, 113471. [Google Scholar] [CrossRef]
- Costa, S.C.; Diniz, A.S.A.; Kazmerski, L.L. Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015. Renew. Sustain. Energy Rev. 2016, 63, 33–61. [Google Scholar] [CrossRef]
- Kumar, N.M.; Sudhakar, K.; Samykano, M.; Sukumaran, S. Dust cleaning robots (DCR) for BIPV and BAPV solar power plants-A conceptual framework and research challenges. Procedia Comput. Sci. 2018, 133, 746–754. [Google Scholar] [CrossRef]
- Zainuddin, N.; Abdullah, M.N. Development of Solar Panel Cleaning Robot for Residential Sector. Evol. Electr. Electron. Eng. 2023, 4, 606–614. [Google Scholar]
- Parrott, B.; Zanini, P.C.; Shehri, A.; Kotsovos, K.; Gereige, I. Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Sol. Energy 2018, 171, 526–533. [Google Scholar] [CrossRef]
- Amin, A.; Wang, X.; Alroichdi, A.; Ibrahim, A. Designing and Manufacturing a Robot for Dry-Cleaning PV Solar Panels. Int. J. Energy Res. 2023, 2023, 7231554. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, X.; Gao, Y.; Guo, R.; Zhao, J. Research on Mechanism Design and Kinematic Characteristics of Self-Propelled Photovoltaic Cleaning Robot. Appl. Sci. 2023, 13, 6967. [Google Scholar] [CrossRef]
- Figgis, B.; Bermudez, V.; Garcia, J.L. PV module vibration by robotic cleaning. Sol. Energy 2023, 250, 168–172. [Google Scholar] [CrossRef]
- Costa, S.C.; Diniz, A.S.A.; Kazmerski, L.L. Solar energy dust and soiling R&D progress: Literature review update for 2016. Renew. Sustain. Energy Rev. 2018, 82, 2504–2536. [Google Scholar] [CrossRef]
- Song, Z.; Liu, J.; Yang, H. Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review. Appl. Energy 2021, 298, 117247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borah, P.; Micheli, L.; Sarmah, N. Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches. Sustainability 2023, 15, 16669. https://doi.org/10.3390/su152416669
Borah P, Micheli L, Sarmah N. Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches. Sustainability. 2023; 15(24):16669. https://doi.org/10.3390/su152416669
Chicago/Turabian StyleBorah, Pankaj, Leonardo Micheli, and Nabin Sarmah. 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches" Sustainability 15, no. 24: 16669. https://doi.org/10.3390/su152416669
APA StyleBorah, P., Micheli, L., & Sarmah, N. (2023). Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches. Sustainability, 15(24), 16669. https://doi.org/10.3390/su152416669