Assessing Land Resource Carrying Capacity in China’s Main Grain-Producing Areas: Spatial–Temporal Evolution, Coupling Coordination, and Obstacle Factors
Abstract
:1. Introduction
2. DPSIR Framework
- 1.
- Driver
- 2.
- Pressure
- 3.
- State
- 4.
- Impact
- 5.
- Response
3. Materials and Methods
3.1. Study Area
3.2. Data Source
3.3. Methods
3.3.1. Construction of the Evaluation Indicator System
3.3.2. Determination of Evaluation Indicator Weights
- 1.
- AHP method
- 2.
- EW method
- 3.
- Comprehensive evaluation model
3.3.3. Determination of LRCC Score Classification
3.3.4. Coupling Coordination Analysis
3.3.5. Obstacle Factor Analysis
4. Results
4.1. Weights of Evaluation Indicators
4.2. Evaluation Results of LRCC
4.2.1. Results of LRCC Scores
4.2.2. Evolution of LRCC
4.3. Coupling Coordination Relationships between the Subsystems of LRCC
4.3.1. Results of the Degree of Coupling Coordination
4.3.2. Evolution of Coupling Coordination Relationships
4.4. Obstacle Factors for LRCC
4.4.1. Obstacle Subsystems and Obstacle Degree of LRCC
4.4.2. Obstacle Indicators and Obstacle Degree of LRCC
5. Discussion
5.1. Evaluation of Indicator Weights
5.2. Evaluation of LRCC
5.3. Evaluation of Coupling Coordination Relationships
5.4. Diagnosis of Obstacle Factors
6. Conclusions and Suggestions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.F.; Zhang, Y.Z. Spatial-Temporal Dynamics and Driving Factor Analysis of Urban Ecological Land in Zhuhai City, China. Sci. Rep. 2020, 10, 16174. [Google Scholar] [CrossRef] [PubMed]
- Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S. Environmental Impacts of Water Use in Global Crop Production: Hotspots and Trade-Offs with Land Use. Environ. Sci. Technol. 2011, 45, 5761–5768. [Google Scholar] [CrossRef] [PubMed]
- Han, C.Q.; Lu, B.B.; Zheng, J.H. Analysis and Prediction of Land Resources’ Carrying Capacity in 31 Provinces of China from 2008 to 2016. Sustainability 2021, 13, 13383. [Google Scholar] [CrossRef]
- Phethi, M.D.; Gumbo, J.R. Assessment of Impact of Land Use Change on the Wetland in Makhitha Village, Limpopo Province, South Africa. Jamba-J. Disaster Risk Stud. 2019, 11, a693. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, H.; Wu, Y.; Long, A.; Wang, J.; Shi, C.; Ji, X. Investigating spatiotemporal changes of the land-surface processes in Xinjiang using high-resolution CLM3.5 and CLDAS: Soil temperature. Sci. Rep. 2017, 7, 13286. [Google Scholar] [CrossRef] [PubMed]
- Malthus, T.R. An Essay on the Principle of Population; J. Johnson: London, UK, 1798. [Google Scholar]
- Liu, Y.; Shi, F.C.; He, H.M.; Shen, L.Y.; Luo, W.Z.; Sun, L.Y. Study on the Matching Degree between Land Resources Carrying Capacity and Industrial Development in Main Cities of Xinjiang, China. Sustainability 2021, 13, 10568. [Google Scholar] [CrossRef]
- Available online: https://www.fao.org/faostat/en/#data/OA (accessed on 17 November 2023).
- Wackernagel, M.; Schulz, N.B.; Deumling, D.; Linares, A.C.; Jenkins, M.; Kapos, V.; Monfreda, C.; Loh, J.; Myers, N.; Norgaard, R.; et al. Tracking the Ecological Overshoot of the Human Economy. Proc. Natl. Acad. Sci. USA 2002, 99, 9266–9271. [Google Scholar] [CrossRef]
- Guastella, G.; Pareglio, S.; Sckokai, P. A Spatial Econometric Analysis of Land Use Efficiency in Large and Small Municipalities. Land Use Policy 2017, 63, 288–297. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Li, T.S.; Li, J.L.; Song, M.W. Study of Township Construction Land Carrying Capacity and Spatial Pattern Matching in Loess Plateau Hilly and Gully Region: A Case of Xifeng in China. Int. J. Environ. Res. Public Health 2022, 19, 16316. [Google Scholar] [CrossRef]
- Melese, T.; Senamaw, A.; Belay, T.; Bayable, G. The Spatiotemporal Dynamics of Land Use Land Cover Change, and Its Impact on Soil Erosion in Tagaw Watershed, Blue Nile Basin, Ethiopia. Glob. Chall. 2021, 5, 2000109. [Google Scholar] [CrossRef]
- Zhou, W.; Elshkaki, A.; Zhong, S.; Shen, L. Study on Relative Carrying Capacity of Land Resources and Its Zoning in 31 Provinces of China. Sustainability 2021, 13, 1459. [Google Scholar] [CrossRef]
- Sun, M.Y.; Wang, J.; He, K.Y. Analysis on the Urban Land Resources Carrying Capacity during Urbanization-A Case Study of Chinese YRD. Appl. Geogr. 2020, 116, 102170. [Google Scholar] [CrossRef]
- Peng, J.; Du, Y.Y.; Liu, Y.X.; Hu, X.X. How to Assess Urban Development Potential in Mountain Areas? An Approach of Ecological Carrying Capacity in the View of Coupled Human and Natural Systems. Ecol. Indic. 2016, 60, 1017–1030. [Google Scholar] [CrossRef]
- Carey, D.I. Development Based on Carrying-Capacity—A Strategy for Environmental-Protection. Glob. Environ. Chang.-Hum. Policy Dimens. 1993, 3, 140–148. [Google Scholar] [CrossRef]
- Barrett, G.W.; Odum, E.P. The Twenty-First Century: The World at Carrying Capacity. Bioscience 2000, 50, 363–368. [Google Scholar] [CrossRef]
- Li, B.F.; Gui, D.W.; Xue, D.P.; Liu, Y.F.; Ahmed, Z.; Lei, J.Q. Analysis of the Expansion Characteristics and Carrying Capacity of Oasis Farmland in Northwestern China in Recent 40 Years. Agronomy 2022, 12, 2448. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.M.; Wu, J.; Wang, T.T. Index System of Urban Resource and Environment Carrying Capacity Based on Ecological Civilization. Environ. Impact Assess. Rev. 2018, 68, 90–97. [Google Scholar] [CrossRef]
- Luo, W.Z.; Ren, Y.T.; Shen, L.Y.; Zhu, M.C.; Jiang, Y.M.; Meng, C.H.; Zhang, P.X. An Evolution Perspective on the Urban Land Carrying Capacity in the Urbanization Era of China. Sci. Total Environ. 2020, 744, 140827. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.S.; Shi, S.Z.; Wang, H.F. Reconsideration of the Methodology for Estimation of Land Population Carrying Capacity in Shanghai Metropolis. Sci. Total Environ. 2019, 652, 367–381. [Google Scholar] [CrossRef]
- Luo, W.Z.; Jin, C.; Shen, L.Y. The Evolution of Land Resource Carrying Capacity in 35 Major Cities in China. Sustainability 2022, 14, 5178. [Google Scholar] [CrossRef]
- Cui, G.M.; Zhang, X.L.; Zhang, Z.H.; Cao, Y.H.; Liu, X.J. Comprehensive Land Carrying Capacities of the Cities in the Shandong Peninsula Blue Economic Zone and Their Spatio-Temporal Variations. Sustainability 2019, 11, 439. [Google Scholar] [CrossRef]
- Shen, L.Y.; Cheng, G.Y.; Du, X.Y.; Meng, C.H.; Ren, Y.T.; Wang, J.H. Can Urban Agglomeration Bring “1 + 1 > 2Effect”? A Perspective of Land Resource Carrying Capacity. Land Use Policy 2022, 117, 106094. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, R.R.; Song, G.; Zhan, Y.X.; Zhu, Y.H. Spatial-Temporal Evolution Patterns and Regulatory Strategies for Land Resource Carrying Capacity of China’s Major Grain-Producing Areas. Land 2022, 11, 2127. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.Z.; Xiao, C.W.; You, Z.; Song, X.Z. Spatio-Temporal Patterns of the Land Carrying Capacity of Tibet Based on Grain Demand and Calorie Requirement. Land 2022, 11, 380. [Google Scholar] [CrossRef]
- Zhang, H.W.; Wang, Z.Q.; Liu, J.F.; Chai, J.; Wei, C. Selection of Targeted Poverty Alleviation Policies from the Perspective of Land Resources-Environmental Carrying Capacity. J. Rural Stud. 2022, 93, 318–325. [Google Scholar] [CrossRef]
- Announcement by the National Bureau of Statistics of China regarding the 2022 Grain Production Data. Available online: http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901673.html (accessed on 24 May 2023).
- Fei, L.; Shuang, M.; Xiaolin, L. Changing Multi-Scale Spatiotemporal Patterns in Food Security Risk in China. J. Clean. Prod. 2023, 384, 135618. [Google Scholar] [CrossRef]
- Qiu, H.J.; Zhang, F.S.; Zhu, W.B.; Wang, H.B.; Cheng, X. Reorientation of China’s Agriculture over the next Two Decades. Outlook Agric. 2008, 37, 247–254. [Google Scholar] [CrossRef]
- National Land Survey Results Sharing Application Service Platform. Available online: https://gtdc.mnr.gov.cn/shareportal#/ (accessed on 23 May 2023).
- Tscherning, K.; Helming, K.; Krippner, B.; Sieber, S.; Gomez y Paloma, S.G.Y. Does Research Applying the DPSIR Framework Support Decision Making? Land Use Policy 2012, 29, 102–110. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Anh, L.H.; Schneider, P. A DPSIR Assessment on Ecosystem Services Challenges in the Mekong Delta, Vietnam: Coping with the Impacts of Sand Mining. Sustainability 2020, 12, 9323. [Google Scholar] [CrossRef]
- Kosamu, I.B.M.; Makwinja, R.; Kaonga, C.C.; Mengistou, S.; Kaunda, E.; Alamirew, T.; Njaya, F. Application of DPSIR and Tobit Models in Assessing Freshwater Ecosystems: The Case of Lake Malombe, Malawi. Water 2022, 14, 619. [Google Scholar] [CrossRef]
- Sun, S.K.; Wang, Y.B.; Liu, J.; Cai, H.J.; Wu, P.T.; Geng, Q.L.; Xu, L.J. Sustainability Assessment of Regional Water Resources under the DPSIR Framework. J. Hydrol. 2016, 532, 140–148. [Google Scholar] [CrossRef]
- Yousafzai, S.; Saeed, R.; Rahman, G.; Farish, S. Spatio-Temporal Assessment of Land Use Dynamics and Urbanization: Linking with Environmental Aspects and DPSIR Framework Approach. Environ. Sci. Pollut. Res. 2022, 29, 81337–81350. [Google Scholar] [CrossRef] [PubMed]
- Mukuvari, I.; Mafwila, S.K.; Chimuka, L. Measuring the Recovery of the Northern Benguela Current Large Marine Ecosystem (BCLME): An Application of the DPSIR Framework. Ocean Coast. Manag. 2016, 119, 227–233. [Google Scholar] [CrossRef]
- Loizia, P.; Voukkali, I.; Zorpas, A.A.; Navarro Pedreño, J.; Chatziparaskeva, G.; Inglezakis, V.J.; Vardopoulos, I.; Doula, M. Measuring the level of environmental performance in insular areas, through key performed indicators, in the framework of waste strategy development. Sci. Total Environ. 2021, 753, 141974. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, I.; Voukkali, I.; Loizia, P.; Pappas, G.; Zorpas, A.A. Existing Tools Used in the Framework of Environmental Performance. Sustain. Chem. Pharm. 2023, 32, 101026. [Google Scholar] [CrossRef]
- Wang, B.; Yu, F.; Teng, Y.G.; Cao, G.Z.; Zhao, D.; Zhao, M.Y. A SEEC Model Based on the DPSIR Framework Approach for Watershed Ecological Security Risk Assessment: A Case Study in Northwest China. Water 2022, 14, 106. [Google Scholar] [CrossRef]
- Wang, W.Q.; Sun, Y.H.; Wu, J. Environmental Warning System Based on the DPSIR Model: A Practical and Concise Method for Environmental Assessment. Sustainability 2018, 10, 1728. [Google Scholar] [CrossRef]
- Franco, J.C.; Borras, S.M. The Global Climate of Land Politics. Globalizations 2021, 18, 1277–1297. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wang, Y.S.; Yuan, X.F.; Yang, Y.Y. Regional Land Ecological Security Evaluation and Ecological Poverty Alleviation Practice: A Case Study of Yangxian County in Shaanxi Province, China. J. Geogr. Sci. 2022, 32, 682–700. [Google Scholar] [CrossRef]
- Fan, J.; Abudumanan, A.; Wang, L.; Zhou, D.J.; Wang, Z.; Liu, H.C. Dynamic Assessment and Sustainability Strategies of Ecological Security in the Irtysh River Basin of Xinjiang, China. Chin. Geogr. Sci. 2023, 33, 393–409. [Google Scholar] [CrossRef]
- Wu, Q.; Cao, Y.; Fang, X.Q.; Wang, J.Y.; Li, G.Y. A Systematic Coupling Analysis Framework and Multi-Stage Interaction Mechanism between Urban Land Use Efficiency and Ecological Carrying Capacity. Sci. Total Environ. 2022, 853, 158444. [Google Scholar] [CrossRef]
- Sun, C.Z.; Wu, Y.J.; Zou, W.; Zhao, L.S.; Liu, W.X. A Rural Water Poverty Analysis in China Using the DPSIR-PLS Model. Water Resour. Manag. 2018, 32, 1933–1951. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, R.R.; Zhan, Y.X. Land Comprehensive Carrying Capacity of Major Grain-Producing Areas in Northeast China: Spatial–Temporal Evolution, Obstacle Factors and Regulatory Policies. Sustainability 2022, 14, 11322. [Google Scholar] [CrossRef]
- Tan, C.C.; Peng, Q.H.; Ding, T.; Zhou, Z.X. Regional Assessment of Land and Water Carrying Capacity and Utilization Efficiency in China. Sustainability 2021, 13, 9183. [Google Scholar] [CrossRef]
- Yang, N.A.; Chen, L.; Wang, W.Z.; Shen, Z.Y. The Land Carrying Capacity and Environmental Risk Assessment of Livestock and Poultry Breeding Considering Crop Planting. Environ. Sci. Pollut. Res. 2021, 28, 51356–51368. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Q.W.; Zhang, A.P.; Hussain, H.A.; Liu, X.R.; Yang, Z.L. Spatiotemporal Characteristics of the Bearing Capacity of Cropland Based on Manure Nitrogen and Phosphorus Load in Mainland China. J. Clean. Prod. 2019, 233, 601–610. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhong, Z.; Cheng, G.Q. Cultivated Land Loss and Construction Land Expansion in China: Evidence from National Land Surveys in 1996, 2009 and 2019. Land Use Policy 2023, 125, 106496. [Google Scholar] [CrossRef]
- Kato, S.; Huang, W.H. Land Use Management Recommendations for Reducing the Risk of Downstream Flooding Based on a Land Use Change Analysis and the Concept of Ecosystem-Based Disaster Risk Reduction. J. Environ. Manag. 2021, 287, 112341. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.Z.X.; Chen, D.; Li, D.H.; Qi, Y.C.; Zhao, Z.F. Spatial and Temporal Distribution of Geologic Hazards in Shaanxi Province. Remote Sens. 2021, 13, 4259. [Google Scholar] [CrossRef]
- Shan, Y.J.; Wei, S.K.; Yuan, W.L.; Miao, Y. Evaluation and Prediction of Land Ecological Security in Shenzhen Based on DPSIR-TOPSIS-GM(1,1) Model. PLoS ONE 2022, 17, e0265810. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.D.; Mueller, F.; Burkhard, B.; Cao, X.J.; Hou, Y. Assessing Agricultural Sustainable Development Based on the DPSIR Approach: Case Study in Jiangsu, China. J. Integr. Agric. 2013, 12, 1292–1299. [Google Scholar] [CrossRef]
- Shi, W.J.; Wang, M.L.; Liu, Y.T. Crop Yield and Production Responses to Climate Disasters in China. Sci. Total Environ. 2021, 750, 141147. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Fu, Q.; Cui, S.; Li, T.X.; Pei, W.; Liu, D.; Meng, J. Evaluation of the Land Carrying Capacity of Major Grain-Producing Areas and the Identification of Risk Factors. Nat. Hazards 2017, 86, 263–280. [Google Scholar] [CrossRef]
- Gabrielsen, P.; Bosch, P. Environmental Indicators: Typology and Use in Reporting; European Environment Agency: Copenhagen, Denmark, 2003.
- Liu, Y.B.; Du, W.Y.; Chen, N.C.; Wang, X.L. Construction and Evaluation of the Integrated Perception Ecological Environment Indicator (IPEEI) Based on the DPSIR Framework for Smart Sustainable Cities. Sustainability 2020, 12, 7112. [Google Scholar] [CrossRef]
- Federigi, I.; Balestri, E.; Castelli, A.; De Battisti, D.; Maltagliati, F.; Menicagli, V.; Verani, M.; Lardicci, C.; Carducci, A. Beach Pollution from Marine Litter: Analysis with the DPSIR Framework (Driver, Pressure, State, Impact, Response) in Tuscany, Italy. Ecol. Indic. 2022, 143, 109395. [Google Scholar] [CrossRef]
- Li, X.G.; Zhan, J.; Lv, T.; Wang, S.; Pan, F.Q. Comprehensive Evaluation Model of the Urban Low-Carbon Passenger Transportation Structure Based on DPSIR. Ecol. Indic. 2023, 146, 109849. [Google Scholar] [CrossRef]
- Gedefaw, A.A.; Atzberger, C.; Bauer, T.; Agegnehu, S.K.; Mansberger, R. Analysis of Land Cover Change Detection in Gozamin District, Ethiopia: From Remote Sensing and DPSIR Perspectives. Sustainability 2020, 12, 4534. [Google Scholar] [CrossRef]
- Jia, Y.Z.; Shen, J.Q.; Wang, H.; Dong, G.H.; Sun, F.H. Evaluation of the Spatiotemporal Variation of Sustainable Utilization of Water Resources: Case Study from Henan Province (China). Water 2018, 10, 554. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Song, W.; Deng, X.Z. Understanding the Spatiotemporal Variation of Urban Land Expansion in Oasis Cities by Integrating Remote Sensing and Multi-Dimensional DPSIR-Based Indicators. Ecol. Indic. 2019, 96, 23–37. [Google Scholar] [CrossRef]
- Wang, H.K.; Chen, H.; Tran, T.T.; Qin, S. An Analysis of the Spatiotemporal Characteristics and Diversity of Grain Production Resource Utilization Efficiency under the Constraint of Carbon Emissions: Evidence from Major Grain-Producing Areas in China. Int. J. Environ. Res. Public Health 2022, 19, 7746. [Google Scholar] [CrossRef]
- Pourebrahim, S.; Hadipour, M.; Emlaei, Z.; Heidari, H.; Goh, C.T.; Lee, K.E. Analysis of Environmental Carrying Capacity Based on the Ecological Footprint for the Sustainable Development of Alborz, Iran. Sustainability 2023, 15, 7935. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.T.; Chen, J.C.; Liu, T.W.; Deng, Z.L. Evaluating the Sustainability of Marine Industrial Parks Based on the DPSIR Framework. J. Clean. Prod. 2018, 188, 158–170. [Google Scholar] [CrossRef]
- Liu, L.F.; Li, J.; Wang, J.L.; Liu, F.; Cole, J.; Sha, J.M.; Jiao, Y.M.; Zhou, J.C. The Establishment of an Eco-Environmental Evaluation Model for Southwest China and Eastern South Africa Based on the DPSIR Framework. Ecol. Indic. 2022, 145, 109687. [Google Scholar] [CrossRef]
- Kristiadi, Y.; Sari, R.F.; Herdiansyah, H.; Hasibuan, H.S.; Lim, T.H. Developing DPSIR Framework for Managing Climate Change in Urban Areas: A Case Study in Jakarta, Indonesia. Sustainability 2022, 14, 15773. [Google Scholar] [CrossRef]
- Wu, G.D.; Duan, K.F.; Zuo, J.; Zhao, X.B.; Tang, D.Z. Integrated Sustainability Assessment of Public Rental Housing Community Based on a Hybrid Method of AHP-Entropy Weight and Cloud Model. Sustainability 2017, 9, 603. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, X.X.; Guo, Y.L. Comprehensive Evaluation of the Implementation Effect of Commercial Street Quality Improvement Based on AHP-Entropy Weight Method—Taking Hefei Shuanggang Old Street as an Example. Land 2022, 11, 2091. [Google Scholar] [CrossRef]
- Hu, H.J.; Han, L. Evaluation of Land Carrying Capacity of 31 Provinces in China Based on a Natural-Societal-Supply-Demand Framework. Sustainability 2023, 15, 1037. [Google Scholar] [CrossRef]
- Sun, Y.; Cui, Y. Evaluating the Coordinated Development of Economic, Social and Environmental Benefits of Urban Public Transportation Infrastructure: Case Study of Four Chinese Autonomous Municipalities. Transp. Policy 2018, 66, 116–126. [Google Scholar] [CrossRef]
- Shi, T.; Yang, S.Y.; Zhang, W.; Zhou, Q. Coupling Coordination Degree Measurement and Spatiotemporal Heterogeneity between Economic Development and Ecological Environment—Empirical Evidence from Tropical and Subtropical Regions of China. J. Clean. Prod. 2020, 244, 118739. [Google Scholar] [CrossRef]
- Dong, F.G.; Li, W.Y. Research on the Coupling Coordination Degree of “Upstream-Midstream-Downstream” of China’s Wind Power Industry Chain. J. Clean. Prod. 2021, 283, 124633. [Google Scholar] [CrossRef]
- Weng, Q.Q.; Lian, H.H.; Qin, Q.D. Spatial Disparities of the Coupling Coordinated Development among the Economy, Environment and Society across China’s Regions. Ecol. Indic. 2022, 143, 109364. [Google Scholar] [CrossRef]
- Hu, M.; Tao, C.H.; Zhou, H. The Influence of Industrial Structure Upgrade on Coupling and Coordinated Development-Empirical Analysis from Chinese Pharmaceutical Manufacturing and Pharmaceutical Service Industries. Front. Public Health 2021, 9, 722006. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, X.R.; Wang, X.Q. Research on Coupling Degree and Coupling Path between China’s Carbon Emission Efficiency and Industrial Structure Upgrading. Environ. Sci. Pollut. Res. 2020, 27, 25149–25162. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Jin, J.L.; Zhou, R.X.; Wu, C.G.; Zhou, Y.L.; Zhang, L.B.; Cui, Y. Coordination Evaluation and Obstacle Factors Recognition Analysis of Water Resource Spatial Equilibrium System. Environ. Res. 2022, 210, 112913. [Google Scholar] [CrossRef]
- Xiang, K.L.; Zheng, N.; Chen, J.C.; Gao, W. Evaluation and Obstacle Degree Analysis of Low-Carbon Development Level in Fujian Province-Based on Entropy Weight TOPSIS Method. Front. Energy Res. 2022, 10, 948893. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Fan, J.; Zhang, H.; Fang, H. Comprehensive Sustainability Indicator for Land Resource-Carrying Capacity in a Farming-Pastoral Region. Remote Sens. 2023, 15, 3726. [Google Scholar] [CrossRef]
- Feng, Z.M. Past, Present, and Future of Land Carrying Capacity Research. China Land Sci. 1994, 1–9. (In Chinese) [Google Scholar]
- Qin, Y.; Zhang, H.; Xu, J. Study of Spatial Spillover Effects and Threshold Characteristics of the Influence of Urbanization on Grain Green Production Efficiency in China under Carbon Constraints. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef]
- Cao, S.; Xia, C.; Suo, X.; Wei, Z. A Framework for Calculating the Net Benefits of Ecological Restoration Programs in China. Ecosyst. Serv. 2021, 50, 101325. [Google Scholar] [CrossRef]
- Luo, H.P.; He, Z.W.; Zhou, J.Y. Spatial-temporal differentiation of arable land pressure in major grain-producing areas and identification of driving factors. Stat. Decis. 2022, 38, 79–83. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Gu, X.; Yu, H. Spatiotemporal Variation in the Yangtze River Delta Urban Agglomeration from 1980 to 2020 and Future Trends in Ecosystem Services. Land 2023, 12, 929. [Google Scholar] [CrossRef]
- Cheung, C.K.; Ma, S.K. Coupling social solidarity and social harmony in Hong Kong. Soc. Indicat. Res. 2011, 103, 145–167. [Google Scholar] [CrossRef]
- Tan, S.; Liu, Q.; Han, S. Spatial-Temporal Evolution of Coupling Relationship between Land Development Intensity and Resources Environment Carrying Capacity in China. J. Environ. Manag. 2022, 301, 113778. [Google Scholar] [CrossRef] [PubMed]
- Fan, J. Strategy of main functional areas and optimization of land spatial development pattern. J. Chin. Acad. Sci. 2013, 28, 193–206. (In Chinese) [Google Scholar]
- Yu, H.; Zhang, X.; Yu, W.; Gao, Y.; Xue, Y.; Sun, W.; Sun, D. Multi-Dimensional Evaluation of Land Comprehensive Carrying Capacity Based on a Normal Cloud Model and Its Interactions: A Case Study of Liaoning Province. Appl. Sci. 2023, 13, 3336. [Google Scholar] [CrossRef]
- Yi, D.; Ding, G.; Han, Y.; Yi, J.; Guo, J.; Ou, M. Integrated Assessment and Critical Obstacle Diagnosis of Rural Resource and Environmental Carrying Capacity with a Social–Ecological Framework: A Case Study of Liyang County, Jiangsu Province. Environ. Sci. Pollut. Res. 2023, 30, 76026–76043. [Google Scholar] [CrossRef]
Subsystems | Indicators | Units | Attribute |
---|---|---|---|
Driver | D1 Natural population growth rate | ‰ | Negative |
D2 Urbanization rate | % | Negative | |
D3 GDP growth rate | % | Positive | |
D4 GDP per capita | CNY/person | Positive | |
D5 Share of tertiary industry | % | Positive | |
D6 Value of agricultural output per capita | CNY/person | Positive | |
D7 Livestock and poultry population per capita | heads/person | Positive | |
D8 Value of industrial output per capita | CNY/person | Positive | |
Pressure | P1 Population density | people/km2 | Negative |
P2 Annual disposable income per capita | CNY/person | Positive | |
P3 GDP density | CNY/m2 | Positive | |
P4 Chemical fertilizer usage per unit area of arable land | t/km2 | Negative | |
P5 Pesticide usage per unit area of arable land | t/km2 | Negative | |
P6 Plastic film usage per unit area of arable land | t/km2 | Negative | |
P7 Emissions of livestock and poultry manure per unit area of arable land | kg/km2 | Negative | |
P8 COD emissions in industrial wastewater per unit area of land | t/km2 | Negative | |
P9 Industrial solid waste emissions per unit area of land | t/km2 | Negative | |
State | S1 Arable land area per capita | m2/person | Positive |
S2 Garden land area per capita | m2/person | Positive | |
S3 Forest land area per capita | m2/person | Positive | |
S4 Grassland area per capita | m2/person | Positive | |
S5 Wetland area per capita | m2/person | Positive | |
S6 Construction land area per capita | m2/person | Positive | |
S7 Transportation land area per capita | m2/person | Positive | |
S8 Water body area per capita | m2/person | Positive | |
S9 Grain production yield per unit area of arable land | kg/m2 | Positive | |
Impact | I1 Frequency of occurrence of geological hazards | times | Negative |
I2 Direct economic losses caused by geological hazards | million CNY | Negative | |
I3 Urban registered unemployment rate | % | Negative | |
I4 Engel coefficient | % | Negative | |
I5 Grain production yield per capita | kg/person | Positive | |
I6 Arable land area growth rate | % | Positive | |
I7 Rate of crops affected by natural disasters | % | Negative | |
I8 Rate of crops damaged by natural disasters | % | Negative | |
Response | R1 Proportion of afforested area | % | Positive |
R2 Control rate of forest diseases, pests, and rodents | % | Positive | |
R3 Rate of street and road cleaning in built-up areas | % | Positive | |
R4 Harmless treatment disposal rate of domestic waste | % | Positive | |
R5 Completed industrial pollution control investments per unit area of land | CNY/km2 | Positive | |
R6 Environmental protection expenditure per unit area of land | CNY/km2 | Positive | |
R7 Degree of agricultural mechanization per unit area of arable land | kW/km2 | Positive | |
R8 Proportion of effective irrigated area | % | Positive |
Rating | Definition | Interpretation |
---|---|---|
1 | Equal importance | Two indicators have equal importance |
3 | Somewhat more important | One indicator has slightly more importance than the other |
5 | Much more important | One indicator has more importance than the other |
7 | Very much more important | One indicator has very more importance than the other |
9 | Absolute importance | One indicator has absolute importance over the other |
2, 4, 6, 8 | Intermediate values | Intermediate values indicate intermediate rating. They are used when compromise is needed |
Matrix Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Value Range | Coordination Level | Coupling Coordination Type |
---|---|---|
1 | Extreme disordered recession | |
2 | Severe disordered recession | |
3 | Moderate disordered recession | |
4 | Mild disordered recession | |
5 | On the verge of disordered recession | |
6 | Barely coordinated development | |
7 | Primary coordinated development | |
8 | Intermediate coordinated development | |
9 | Well-coordinated development | |
10 | High-quality coordinated development |
Subsystems | Codes | Subjective Weights | Objective Weights | Comprehensive Weights |
---|---|---|---|---|
Driver | D1 Natural population growth rate | 0.0158 | 0.0174 | 0.0113 |
D2 Urbanization rate | 0.0135 | 0.0118 | 0.0065 | |
D3 GDP growth rate | 0.0162 | 0.0062 | 0.0041 | |
D4 GDP per capita | 0.0086 | 0.0318 | 0.0112 | |
D5 Share of tertiary industry | 0.0071 | 0.0129 | 0.0038 | |
D6 Value of agricultural output per capita | 0.0257 | 0.0467 | 0.0492 | |
D7 Livestock and poultry population per capita | 0.0257 | 0.0171 | 0.0180 | |
D8 Value of industrial output per capita | 0.0066 | 0.0278 | 0.0075 | |
Pressure | P1 Population density | 0.0085 | 0.0096 | 0.0033 |
P2 Annual disposable income per capita | 0.0060 | 0.0310 | 0.0076 | |
P3 GDP density | 0.0049 | 0.0618 | 0.0124 | |
P4 Chemical fertilizer usage per unit area of arable land | 0.0137 | 0.0116 | 0.0065 | |
P5 Pesticide usage per unit area of arable land | 0.0160 | 0.0080 | 0.0052 | |
P6 Plastic film usage per unit area of arable land | 0.0160 | 0.0069 | 0.0045 | |
P7 Emissions of livestock and poultry manure per unit area of arable land | 0.0217 | 0.0054 | 0.0048 | |
P8 COD emissions in industrial wastewater per unit area of land | 0.0163 | 0.0063 | 0.0042 | |
P9 Industrial solid waste emissions per unit area of land | 0.0163 | 0.0052 | 0.0035 | |
State | S1 Arable land area per capita | 0.0581 | 0.0591 | 0.1407 |
S2 Garden land area per capita | 0.0339 | 0.0267 | 0.0371 | |
S3 Forest land area per capita | 0.0220 | 0.0581 | 0.0524 | |
S4 Grassland area per capita | 0.0126 | 0.0822 | 0.0424 | |
S5 Wetland area per capita | 0.0156 | 0.0611 | 0.0391 | |
S6 Construction land area per capita | 0.0364 | 0.0320 | 0.0477 | |
S7 Transportation land area per capita | 0.0251 | 0.0362 | 0.0372 | |
S8 Water body area per capita | 0.0300 | 0.0310 | 0.0381 | |
S9 Grain production yield per unit area of arable land | 0.1212 | 0.0296 | 0.1468 | |
Impact | I1 Frequency of occurrence of geological hazards | 0.0414 | 0.0004 | 0.0007 |
I2 Direct economic losses caused by geological hazards | 0.0573 | 0.0016 | 0.0038 | |
I3 Urban registered unemployment rate | 0.0120 | 0.0028 | 0.0014 | |
I4 Engel coefficient | 0.0083 | 0.0092 | 0.0031 | |
I5 Grain production yield per capita | 0.0625 | 0.0408 | 0.1045 | |
I6 Arable land area growth rate | 0.0625 | 0.0020 | 0.0051 | |
I7 Rate of crops affected by natural disasters | 0.0216 | 0.0045 | 0.0040 | |
I8 Rate of crops damaged by natural disasters | 0.0216 | 0.0073 | 0.0065 | |
Response | R1 Proportion of afforested area | 0.0111 | 0.0207 | 0.0094 |
R2 Control rate of forest diseases, pests, and rodents | 0.0069 | 0.0064 | 0.0018 | |
R3 Rate of street and road cleaning in built-up areas | 0.0075 | 0.0242 | 0.0074 | |
R4 Harmless treatment disposal rate of domestic waste | 0.0069 | 0.0115 | 0.0033 | |
R5 Completed industrial pollution control investments per unit area of land | 0.0121 | 0.0522 | 0.0259 | |
R6 Environmental protection expenditure per unit area of land | 0.0193 | 0.0480 | 0.0380 | |
R7 Degree of agricultural mechanization per unit area of arable land | 0.0283 | 0.0236 | 0.0274 | |
R8 Proportion of effective irrigated area | 0.0272 | 0.0113 | 0.0126 |
Regions | Provinces | 2000 | 2005 | 2010 | 2015 | 2020 | Growth (%) |
---|---|---|---|---|---|---|---|
Northeast China | Heilongjiang | 0.1755 | 0.1909 | 0.2457 | 0.3058 | 0.3399 | 3.3603 |
Liaoning | 0.1989 | 0.2058 | 0.2434 | 0.2866 | 0.3208 | 2.4189 | |
Jilin | 0.1999 | 0.2185 | 0.2648 | 0.2895 | 0.3430 | 2.7363 | |
Average | 0.1914 | 0.2051 | 0.2513 | 0.2940 | 0.3346 | 2.8322 | |
North China | Inner Mongolia | 0.2358 | 0.2446 | 0.2802 | 0.3103 | 0.3627 | 2.1763 |
Hebei | 0.2317 | 0.2907 | 0.3242 | 0.3961 | 0.4268 | 3.1015 | |
Average | 0.2338 | 0.2677 | 0.3022 | 0.3532 | 0.3948 | 2.6542 | |
East China | Jiangsu | 0.2050 | 0.2216 | 0.2568 | 0.2992 | 0.3360 | 2.5013 |
Anhui | 0.3888 | 0.4316 | 0.4859 | 0.5056 | 0.5421 | 1.6758 | |
Jiangxi | 0.1803 | 0.2091 | 0.2616 | 0.3059 | 0.3561 | 3.4615 | |
Shandong | 0.1890 | 0.2438 | 0.2616 | 0.3096 | 0.3270 | 2.7790 | |
Average | 0.2408 | 0.2765 | 0.3165 | 0.3551 | 0.3903 | 2.4441 | |
Central China | Henan | 0.1748 | 0.1842 | 0.2337 | 0.2537 | 0.3231 | 3.1193 |
Hubei | 0.2098 | 0.2364 | 0.2815 | 0.3432 | 0.3949 | 3.2129 | |
Hunan | 0.2238 | 0.2344 | 0.2904 | 0.3610 | 0.4026 | 2.9795 | |
Average | 0.2028 | 0.2183 | 0.2685 | 0.3193 | 0.3735 | 3.1006 | |
Southwest China | Sichuan | 0.3082 | 0.3371 | 0.4272 | 0.5168 | 0.5595 | 3.0264 |
MGPAs | Average | 0.2247 | 0.2499 | 0.2967 | 0.3449 | 0.3873 | 2.7596 |
Regions | Provinces | 2000 | 2005 | 2010 | 2015 | 2020 | Growth (%) |
---|---|---|---|---|---|---|---|
Northeast China | Heilongjiang | 0.3203 | 0.3738 | 0.4826 | 0.5679 | 0.6312 | 3.4500 |
Liaoning | 0.3464 | 0.3938 | 0.4568 | 0.5509 | 0.6012 | 2.7950 | |
Jilin | 0.3149 | 0.3773 | 0.4329 | 0.4959 | 0.5928 | 3.2136 | |
Average | 0.3272 | 0.3816 | 0.4574 | 0.5382 | 0.6084 | 3.1499 | |
North China | Inner Mongolia | 0.4008 | 0.4144 | 0.4410 | 0.5192 | 0.5915 | 1.9651 |
Hebei | 0.4163 | 0.5002 | 0.5740 | 0.6705 | 0.7199 | 2.7764 | |
Average | 0.4086 | 0.4573 | 0.5075 | 0.5949 | 0.6557 | 2.3930 | |
East China | Jiangsu | 0.4057 | 0.4421 | 0.4950 | 0.5476 | 0.6210 | 2.1514 |
Anhui | 0.5005 | 0.5946 | 0.6653 | 0.7213 | 0.7551 | 2.0775 | |
Jiangxi | 0.3498 | 0.4061 | 0.4654 | 0.5124 | 0.6096 | 2.8161 | |
Shandong | 0.2994 | 0.4573 | 0.4828 | 0.5573 | 0.5939 | 3.4840 | |
Average | 0.3889 | 0.4750 | 0.5271 | 0.5847 | 0.6449 | 2.5611 | |
Central China | Henan | 0.3419 | 0.3823 | 0.4507 | 0.5067 | 0.5667 | 2.5587 |
Hubei | 0.3867 | 0.4175 | 0.5052 | 0.5850 | 0.6534 | 2.6574 | |
Hunan | 0.4036 | 0.4394 | 0.5411 | 0.6401 | 0.7026 | 2.8106 | |
Average | 0.3774 | 0.4131 | 0.4990 | 0.5773 | 0.6409 | 2.6832 | |
Southwest China | Sichuan | 0.3546 | 0.4576 | 0.6045 | 0.7384 | 0.8052 | 4.1857 |
MGPAs | Average | 0.3724 | 0.4351 | 0.5075 | 0.5856 | 0.6495 | 2.8202 |
Year | Driver | Pressure | State | Impact | Response | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ranking | Obstacle Degree (%) | Ranking | Obstacle Degree (%) | Ranking | Obstacle Degree (%) | Ranking | Obstacle Degree (%) | Ranking | Obstacle Degree (%) | |
2000 | 4 | 12.22 | 5 | 3.38 | 1 | 56.35 | 2 | 14.06 | 3 | 14.00 |
2001 | 4 | 12.15 | 5 | 3.41 | 1 | 56.43 | 3 | 13.99 | 2 | 14.01 |
2002 | 4 | 12.10 | 5 | 3.46 | 1 | 56.73 | 3 | 13.85 | 2 | 13.86 |
2003 | 4 | 11.84 | 5 | 3.50 | 1 | 56.93 | 2 | 14.12 | 3 | 13.61 |
2004 | 4 | 11.71 | 5 | 3.65 | 1 | 56.94 | 3 | 13.79 | 2 | 13.91 |
2005 | 4 | 11.71 | 5 | 3.73 | 1 | 56.86 | 3 | 13.80 | 2 | 13.91 |
2006 | 4 | 11.74 | 5 | 3.85 | 1 | 56.67 | 3 | 13.77 | 2 | 13.97 |
2007 | 4 | 11.56 | 5 | 4.01 | 1 | 56.61 | 2 | 13.98 | 3 | 13.84 |
2008 | 4 | 11.49 | 5 | 4.08 | 1 | 56.86 | 2 | 13.85 | 3 | 13.72 |
2009 | 4 | 11.58 | 5 | 4.12 | 1 | 56.92 | 2 | 13.86 | 3 | 13.53 |
2010 | 4 | 11.25 | 5 | 4.21 | 1 | 57.11 | 2 | 13.82 | 3 | 13.61 |
2011 | 4 | 10.99 | 5 | 4.48 | 1 | 57.34 | 3 | 13.56 | 2 | 13.63 |
2012 | 4 | 10.88 | 5 | 4.50 | 1 | 57.62 | 2 | 13.57 | 3 | 13.44 |
2013 | 4 | 10.82 | 5 | 4.56 | 1 | 57.87 | 2 | 13.48 | 3 | 13.26 |
2014 | 4 | 10.59 | 5 | 4.32 | 1 | 58.81 | 2 | 13.25 | 3 | 13.03 |
2015 | 4 | 10.59 | 5 | 4.34 | 1 | 58.84 | 2 | 13.26 | 3 | 12.97 |
2016 | 4 | 10.66 | 5 | 4.09 | 1 | 58.79 | 2 | 13.27 | 3 | 13.19 |
2017 | 4 | 10.59 | 5 | 4.00 | 1 | 58.85 | 2 | 13.35 | 3 | 13.22 |
2018 | 4 | 10.42 | 5 | 4.00 | 1 | 59.14 | 2 | 13.58 | 3 | 12.86 |
2019 | 4 | 10.25 | 5 | 3.98 | 1 | 59.69 | 2 | 13.59 | 3 | 12.50 |
2020 | 4 | 9.39 | 5 | 4.24 | 1 | 59.61 | 2 | 13.60 | 3 | 13.16 |
Year | First Place | Second Place | Third Place | Fourth Place | Fifth Place | |||||
---|---|---|---|---|---|---|---|---|---|---|
Obstacle Indicator | Obstacle Degree (%) | Obstacle Indicator | Obstacle Degree (%) | Obstacle Indicator | Obstacle Degree (%) | Obstacle Indicator | Obstacle Degree (%) | Obstacle Indicator | Obstacle Degree (%) | |
2000 | S1 | 14.27 | S9 | 12.70 | I5 | 12.52 | D6 | 6.23 | S3 | 5.41 |
2001 | S1 | 14.30 | S9 | 12.77 | I5 | 12.51 | D6 | 6.21 | S3 | 5.42 |
2002 | S1 | 14.37 | S9 | 12.77 | I5 | 12.46 | D6 | 6.20 | S3 | 5.44 |
2003 | S1 | 14.35 | S9 | 13.38 | I5 | 12.62 | D6 | 6.14 | S3 | 5.43 |
2004 | S1 | 14.65 | I5 | 12.56 | S9 | 12.55 | D6 | 6.06 | S3 | 5.54 |
2005 | S1 | 14.80 | I5 | 12.54 | S9 | 12.28 | D6 | 6.01 | S3 | 5.59 |
2006 | S1 | 14.92 | I5 | 12.39 | S9 | 11.75 | D6 | 5.97 | S3 | 5.64 |
2007 | S1 | 15.23 | I5 | 12.64 | S9 | 10.93 | D6 | 5.82 | S3 | 5.75 |
2008 | S1 | 15.52 | I5 | 12.53 | S9 | 10.43 | S3 | 5.85 | D6 | 5.68 |
2009 | S1 | 15.62 | I5 | 12.64 | S9 | 10.44 | S3 | 5.80 | D6 | 5.61 |
2010 | S1 | 15.82 | I5 | 12.56 | S9 | 10.22 | S3 | 5.89 | D6 | 5.54 |
2011 | S1 | 16.16 | I5 | 12.50 | S9 | 9.92 | S3 | 6.06 | S4 | 5.48 |
2012 | S1 | 16.27 | I5 | 12.43 | S9 | 9.67 | S3 | 6.25 | S4 | 5.56 |
2013 | S1 | 16.60 | I5 | 12.30 | S9 | 8.97 | S3 | 6.43 | S4 | 5.79 |
2014 | S1 | 16.46 | I5 | 12.11 | S9 | 10.10 | S3 | 6.12 | S4 | 5.22 |
2015 | S1 | 16.73 | I5 | 12.05 | S9 | 9.56 | S3 | 6.23 | S4 | 5.76 |
2016 | S1 | 16.69 | I5 | 12.12 | S9 | 9.63 | S3 | 6.29 | S4 | 5.83 |
2017 | S1 | 16.57 | I5 | 12.15 | S9 | 9.64 | S3 | 6.32 | S4 | 5.88 |
2018 | S1 | 16.65 | I5 | 12.37 | S9 | 9.47 | S3 | 6.41 | S4 | 5.98 |
2019 | S1 | 17.03 | I5 | 12.52 | S9 | 8.64 | S3 | 6.55 | S4 | 6.10 |
2020 | S1 | 17.06 | I5 | 12.50 | S9 | 8.69 | S3 | 6.57 | S4 | 6.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Tang, W.; Li, M.; Yang, G.; Deng, X.; Cui, L. Assessing Land Resource Carrying Capacity in China’s Main Grain-Producing Areas: Spatial–Temporal Evolution, Coupling Coordination, and Obstacle Factors. Sustainability 2023, 15, 16699. https://doi.org/10.3390/su152416699
Jiang B, Tang W, Li M, Yang G, Deng X, Cui L. Assessing Land Resource Carrying Capacity in China’s Main Grain-Producing Areas: Spatial–Temporal Evolution, Coupling Coordination, and Obstacle Factors. Sustainability. 2023; 15(24):16699. https://doi.org/10.3390/su152416699
Chicago/Turabian StyleJiang, Bing, Wenjie Tang, Meijia Li, Guangchao Yang, Xiaoshang Deng, and Lihang Cui. 2023. "Assessing Land Resource Carrying Capacity in China’s Main Grain-Producing Areas: Spatial–Temporal Evolution, Coupling Coordination, and Obstacle Factors" Sustainability 15, no. 24: 16699. https://doi.org/10.3390/su152416699
APA StyleJiang, B., Tang, W., Li, M., Yang, G., Deng, X., & Cui, L. (2023). Assessing Land Resource Carrying Capacity in China’s Main Grain-Producing Areas: Spatial–Temporal Evolution, Coupling Coordination, and Obstacle Factors. Sustainability, 15(24), 16699. https://doi.org/10.3390/su152416699