How Do Institutional Arrangements Affect Corporate Social Mobility? Evidence from Construction Land Reduction
Abstract
:1. Introduction
2. Theoretical Mechanisms and Research Hypotheses
2.1. Corporate Social Mobility and Its Manifestations
2.1.1. Corporate Social Mobility
2.1.2. Manifestations of Corporate Social Mobility
2.2. Institutional Arrangement and Corporate Social Mobility
2.2.1. Construction Land Reduction and Corporate Social Mobility
2.2.2. Heterogeneous Impact of Land Use Planning
3. Research Design and Data Sources
3.1. Model Setting
3.2. Variables and Indicators
3.3. Data Sources
4. Empirical Results and Analysis
4.1. Baseline Regression Results and Analysis
4.2. Analysis of Marginal Effects
4.3. Robustness Tests
4.3.1. Transforming the Core Explanatory Variables
4.3.2. Transforming Estimation Methods
4.4. Heterogeneity Tests
4.4.1. Heterogeneity of Resident Status
4.4.2. Heterogeneous of Land-Use Planning
5. Discussion
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Technical Terms | Simple Definition |
---|---|
Construction land reduction | It is a special land institutional arrangement and an unconventional means of land consolidation, which converts construction land into cultivated land or ecological land, thus providing new construction space under strict construction land control. |
Corporate social mobility | Corporate social mobility refers to the compensation of old and inefficient corporates and industries, allowing them to withdraw from the space of construction land, introducing new and high-efficiency corporates and industries, promoting the turnover of old and new corporates, driving industrial upgrading, and realizing the spatial optimization of land structure. That is to say, the demonstration of the mobility of land factors from the inefficient space to the efficient space at the level of the corporates. |
Macro use conversion | Macro use conversion refers to the exit of inefficient construction land, corporates, and industries and the introduction and cultivation of efficient construction land, corporates, and industries. |
Non-cadre residents | Non-cadre residents refer to ordinary residents who do not work in any government department. |
Cadres | Cadres are those who work in government departments at the village level and above. |
Planned incremental-type areas | Planned incremental-type areas are areas where there is a large increase in planned construction land compared to the current construction land, specifically those areas where the change is between 10% and 50%. |
Planned balanced-type areas | Planned balanced-type areas are areas in which the planned construction land is essentially stable compared to the current construction land, specifically those areas where the change is between −10% and 10%. |
Planned decremental-type areas | Planned decremental-type areas are areas where there is a large decrease in planned construction land compared to the current construction land, specifically those areas where the change is between −10% and −50%. |
References
- Guo, M.; Cai, S. Impact of green innovation efficiency on carbon peak: Carbon neutralization under environmental governance constraints. Int. J. Environ. Res. Public Health 2022, 19, 10245. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, K.; Liu, H. Residents’ selection behavior of compensation schemes for construction land reduction: Empirical evidence from questionnaires in Shanghai, China. Land 2023, 12, 20. [Google Scholar] [CrossRef]
- Wang, K.; Li, G.; Liu, H. Location choice of industrial land reduction in metropolitan area: Evidence from Shanghai in China. Growth Change 2020, 51, 1837–1859. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Gu, X. Reduction of industrial land beyond urban development boundary in Shanghai: Differences in policy responses and impact on towns and villages. Land Use Policy 2019, 82, 620–630. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rana, R.H.; Barua, S. The drivers of economic growth in South Asia: Evidence from a dynamic system GMM approach. J. Econ. Stud. 2019, 46, 564–577. [Google Scholar] [CrossRef]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Grossman, G.M.; Helpman, E. Quality ladders in the theory of growth. Rev. Econ. Stud. 1991, 58, 43–61. [Google Scholar] [CrossRef]
- Romer, D. Advanced Macroeconomics; McGraw-Hill: New York, NY, USA, 2019. [Google Scholar]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Ministry of Land and Resources of China’s Central Government. Guiding Opinions on Promoting Land Saving and Intensive use. Available online: http://www.gov.cn/gongbao/content/2014/content_2736111.htm (accessed on 17 December 2022).
- Li, Z.; Luan, W.; Zhang, Z.; Su, M. Relationship between urban construction land expansion and population/economic growth in Liaoning Province, China. Land Use Policy 2020, 99, 105022. [Google Scholar] [CrossRef]
- Bai, X.; Shi, P.; Liu, Y. Society: Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, Y.; He, J.; Ni, Q. Does land transfer promote the development of new-type urbanization? New evidence from urban agglomerations in the middle reaches of the Yangtze River. Ecol. Indic. 2022, 136, 108705. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, H.; Zhou, X.; Song, X. Trends in social mobility in postrevolution China. Proc. Natl. Acad. Sci. USA 2022, 119, e2117471119. [Google Scholar] [CrossRef]
- Britannica, The Editors of Encyclopaedia. "Social Mobility". Encyclopedia Britannica, 15 August 2023. Available online: https://www.britannica.com/topic/social-mobility (accessed on 22 October 2023).
- Wu, F. Planning centrality, market instruments: Governing Chinese urban transformation under state entrepreneurialism. Urban Stud. 2018, 55, 1383–1399. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Zhou, L. Relative performance evaluation and the turnover of provincial leaders in China. Econ. Lett. 2005, 88, 421–425. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, L.; Zhu, G. Strategic interaction in political competition: Evidence from spatial effects across Chinese cities. Reg. Sci. Urban Econ. 2016, 57, 23–37. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L. Political turnover and economic performance: The incentive role of personnel control in China. J. Public Econ. 2005, 89, 1743–1762. [Google Scholar] [CrossRef]
- Ding, C.; Lichtenberg, E. Land and urban economic growth in China. J. Reg. Sci. 2011, 51, 299–317. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Government intervention and land misallocation: Evidence from China. Cities 2017, 60, 323–332. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhang, J.; Liu, S. The impact of land price distortion on green development efficiency: Mechanism discussion and empirical test. Environ. Sci. Pollut. Res. 2022, 29, 68376–68395. [Google Scholar] [CrossRef]
- Wang, R.; Hou, J. Land finance, land attracting investment and housing price fluctuations in China. Int. Rev. Econ. Financ. 2021, 72, 690–699. [Google Scholar] [CrossRef]
- Peneder, M. Industrial structure and aggregate growth. Struct. Change Econ. Dyn. 2003, 14, 427–448. [Google Scholar] [CrossRef]
- Glaeser, E.L. What can developing cities today learn from the urban past? Reg. Sci. Urban Econ. 2022, 94, 103698. [Google Scholar] [CrossRef]
- Tan, R.; Wang, R.; Heerink, N. Liberalizing rural-to-urban construction land transfers in China: Distribution effects. China Econ. Rev. 2020, 60, 101147. [Google Scholar] [CrossRef]
- Fitawok, M.B.; Derudder, B.; Minale, A.S.; Van Passel, S.; Adgo, E.; Nyssen, J. Analyzing the impact of land expropriation program on farmers’ livelihood in urban fringes of Bahir Dar, Ethiopia. Habitat Int. 2022, 129, 102674. [Google Scholar] [CrossRef]
- Song, M.; Wu, Y.; Chen, L. Does the land titling program promote rural housing land transfer in China? Evidence from household surveys in Hubei Province. Land Use Policy 2020, 97, 104701. [Google Scholar] [CrossRef]
- Pankin, R.M. Structural factors in academic mobility. J. High. Educ. 1973, 44, 95–101. [Google Scholar] [CrossRef]
- Bagne, D.J. Principle of Demography; Johnson Wiley and Sons: New York, NY, USA, 1969. [Google Scholar]
- Lee, E.S. A theory of migration. Demography 1966, 3, 47–57. [Google Scholar] [CrossRef]
- Lu, J.; Wang, K.; Liu, H. Land development rights, spatial injustice, and the economic development in net-incremental reduction regions of construction land: Evidence from Shanghai, China. Int. J. Environ. Res. Public Health 2023, 20, 2560. [Google Scholar] [CrossRef]
- Wu, L.; Xu, L.; Zhu, D.; Wang, X. Factors affecting consumer willingness to pay for certified traceable food in Jiangsu Province of China. Can. J. Agric. Econ. 2012, 60, 317–333. [Google Scholar] [CrossRef]
- Kennedy, P.E. A Guide to Econometrics, 4th ed.; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Sun, M.; Wang, J.; He, K. Analysis on the urban land resources carrying capacity during urbanization—A case study of Chinese YRD. Appl. Geogr. 2020, 116, 102170. [Google Scholar] [CrossRef]
- Huang, L. From benign unconstitutionality to delegated legislation: Analysis on the ways for legal reform of China rural collective construction land circulation. Habitat Int. 2018, 74, 36–47. [Google Scholar] [CrossRef]
- Zhu, X.; Wei, C.; Zhang, F.; Zhang, J.; Xiao, Y.; Yang, X. Influencing factors of farmers’ land circulation in mountainous Chongqing in China based on a multi-class logistic model. Sustainability 2022, 14, 6987. [Google Scholar] [CrossRef]
- Deininger, K.; Jin, S. The potential of land rental markets in the process of economic development: Evidence from China. J. Dev. Econ. 2005, 78, 241–270. [Google Scholar] [CrossRef]
- Yan, G.; Yue, Y.; Niu, M. An empirical study of faculty mobility in China. High. Educ. 2015, 69, 527–546. [Google Scholar] [CrossRef]
- Dai, B.; Gu, X.; Xie, B. Policy framework and mechanism of life cycle management of industrial land (LCMIL) in China. Land Use Policy 2020, 99, 104997. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Variable Code | Unit | Description |
---|---|---|---|---|
Explained variables | Corporate social mobility | CSM | - | Evaluation of the effectiveness of planning and policies for construction land reduction: optimizing land use and spatial layout. Strongly agree = 3; Quite agree = 2; neutral, quite disagree, strongly disagree = 1 |
CSMsd | - | Standardized CSM standardization | ||
Core explanatory variables | Room for growth in construction land per unit of construction land | CLR | - | (planned cla in 2035—cla in 2016)/cla in 2016 |
Room for growth in construction land per unit of administrative area | CLR2 | - | (planned cla in 2035—cla in 2016)/administrative area | |
Room for growth in construction land per unit of resident population | CLR3 | - | (planned cla in 2035—cla in 2016)/resident population in 2016 | |
Proportion of construction land outside the development boundary to total construction land in each district | CLR4 | % | cla outside the development boundary in 2016/cla in 2016 | |
Control variables | Reduction pressure of districts | RP | % | (reduction cla outside the development boundary in 2035—new cla within the development boundary in 2035)/ cla in 2016. The intensity varies from year to year with use and decrease, thus the choice of 2035. |
Location of townships | LnTL | kilometers | Log value of distance from town to district seat | |
Level of economic development of townships | LnCLGDP | million CNY/km2 | Log value of above-scale GDP per unit of construction land area in 2020 | |
Intensity of fixed asset investment of townships | LnCLFAI | million CNY/km2 | Total planned fixed asset investment per unit of construction land area in 2020 | |
Energy-use efficiency of townships | EE | tons of standard coal/10,000 CNY | Total energy consumption of above-scale industries per unit of gross value of above-scale industrial output in 2020 | |
Development pressures of townships | DP | % | Gross value of above-scale industrial output in 2020/Gross value of above-scale industrial output in 2016 | |
Urbanization rate of townships | UR | % | Urban population/total population | |
Gender | GEN | - | 1 = male; 0 = female | |
Age | AGE | - | ≤30 years = 1; 31–45 years = 2; 46–59 years = 3; ≥60 years = 4 | |
Education | EDU | - | Primary school and below = 1; Junior high school = 2; High school = 3; Junior college and above = 4 | |
Household income | FI | - | ≤50,000 CNY = 1; 50,000–100,000 CNY = 2; 100,000–200,000 CNY= 3; ≥ 200,000 CNY = 4 | |
Family demographics | FPS | % | Share of population aged 18–59 in total household size | |
Heterogeneous variables | Planned decremental-type area | Z | - | Yes = 1, No = 0 |
Planned balanced-type area | V | - | Yes = 1, No = 0 | |
Resident status | GB | - | Cadres of village, cadres of townships and above = 1; others = 0 |
Items | Classifications | Number of Frequencies (pcs) | Percentage (%) | Cumulative Percentage (%) |
---|---|---|---|---|
GEN | Female | 968 | 44.16 | 44.16 |
Male | 1224 | 55.84 | 100.00 | |
AGE | ≤30 | 318 | 14.51 | 14.51 |
31–45 | 827 | 37.73 | 52.24 | |
46–59 | 673 | 30.70 | 82.94 | |
≥60 | 374 | 17.06 | 100.00 | |
EDU | Primary school and below | 213 | 9.72 | 9.72 |
Junior high school | 485 | 22.13 | 31.84 | |
High school | 412 | 18.80 | 50.64 | |
Junior college and above | 1082 | 49.36 | 100.00 | |
FI | ≤50,000 CNY | 360 | 16.42 | 16.42 |
50,000–100,000 CNY | 588 | 26.82 | 43.25 | |
100,000–200,000 CNY | 719 | 32.80 | 76.05 | |
≥200,000 CNY | 525 | 23.95 | 100.00 | |
Number of persons aged 18–59 in the household | 0 | 311 | 14.19 | 14.19 |
1 | 137 | 6.25 | 20.44 | |
2 | 856 | 39.05 | 59.49 | |
3 | 657 | 29.97 | 89.46 | |
4 and above | 231 | 10.54 | 100.00 | |
GB | Cadres of village and above | 609 | 27.78 | 27.78 |
Other | 1583 | 72.22 | 100.00 |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
CSM | 2192 | 2.3764 | 0.7132 | 1.0000 | 3.0000 |
CSMsd | 2192 | 0.0000 | 1.0000 | −1.9298 | 0.8744 |
CLR | 2192 | −0.1359 | 0.1518 | −0.3704 | 0.4401 |
CLR2 | 2192 | −0.0186 | 0.0379 | −0.0687 | 0.0844 |
CLR3 | 2192 | −0.3834 | 0.4768 | −0.9846 | 2.0286 |
CLR4 | 2192 | 57.5099 | 14.3069 | 34.3245 | 66.7797 |
Z | 2192 | 0.7418 | 0.4378 | 0.0000 | 1.0000 |
V | 2192 | 0.1683 | 0.3743 | 0.0000 | 1.0000 |
GB | 2192 | 0.2778 | 0.4480 | 0.0000 | 1.0000 |
RP | 2192 | 8.1316 | 3.7304 | 0.0501 | 10.1695 |
LnTL | 2192 | 2.4523 | 1.1146 | −0.6280 | 3.6226 |
LnCLGDP | 2192 | 8.6499 | 1.4969 | 5.6440 | 11.8758 |
LnCLFAI | 2192 | 8.4478 | 1.1520 | 6.4379 | 11.8871 |
EE | 2192 | 0.0876 | 0.0429 | 0.0248 | 0.2531 |
DP | 2192 | 105.9336 | 34.4497 | 59.0643 | 191.6667 |
UR | 2192 | 43.2322 | 25.3572 | 1.2364 | 100.0000 |
GEN | 2192 | 0.5584 | 0.4967 | 0.0000 | 1.0000 |
AGE | 2192 | 2.5032 | 0.9390 | 1.0000 | 4.0000 |
EDU | 2192 | 3.0780 | 1.0478 | 1.0000 | 4.0000 |
FI | 2192 | 2.6428 | 1.0186 | 1.0000 | 4.0000 |
FPS | 2192 | 63.7037 | 33.9932 | 0.0000 | 100.0000 |
Variable | VIF | 1/VIF |
---|---|---|
CLR | 5.48 | 0.18 |
LnCLGDP | 4.86 | 0.21 |
UR | 4.17 | 0.24 |
RP | 4.01 | 0.25 |
LnCLFAI | 2.77 | 0.36 |
DP | 2.71 | 0.37 |
EE | 2.67 | 0.37 |
LnTL | 2.02 | 0.50 |
EDU | 1.98 | 0.51 |
AGE | 1.75 | 0.57 |
FI | 1.70 | 0.59 |
FPS | 1.24 | 0.81 |
GEN | 1.01 | 0.99 |
Mean VIF | 2.80 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CSM | Pr (CSM = 1) | Pr (CSM = 2) | Pr (CSM = 3) | |
CLR | 0.8748 ** | −0.1792 ** | −0.1696 ** | 0.3487 ** |
(0.4026) | (0.0825) | (0.0786) | (0.1605) | |
RP | 0.0193 | −0.0039 | −0.0037 | 0.0077 |
(0.0133) | (0.0027) | (0.0026) | (0.0053) | |
LnTL | 0.0635 ** | −0.0130 ** | −0.0123 ** | 0.0253 ** |
(0.0310) | (0.0063) | (0.0061) | (0.0123) | |
LnCLGDP | −0.1863 *** | 0.0382 *** | 0.0361 *** | −0.0743 *** |
(0.0369) | (0.0076) | (0.0074) | (0.0147) | |
LnCLFAI | 0.0899 ** | −0.0184 ** | −0.0174 ** | 0.0359 ** |
(0.0367) | (0.0075) | (0.0072) | (0.0146) | |
EE | 2.1748 ** | −0.4454 ** | −0.4216 ** | 0.8670 ** |
(0.9622) | (0.1966) | (0.1887) | (0.3836) | |
DP | 0.0029 ** | −0.0006 ** | −0.0006 ** | 0.0012 ** |
(0.0013) | (0.0003) | (0.0002) | (0.0005) | |
UR | −0.0055 *** | 0.0011 *** | 0.0011 *** | −0.0022 *** |
(0.0021) | (0.0004) | (0.0004) | (0.0008) | |
GEN | 0.0147 | −0.0030 | −0.0028 | 0.0058 |
(0.0504) | (0.0103) | (0.0098) | (0.0201) | |
AGE | 0.0685 * | −0.0140 * | −0.0133 * | 0.0273 * |
(0.0353) | (0.0072) | (0.0069) | (0.0141) | |
EDU | 0.1779 *** | −0.0364 *** | −0.0345 *** | 0.0709 *** |
(0.0332) | (0.0068) | (0.0067) | (0.0132) | |
FI | 0.1059 *** | −0.0217 *** | −0.0205 *** | 0.0422 *** |
(0.0317) | (0.0065) | (0.0062) | (0.0126) | |
FPS | −0.0001 | 0.0000 | 0.0000 | −0.0000 |
(0.0008) | (0.0002) | (0.0002) | (0.0003) | |
/cut1 | −0.5477 | |||
(0.3849) | ||||
/cut2 | 0.5687 | |||
(0.3853) | ||||
Wald test | 168.62 *** | |||
Pseudo R2 | 0.0404 | |||
Observations | 2192 | 2192 | 2192 | 2192 |
Variable | VIF | 1/VIF |
---|---|---|
LnCLGDP | 4.31 | 0.23 |
RP | 3.49 | 0.29 |
UR | 3.30 | 0.30 |
CLR2 | 3.24 | 0.31 |
DP | 2.36 | 0.42 |
LnCLFAI | 2.33 | 0.43 |
LnTL | 2.13 | 0.47 |
EE | 2.01 | 0.50 |
EDU | 1.98 | 0.51 |
AGE | 1.75 | 0.57 |
FI | 1.69 | 0.59 |
FPS | 1.24 | 0.81 |
GEN | 1.01 | 0.99 |
Mean VIF | 2.37 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CSM | Pr (CSM = 1) | Pr (CSM = 2) | Pr (CSM = 3) | |
CLR2 | 3.0570 ** | −0.6257 ** | −0.5930 ** | 1.2187 ** |
(1.2155) | (0.2497) | (0.2375) | (0.4846) | |
RP | 0.0130 | −0.0027 | −0.0025 | 0.0052 |
(0.0124) | (0.0025) | (0.0024) | (0.0049) | |
LnTL | 0.0737 ** | −0.0151 ** | −0.0143 ** | 0.0294 ** |
(0.0320) | (0.0065) | (0.0063) | (0.0128) | |
LnCLGDP | −0.2014 *** | 0.0412 *** | 0.0391 *** | −0.0803 *** |
(0.0349) | (0.0072) | (0.0071) | (0.0139) | |
LnCLFAI | 0.1054 *** | −0.0216 *** | −0.0204 *** | 0.0420 *** |
(0.0336) | (0.0069) | (0.0066) | (0.0134) | |
EE | 2.8590 *** | −0.5852 *** | −0.5546 *** | 1.1397 *** |
(0.8188) | (0.1669) | (0.1629) | (0.3264) | |
DP | 0.0034 *** | −0.0007 *** | −0.0007 *** | 0.0013 *** |
(0.0012) | (0.0002) | (0.0002) | (0.0005) | |
UR | −0.0050 *** | 0.0010 *** | 0.0010 *** | −0.0020 *** |
(0.0018) | (0.0004) | (0.0004) | (0.0007) | |
GEN | 0.0134 | −0.0027 | −0.0026 | 0.0053 |
(0.0504) | (0.0103) | (0.0098) | (0.0201) | |
AGE | 0.0689 * | −0.0141 * | −0.0134 * | 0.0275 * |
(0.0353) | (0.0072) | (0.0069) | (0.0141) | |
EDU | 0.1815 *** | −0.0372 *** | −0.0352 *** | 0.0724 *** |
(0.0332) | (0.0068) | (0.0067) | (0.0132) | |
FI | 0.1036 *** | −0.0212 *** | −0.0201 *** | 0.0413 *** |
(0.0316) | (0.0065) | (0.0062) | (0.0126) | |
FPS | −0.0000 | 0.0000 | 0.0000 | −0.0000 |
(0.0008) | (0.0002) | (0.0002) | (0.0003) | |
/cut1 | −0.3727 | |||
(0.3505) | ||||
/cut2 | 0.7444 ** | |||
(0.3511) | ||||
Wald test | 167.48 *** | |||
Pseudo R2 | 0.0409 | |||
Observations | 2192 | 2192 | 2192 | 2192 |
Variable | VIF | 1/VIF |
---|---|---|
LnCLGDP | 5.34 | 0.19 |
CLR3 | 4.77 | 0.21 |
UR | 4.40 | 0.23 |
RP | 4.20 | 0.24 |
DP | 2.94 | 0.34 |
LnCLFAI | 2.46 | 0.41 |
EE | 2.36 | 0.42 |
EDU | 1.98 | 0.51 |
LnTL | 1.94 | 0.52 |
AGE | 1.74 | 0.57 |
FI | 1.70 | 0.59 |
FPS | 1.24 | 0.81 |
GEN | 1.01 | 0.99 |
Mean VIF | 2.78 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CSM | Pr (CSM = 1) | Pr (CSM = 2) | Pr (CSM = 3) | |
CLR3 | 0.2057 * | −0.0422 * | −0.0398 * | 0.0820 * |
(0.1201) | (0.0247) | (0.0233) | (0.0479) | |
RP | 0.0184 | −0.0038 | −0.0036 | 0.0073 |
(0.0136) | (0.0028) | (0.0026) | (0.0054) | |
LnTL | 0.0513 * | −0.0105 * | −0.0099 * | 0.0204 * |
(0.0299) | (0.0061) | (0.0058) | (0.0119) | |
LnCLGDP | −0.1845 *** | 0.0378 *** | 0.0357 *** | −0.0736 *** |
(0.0387) | (0.0080) | (0.0078) | (0.0154) | |
LnCLFAI | 0.1063 *** | −0.0218 *** | −0.0206 *** | 0.0424 *** |
(0.0346) | (0.0071) | (0.0068) | (0.0138) | |
EE | 2.6343 *** | −0.5399 *** | −0.5102 *** | 1.0502 *** |
(0.8975) | (0.1831) | (0.1773) | (0.3578) | |
DP | 0.0030 ** | −0.0006 ** | −0.0006 ** | 0.0012 ** |
(0.0013) | (0.0003) | (0.0003) | (0.0005) | |
UR | −0.0050 ** | 0.0010 ** | 0.0010 ** | −0.0020 ** |
(0.0021) | (0.0004) | (0.0004) | (0.0008) | |
GEN | 0.0147 | −0.0030 | −0.0029 | 0.0059 |
(0.0504) | (0.0103) | (0.0098) | (0.0201) | |
AGE | 0.0652 * | −0.0134 * | −0.0126 * | 0.0260 * |
(0.0352) | (0.0072) | (0.0069) | (0.0140) | |
EDU | 0.1755 *** | −0.0360 *** | −0.0340 *** | 0.0700 *** |
(0.0332) | (0.0068) | (0.0067) | (0.0132) | |
FI | 0.1050 *** | −0.0215 *** | −0.0203 *** | 0.0419 *** |
(0.0316) | (0.0065) | (0.0062) | (0.0126) | |
FPS | −0.0001 | 0.0000 | 0.0000 | −0.0000 |
(0.0008) | (0.0002) | (0.0002) | (0.0003) | |
/cut1 | −0.3418 | |||
(0.3537) | ||||
/cut2 | 0.7741 ** | |||
(0.3546) | ||||
Wald test | 167.54 *** | |||
Pseudo R2 | 0.0400 | |||
Observations | 2192 | 2192 | 2192 | 2192 |
Variable | VIF | 1/VIF |
---|---|---|
CLR4 | 7.96 | 0.13 |
LnCLGDP | 6.14 | 0.16 |
RP | 6.12 | 0.16 |
EE | 2.82 | 0.35 |
DP | 2.49 | 0.40 |
UR | 2.46 | 0.41 |
LnCLFAI | 2.43 | 0.41 |
EDU | 1.99 | 0.50 |
LnTL | 1.96 | 0.51 |
AGE | 1.74 | 0.57 |
FI | 1.68 | 0.60 |
FPS | 1.24 | 0.81 |
GEN | 1.01 | 0.99 |
Mean VIF | 3.08 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CSM | Pr (CSM = 1) | Pr (CSM = 2) | Pr (CSM = 3) | |
CLR4 | 0.0092 * | −0.0019 * | −0.0018 * | 0.0036 * |
(0.0048) | (0.0010) | (0.0009) | (0.0019) | |
RP | −0.0117 | 0.0024 | 0.0023 | −0.0047 |
(0.0160) | (0.0033) | (0.0031) | (0.0064) | |
LnTL | 0.0378 | −0.0078 | −0.0073 | 0.0151 |
(0.0301) | (0.0062) | (0.0059) | (0.0120) | |
LnCLGDP | −0.1681 *** | 0.0345 *** | 0.0326 *** | −0.0670 *** |
(0.0423) | (0.0087) | (0.0083) | (0.0169) | |
LnCLFAI | 0.1478 *** | −0.0303 *** | −0.0286 *** | 0.0589 *** |
(0.0343) | (0.0070) | (0.0068) | (0.0137) | |
EE | 2.2145 ** | −0.4539 ** | −0.4289 ** | 0.8828 ** |
(0.9739) | (0.1995) | (0.1905) | (0.3882) | |
DP | 0.0034 *** | −0.0007 *** | −0.0007 *** | 0.0014 *** |
(0.0012) | (0.0002) | (0.0002) | (0.0005) | |
UR | −0.0028 * | 0.0006 * | 0.0006 * | −0.0011 * |
(0.0015) | (0.0003) | (0.0003) | (0.0006) | |
GEN | 0.0197 | −0.0040 | −0.0038 | 0.0078 |
(0.0503) | (0.0103) | (0.0097) | (0.0200) | |
AGE | 0.0605 * | −0.0124 * | −0.0117 * | 0.0241 * |
(0.0353) | (0.0072) | (0.0069) | (0.0141) | |
EDU | 0.1858 *** | −0.0381 *** | −0.0360 *** | 0.0740 *** |
(0.0333) | (0.0068) | (0.0068) | (0.0133) | |
FI | 0.1003 *** | −0.0206 *** | −0.0194 *** | 0.0400 *** |
(0.0314) | (0.0065) | (0.0061) | (0.0125) | |
FPS | −0.0001 | 0.0000 | 0.0000 | −0.0000 |
(0.0008) | (0.0002) | (0.0002) | (0.0003) | |
/cut1 | 0.5870 | |||
(0.5217) | ||||
/cut2 | 1.7027 *** | |||
(0.5232) | ||||
Wald test | 169.19 *** | |||
Pseudo R2 | 0.0401 | |||
Observations | 2192 | 2192 | 2192 | 2192 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
CSMsd | CSM | Pr (CSM = 1) | Pr (CSM = 2) | Pr (CSM = 3) | |
CLR | 0.6532 ** | 1.4581 ** | −0.1582 ** | −0.2060 ** | 0.3642 ** |
(0.3156) | (0.6945) | (0.0754) | (0.0987) | (0.1735) | |
RP | 0.0192 * | 0.0312 | −0.0034 | −0.0044 | 0.0078 |
(0.0115) | (0.0225) | (0.0024) | (0.0032) | (0.0056) | |
LnTL | 0.0432 * | 0.1157 ** | −0.0126 ** | −0.0163 ** | 0.0289 ** |
(0.0254) | (0.0519) | (0.0056) | (0.0074) | (0.0130) | |
LnCLGDP | −0.1453 *** | −0.3150 *** | 0.0342 *** | 0.0445 *** | −0.0787 *** |
(0.0308) | (0.0623) | (0.0069) | (0.0091) | (0.0156) | |
LnCLFAI | 0.0708 ** | 0.1559 ** | −0.0169 ** | −0.0220 ** | 0.0389 ** |
(0.0313) | (0.0628) | (0.0068) | (0.0089) | (0.0157) | |
EE | 1.7885 ** | 4.0007 ** | −0.4341 ** | −0.5652 ** | 0.9993 ** |
(0.8196) | (1.6400) | (0.1772) | (0.2346) | (0.4096) | |
DP | 0.0027 ** | 0.0049 ** | −0.0005 ** | −0.0007 ** | 0.0012 ** |
(0.0011) | (0.0021) | (0.0002) | (0.0003) | (0.0005) | |
UR | −0.0040 ** | −0.0097 *** | 0.0011 *** | 0.0014 *** | −0.0024 *** |
(0.0016) | (0.0035) | (0.0004) | (0.0005) | (0.0009) | |
GEN | 0.0076 | 0.0335 | −0.0036 | −0.0047 | 0.0084 |
(0.0416) | (0.0842) | (0.0091) | (0.0119) | (0.0210) | |
AGE | 0.0589 ** | 0.1242 ** | −0.0135 ** | −0.0176 ** | 0.0310 ** |
(0.0291) | (0.0592) | (0.0064) | (0.0084) | (0.0148) | |
EDU | 0.1473 *** | 0.3038 *** | −0.0330 *** | −0.0429 *** | 0.0759 *** |
(0.0282) | (0.0560) | (0.0061) | (0.0082) | (0.0140) | |
FI | 0.0846 *** | 0.1692 *** | −0.0184 *** | −0.0239 *** | 0.0423 *** |
(0.0258) | (0.0530) | (0.0058) | (0.0075) | (0.0132) | |
FPS | −0.0000 | −0.0002 | 0.0000 | 0.0000 | −0.0000 |
(0.0007) | (0.0014) | (0.0001) | (0.0002) | (0.0003) | |
/cut1 | −0.8756 | ||||
(0.6456) | |||||
/cut2 | 1.0207 | ||||
(0.6469) | |||||
F-test | 14.38 *** | ||||
Wald test | 165.43 *** | ||||
Pseudo R2 | 0.0414 | ||||
Constant | −0.6122 ** | ||||
(0.3050) | |||||
Observations | 2192 | 2192 | 2192 | 2192 | 2192 |
R-squared | 0.0744 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CSM | Pr (CSM = 1) | Pr (CSM = 2) | Pr (CSM = 3) | |
CLR | 0.9427 ** | −0.1914 ** | −0.1844 ** | 0.3758 ** |
(0.4048) | (0.0823) | (0.0798) | (0.1613) | |
GB | 0.2932 *** | −0.0595 *** | −0.0573 *** | 0.1169 *** |
(0.0683) | (0.0139) | (0.0138) | (0.0272) | |
RP | 0.0111 | −0.0023 | −0.0022 | 0.0044 |
(0.0134) | (0.0027) | (0.0026) | (0.0053) | |
LnTL | 0.0700 ** | −0.0142 ** | −0.0137 ** | 0.0279 ** |
(0.0310) | (0.0063) | (0.0061) | (0.0124) | |
LnCLGDP | −0.1851 *** | 0.0376 *** | 0.0362 *** | −0.0738 *** |
(0.0370) | (0.0076) | (0.0075) | (0.0147) | |
LnCLFAI | 0.0917 ** | −0.0186 ** | −0.0179 ** | 0.0365 ** |
(0.0366) | (0.0074) | (0.0072) | (0.0146) | |
EE | 1.6249 * | −0.3299 * | −0.3178 * | 0.6477 * |
(0.9766) | (0.1980) | (0.1922) | (0.3893) | |
DP | 0.0027 ** | −0.0006 ** | −0.0005 ** | 0.0011 ** |
(0.0013) | (0.0003) | (0.0002) | (0.0005) | |
UR | −0.0056 *** | 0.0011 *** | 0.0011 *** | −0.0022 *** |
(0.0021) | (0.0004) | (0.0004) | (0.0008) | |
GEN | 0.0016 | −0.0003 | −0.0003 | 0.0007 |
(0.0504) | (0.0102) | (0.0099) | (0.0201) | |
AGE | 0.0634 * | −0.0129 * | −0.0124 * | 0.0253 * |
(0.0353) | (0.0072) | (0.0069) | (0.0141) | |
EDU | 0.1338 *** | −0.0272 *** | −0.0262 *** | 0.0533 *** |
(0.0343) | (0.0070) | (0.0069) | (0.0137) | |
FI | 0.0818 ** | −0.0166 ** | −0.0160 ** | 0.0326 ** |
(0.0319) | (0.0065) | (0.0063) | (0.0127) | |
FPS | −0.0001 | 0.0000 | 0.0000 | −0.0000 |
(0.0008) | (0.0002) | (0.0002) | (0.0003) | |
/cut1 | −0.8001 ** | |||
(0.3906) | ||||
/cut2 | 0.3223 | |||
(0.3909) | ||||
Wald test | 180.81 *** | |||
Pseudo R2 | 0.0449 | |||
Observations | 2192 | 2192 | 2192 | 2192 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CSM | Pr (CSM = 1) | Pr (CSM = 2) | Pr (CSM = 3) | |
CLR | 1.8014 *** | −0.3683 *** | −0.3498 *** | 0.7181 *** |
(0.6567) | (0.1346) | (0.1289) | (0.2618) | |
Z | 0.4452 ** | −0.0910 ** | −0.0865 ** | 0.1775 ** |
(0.2165) | (0.0443) | (0.0423) | (0.0863) | |
V | 0.1663 | −0.0340 | −0.0323 | 0.0663 |
(0.1086) | (0.0221) | (0.0212) | (0.0433) | |
RP | 0.0231 * | −0.0047 * | −0.0045 * | 0.0092 * |
(0.0136) | (0.0028) | (0.0027) | (0.0054) | |
LnTL | 0.0269 | −0.0055 | −0.0052 | 0.0107 |
(0.0388) | (0.0079) | (0.0076) | (0.0155) | |
LnCLGDP | −0.1527 *** | 0.0312 *** | 0.0297 *** | −0.0609 *** |
(0.0419) | (0.0086) | (0.0083) | (0.0167) | |
LnCLFAI | 0.0643 | −0.0132 | −0.0125 | 0.0256 |
(0.0396) | (0.0081) | (0.0077) | (0.0158) | |
EE | 1.4905 | −0.3047 | −0.2895 | 0.5942 |
(1.0742) | (0.2191) | (0.2098) | (0.4282) | |
DP | 0.0028 ** | −0.0006 ** | −0.0005 ** | 0.0011 ** |
(0.0013) | (0.0003) | (0.0003) | (0.0005) | |
UR | −0.0060 *** | 0.0012 *** | 0.0012 *** | −0.0024 *** |
(0.0021) | (0.0004) | (0.0004) | (0.0009) | |
GEN | 0.0149 | −0.0031 | −0.0029 | 0.0060 |
(0.0504) | (0.0103) | (0.0098) | (0.0201) | |
AGE | 0.0711 ** | −0.0145 ** | −0.0138 ** | 0.0284 ** |
(0.0353) | (0.0072) | (0.0069) | (0.0141) | |
EDU | 0.1708 *** | −0.0349 *** | −0.0332 *** | 0.0681 *** |
(0.0336) | (0.0069) | (0.0068) | (0.0134) | |
FI | 0.1091 *** | −0.0223 *** | −0.0212 *** | 0.0435 *** |
(0.0317) | (0.0066) | (0.0062) | (0.0127) | |
FPS | −0.0001 | 0.0000 | 0.0000 | −0.0000 |
(0.0008) | (0.0002) | (0.0002) | (0.0003) | |
/cut1 | −0.4035 | |||
(0.4204) | ||||
/cut2 | 0.7143 * | |||
(0.4213) | ||||
Wald test | 175.82 *** | |||
Pseudo R2 | 0.0413 | |||
Observations | 2192 | 2192 | 2192 | 2192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Wang, K.; Liu, H. How Do Institutional Arrangements Affect Corporate Social Mobility? Evidence from Construction Land Reduction. Sustainability 2023, 15, 16146. https://doi.org/10.3390/su152316146
Lu J, Wang K, Liu H. How Do Institutional Arrangements Affect Corporate Social Mobility? Evidence from Construction Land Reduction. Sustainability. 2023; 15(23):16146. https://doi.org/10.3390/su152316146
Chicago/Turabian StyleLu, Jianglin, Keqiang Wang, and Hongmei Liu. 2023. "How Do Institutional Arrangements Affect Corporate Social Mobility? Evidence from Construction Land Reduction" Sustainability 15, no. 23: 16146. https://doi.org/10.3390/su152316146
APA StyleLu, J., Wang, K., & Liu, H. (2023). How Do Institutional Arrangements Affect Corporate Social Mobility? Evidence from Construction Land Reduction. Sustainability, 15(23), 16146. https://doi.org/10.3390/su152316146