Techno-Economic and Environmental Study of Optimum Hybrid Renewable Systems, including PV/Wind/Gen/Battery, with Various Components to Find the Best Renewable Combination for Ponorogo Regency, East Java, Indonesia
Abstract
:1. Introduction
2. Methodology
2.1. Case Study Region
2.2. Scenarios
2.3. MCDM Method
3. Results and Discussion
3.1. Components
3.1.1. PV Panels
3.1.2. Wind Turbines
3.1.3. Batteries
3.2. Economic Parameters
3.3. Environmental Parameters
3.4. MCDM
3.5. Analysis of Scenario 221
3.6. Sensitivity Analysis
4. Conclusions
- The most economic and environmentally friendly system is scenario 421, where the considered criteria are NPC, COE, and emissions, including Canadian Solar MaxPower CS6X-325P as PV, Eocycle EO10 10 kW as wind turbine, and generic 1 kWh Li ion as the battery. The COE, NPC, and emission values are 0.21 ($/kWh), 1.42 (million $), and 82,244 (kg/year), respectively.
- If all the economic, technical, and environmental parameters are considered together, the best choice is scenario 221, which included SunPower E20-327 as PV, Eocycle EO10 10 kW as wind turbine, and generic 1 kWh Li ion as the battery. This system’s COE, NPC, and emissions are 0.24 ($/kWh), 1.64 million ($), and 150,881 (kg/year), respectively.
- These two mentioned points showed that systems with the lowest NPC, COE, and pollutant emissions cannot always be the best choice. This fact becomes clearer when all the technical, economic, and environmental parameters are considered as the criteria since the best economic or environmental option is not necessarily the best choice executable.
- Changing the wind turbine’s capital cost by 0.7 to 1.4 current price and PV panels’ price from 0.6 to 1.2 current price would drive the RF, COE, and NPC values from 52% to 73%, 0.210 to 0.270 ($/kWh), and 1.45 to 1.80 (million $), respectively, and increase the CO2 emissions from 93,409 to 139,909 (kg/year).
- Changing the batteries’ capital cost by 0.7 to 1.2 of the current price and diesel fuel price from 0.5 to 1.1 ($/L) would increase the RF, COE, and NPC values by 51% to 83%, 0.2 to 0.3 ($/kWh), and 1.4 to 2.1 (million $), respectively, and decrease the CO2 emissions from 161,146 to 27,723 (kg/year).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamjid Shabestari, S.; Kasaeian, A.; Vaziri Rad, M.A.; Forootan Fard, H.; Yan, W.-M.; Pourfayaz, F. Techno-financial evaluation of a hybrid renewable solution for supplying the predicted power outages by machine learning methods in rural areas. Renew. Energy 2022, 194, 1303–1325. [Google Scholar] [CrossRef]
- Ali, N.; Assad, M.E.H.; Fard, H.F.; Jourdehi, B.A.; Mahariq, I.; Al-Shabi, M.A. CO2 emission modeling of countries in Southeast of Europe by using artificial neural network. In Sensing for Agriculture and Food Quality and Safety XIV; SPIE: Bellingham, WA, USA, 2022; Volume 12120, pp. 100–104. [Google Scholar]
- Guedri, K.; Salem, M.; Assad, M.E.H.; Rungamornrat, J.; Malek Mohsen, F.; Buswig, Y.M. PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis. Sustainability 2022, 14, 12298. [Google Scholar] [CrossRef]
- Liu, R.; Salem, M.; Rungamornrat, J.; Al-Bahrani, M. A comprehensive and updated review on the exergy analysis of ground source heat pumps. Sustain. Energy Technol. Assess. 2023, 55, 102906. [Google Scholar] [CrossRef]
- Ghalandari, M.; Fard, H.F.; Birjandi, A.K.; Mahariq, I. Energy-related carbon dioxide emission forecasting of four European countries by employing data-driven methods. J. Therm. Anal. Calorim. 2021, 144, 1999–2008. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Mahariq, I.; Murshid, N.; Wongwises, S.; Mahian, O.; Nazari, M.A. Applying wind energy as a clean source for reverse osmosis desalination: A comprehensive review. Alex. Eng. J. 2022, 61, 12977–12989. [Google Scholar] [CrossRef]
- Almutairi, K.; Almutairi, M.; Harb, K.; Marey, O. Optimal Sizing Grid-Connected Hybrid PV/Generator/Battery Systems Following the Prediction of CO2 Emission and Electricity Consumption by Machine Learning Methods (MLP and SVR): Aseer, Tabuk, and Eastern Region, Saudi Arabia. Front. Front. Energy Res. 2022, 10, 879373. [Google Scholar] [CrossRef]
- Sharifpur, M.; Ahmadi, M.H.; Rungamornrat, J.; Malek Mohsen, F. Thermal Management of Solar Photovoltaic Cell by Using Single Walled Carbon Nanotube (SWCNT)/Water: Numerical Simulation and Sensitivity Analysis. Sustainability 2022, 14, 11523. [Google Scholar] [CrossRef]
- Forootan Fard, H.; Khodaverdi, M.; Pourfayaz, F.; Ahmadi, M.H. Application of N-doped carbon nanotube-supported Pt-Ru as electrocatalyst layer in passive direct methanol fuel cell. Int. J. Hydrogen Energy 2020, 45, 25307–25316. [Google Scholar] [CrossRef]
- Khan, T.; Yu, M.; Waseem, M. Review on recent optimization strategies for hybrid renewable energy system with hydrogen technologies: State of the art, trends and future directions. Int. J. Hydrogen Energy 2022, 47, 25155–25201. [Google Scholar] [CrossRef]
- Bouaouda, A.; Sayouti, Y. Hybrid Meta-Heuristic Algorithms for Optimal Sizing of Hybrid Renewable Energy System: A Review of the State-of-the-Art. Arch. Comput. Methods Eng. 2022, 29, 4049–4083. [Google Scholar] [CrossRef]
- International Energy Agency. Available online: https://www.iea.org/fuels-and-technologies/renewables (accessed on 12 December 2022).
- Maulidia, M.; Dargusch, P.; Ashworth, P.; Ardiansyah, F. Rethinking renewable energy targets and electricity sector reform in Indonesia: A private sector perspective. Renew. Sustain. Energy Rev. 2019, 101, 231–247. [Google Scholar] [CrossRef]
- Fauzi, A. Revision of geothermal resources classification in Indonesia based on type of potential power generation. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–24 April 2015; pp. 19–25. [Google Scholar]
- PricewaterhouseCoopers. Power in Indonesia: Investment and taxation guide November 2016, 4th ed.; PricewaterhouseCoopers: Jakarta, Indonesia, 2016. [Google Scholar]
- Bakhtyar, B.; Sopian, K.; Zaharim, A.; Salleh, E.; Lim, C.H. Potentials and challenges in implementing feed-in tariff policy in Indonesia and the Philippines. Energy Policy 2013, 60, 418–423. [Google Scholar] [CrossRef]
- Ministry of Energy and Mineral Resources. Rasio Elektrifikasi 2017 Melebih Target. (2017 Electrification Ratio Exceeds Target). Available online: https://www.esdm.go.id/id/berita-unit/direktoratjenderal-ketenagalistrikan/rasio-elektrifikasi-2017-melebihi-target (accessed on 8 February 2018).
- Medrilzam, M. Baseline and Scenarios Model Formulation of Greenhouse Gas Emissions Reduction Policy for Intended Nationally Determined Contributions (INDC) and the Review of National Action Plan on GHG Emissions Reduction (RAN-GRK). 2015, p. 95. Available online: https://www.scribd.com/document/380925202/Indc-Bappenas-24-%0ANov-2015-Final (accessed on 14 November 2015).
- Hidayat, M.N.; Akbar, D.N.; Syamsiana, I.N.; Ridzky, I. Analysis of potential development of the hybrid power plants in coastal areas of Malang Regency-Indonesia. AIP Conf. Proc. 2020, 2255, 20013. [Google Scholar]
- Junus, M.; Marjono, M.; Wahyudi, S. Technoeconomic Study of Hybrid Energy Systems for Use in Public Buildings in Malang, Indonesia. Int. J. Renew. Energy Res. 2021, 11, 1832–1840. [Google Scholar]
- Aditya, I.A.; Aisyah, S.; Simaremare, A.A. Optimal sizing and sensitivity analysis of Hybrid Renewable Energy Systems: A case of Ur island in Indonesia. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1098, 42049. [Google Scholar] [CrossRef]
- Azahra, A.; Syahindra, K.D.; Aryani, D.R.; Jufri, F.H.; Ardita, I.M. Optimized configuration of photovoltaic and battery energy storage system (BESS) in an isolated grid: A case study of Eastern Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 599, 12017. [Google Scholar] [CrossRef]
- Syafii, S.; Wati, W.; Fahreza, R. Techno-economic-enviro optimization analysis of diesel/PV/wind with pumped hydro storage for Mentawai Island microgrid. Bull. Electr. Eng. Informatics 2021, 10, 2396–2404. [Google Scholar] [CrossRef]
- Bukit, F.R.A.; Zulkarnaen, H.; Simarmata, G.D.A. Minimize the Cost of Electricity Generation with Hybrid Power Plants on Pemping Island of Indonesia using HOMER. In Proceedings of the 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), Medan, Indonesia, 3–4 September 2020; pp. 153–157. [Google Scholar]
- Javed, M.S.; Ma, T. Techno-economic assessment of a hybrid solar-wind-battery system with genetic algorithm. Energy Procedia 2019, 158, 6384–6392. [Google Scholar] [CrossRef]
- Nugroho, O.V.; Pramono, N.F.; Hanafi, M.P.; Husnayain, F.; Utomo, A.R. Techno-economic analysis of hybrid Diesel-PV-Battery system and hybrid Diesel-PV-Wind-Battery system in Eastern Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 599, 12031. [Google Scholar] [CrossRef]
- Umam, M.F.; Selia, S.; Sunaryo, A.F.; Al Asy’ari, M.R. Energy Storage Applications to Address the Challenges of Solar PV and Wind Penetration in Indonesia: A Preliminary Study. Indones. J. Energy 2022, 5, 42–65. [Google Scholar] [CrossRef]
- Pandiyan, P.; Sitharthan, R.; Saravanan, S.; Prabaharan, N.; Tiwari, M.R.; Chinnadurai, T.; Yuvaraj, T.; Devabalaji, K.R. A comprehensive review of the prospects for rural electrification using stand-alone and hybrid energy technologies. Sustain. Energy Technol. Assess. 2022, 52, 102155. [Google Scholar] [CrossRef]
- Aprillia, B.S.; Rigoursyah, M.A.F. Design On-Grid Solar Power System for 450 VA Conventional Housing using HOMER Software. IOP Conf. Ser. Mater. Sci. Eng. 2020, 771, 12011. [Google Scholar] [CrossRef]
- Aisyah, S.; Aditya, I.A.; Syamsudin, A. Optimum hybrid renewable energy system design using HOMER: Case study Biaro Island, Indonesia. AIP Conf. Proc. 2020, 2255, 20034. [Google Scholar]
- HOMER PRO User Manual. Available online: https://www.homerenergy.com/products/pro/docs/latest/index.html (accessed on 5 December 2022).
- Global Wind Atlas. Available online: https://globalwindatlas.info/area/Indonesia (accessed on 29 November 2022).
- Rumbayan, M.; Nakanishi, Y. Prospect of PV-wind-diesel hybrid system as an alternative power supply for Miangas Island in Indonesia. Int. J. Smart Grid Clean Energy 2019, 8, 402–407. [Google Scholar] [CrossRef]
- Fard, H.F.; Alavi, M.F.; Sharabaty, H.; Ahmadzadeh, M.; Mahariq, I. Technical Design and Economic Investigations for Reducing CO2 Emission considering Environmental Protection Agency Standards by Employing an Optimum Grid-Connected PV/Battery System. Int. J. Photoenergy 2022, 2022, 7360159. [Google Scholar] [CrossRef]
Ref. | Location | Usage | Hybrid System | Grid | COE ($/kWh) | RF (%) |
---|---|---|---|---|---|---|
[19] | Malang | Residential | PV/Wind/Gen/Batt | Off/Grid | 0.254 | 100 |
[20] | Malang | Public | PV/Wind/Gen/Batt | Off/Grid | 1.23 | 100 |
[21] | Ur | Residential | PV/Wind/Gen/Batt | Off/Grid | 0.276 | 95 |
[22] | East | Residential | PV/Gen/Batt | Off/Grid | 0.135 | 34.5 |
[23] | Mentawai | Residential | PV/Wind/Gen/Batt | Off/Grid | 0.17 | 30.1 |
[24] | Pemping | Residential | PV/Gen/Batt | Off/Grid | 0.22 | 39.4 |
[25] | Jiuduansha | Residential | PV/Wind/Batt | Off/Grid | 0.11 | 100 |
[26] | East | Residential | PV/Wind/Gen/Batt | Off/Grid | 0.156 | 47 |
PV | Ref. | Model | Capital Cost ($) | Replacement ($) | O&M ($) |
---|---|---|---|---|---|
P1 | [30] | CS6U-330P | 1445/kW | 1445/kW | 7/year |
P2 | [20] | SunPower E20-327 | 2400/kW | 1600/kW | 30/year |
P3 | [23] | Sharp ND-250CS | 1600/kW | 1500/kW | 34.5/year |
P4 | [21] | CanadianSolar MaxPower CS6X-325P | 950/kW | 950/kW | 11/year |
Wind | |||||
T1 | [30] | AWS 5.1 kW | 7387/kW | 7387/kW | 95/kW |
T2 | [20] | Eocycle EO10 10 kW | 29,000/item | 25,000/item | 50/year |
T3 | [21] | AWS HC 1.5 kW | 3600/item | 3600/item | 100/year |
T4 | [33] | Pika T701 1.5 kW | 5995/item | 5995/item | 100/year |
Generator | [31] | Generic Small Genset (size-your-own) | 500/kW | 500/kW | 0.03/op.hr |
Battery | |||||
B1 | [31] | Generic 1 kWh Li-Ion | 600/kWh | 600/kWh | 10/year |
B2 | [31] | Generic 1 kWh Lead Acid | 300/kWh | 300/kWh | 10/year |
Converter | |||||
[30] | Hoppecke 24 OPzS 3000, 7.15 kW Lead Acid | 585/item | 585/item | 6/year |
111 | 112 | 121 | 122 | 131 | 132 | 141 | 142 |
211 | 212 | 221 | 222 | 231 | 232 | 241 | 242 |
311 | 312 | 321 | 322 | 331 | 332 | 341 | 342 |
411 | 412 | 421 | 422 | 431 | 432 | 441 | 442 |
Sen. | PV (kW) | Wind Quantity | Gen (kW) | Battery (kWh) | COE ($/Wh) | NPC (M$) | OP ($/year) | Cost ($) | RF (%) | Fuel (L/year) | RI (year) | Excess Elect (%) | Unmet (%) | Salvage ($) | Emission (kg/year) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
111 | 241 | 80 | 717 | $0.26 | $1.73 | $53,630 | $845,712 | 74.3 | 34,283 | 4.88 | 14 | 0.656 | 207,391 | 91,084.06 | |
112 | 181 | 80 | 501 | $0.29 | $1.93 | $87,296 | $481,978 | 53 | 62,691 | 3.08 | 13.2 | 0.622 | 122,802 | 166,557.24 | |
121 | 148 | 8 | 80 | 411 | $0.23 | $1.52 | $46,288 | $756,378 | 74.7 | 34,448 | 4.03 | 23.7 | 0.402 | 148,515 | 91,520.18 |
122 | 134 | 10 | 60 | 440 | $0.24 | $1.64 | $57,939 | $676,523 | 69.3 | 40,418 | 3.71 | 30.1 | 0.615 | 63,206 | 107,382.06 |
131 | 220 | 13 | 80 | 659 | $0.26 | $1.73 | $54,600 | $826,249 | 72.9 | 36,155 | 4.8 | 13.6 | 0.608 | 221,165 | 96,055.54 |
132 | 158 | 24 | 80 | 468 | $0.28 | $1.92 | $84,385 | $525,509 | 55.5 | 59,679 | 3.37 | 11.5 | 0.598 | 131,105 | 158,553.85 |
141 | 236 | 80 | 721 | $0.26 | $1.73 | $53,901 | $841,523 | 74 | 34,822 | 4.87 | 13.7 | 0.655 | 211,090 | 92,514.51 | |
142 | 178 | 80 | 509 | $0.29 | $1.93 | $87,451 | $480,757 | 52.9 | 62,879 | 3.08 | 12.5 | 0.627 | 128,237 | 167,056.46 | |
211 | 126 | 80 | 149 | $0.29 | $1.95 | $90,025 | $463,630 | 34.8 | 82,692 | 3.19 | 10.5 | 0.564 | 101,316 | 219,695.6 | |
212 | 163 | 80 | 513 | $0.31 | $2.11 | $90,484 | $616,707 | 51.7 | 64,654 | 4.16 | 9.36 | 0.673 | 130,396 | 171,771.94 | |
221 | 80.6 | 9 | 60 | 207 | $0.24 | $1.64 | $60,928 | $633,450 | 55.1 | 56,791 | 3.67 | 23.2 | 0.482 | 47,563 | 150,881.47 |
222 | 91.1 | 10 | 80 | 336 | $0.26 | $1.77 | $66,455 | $673,643 | 64 | 49,014 | 3.84 | 24.2 | 0.57 | 27,109 | 130,221.1 |
231 | 108 | 32 | 80 | 140 | $0.29 | $1.94 | $85,244 | $527,943 | 40.8 | 75,302 | 3.45 | 9.58 | 0.511 | 23,669 | 200,062.58 |
232 | 140 | 33 | 80 | 468 | $0.31 | $2.09 | $85,887 | $667,738 | 55.6 | 59,685 | 4.59 | 8.85 | 0.613 | 43,326 | 158,570.85 |
241 | 118 | 80 | 152 | $0.29 | $1.95 | $91,202 | $443,246 | 33.8 | 84,028 | 3.05 | 8.51 | 0.582 | 99,573 | 223,245.73 | |
242 | 163 | 80 | 513 | $0.31 | $2.11 | $90,484 | $616,707 | 51.7 | 64,654 | 4.16 | 9.36 | 0.673 | 130,396 | 171,771.94 | |
311 | 247 | 80 | 694 | $0.26 | $1.79 | $54,918 | $878,854 | 73.8 | 34,989 | 5.2 | 15.1 | 0.652 | 245,753 | 92,958.63 | |
312 | 182 | 80 | 501 | $0.29 | $1.97 | $88,021 | $510,389 | 52.9 | 62,934 | 3.35 | 12.2 | 0.64 | 159,336 | 167,202.47 | |
321 | 136 | 8 | 80 | 399 | $0.23 | $1.56 | $48,501 | $753,335 | 73.3 | 36,414 | 4.12 | 20.8 | 0.478 | 166,906 | 96,744.77 |
322 | 137 | 10 | 60 | 434 | $0.25 | $1.67 | $58,397 | $700,106 | 69.3 | 40,475 | 3.87 | 29.9 | 0.614 | 88,421 | 10,7534.07 |
331 | 216 | 21 | 80 | 608 | $0.26 | $1.78 | $55,898 | $851,536 | 72.5 | 36,789 | 5.1 | 13.4 | 0.595 | 244,172 | 97,741.11 |
332 | 162 | 25 | 80 | 460 | $0.29 | $1.96 | $84,654 | $556,051 | 55.7 | 59,413 | 3.64 | 11.4 | 0.617 | 159,420 | 157,849.62 |
341 | 247 | 80 | 694 | $0.26 | $1.79 | $54,918 | $878,854 | 73.8 | 34,989 | 5.2 | 15.1 | 0.652 | 245,753 | 92,958.63 | |
342 | 183 | 80 | 498 | $0.29 | $1.97 | $87,974 | $511,412 | 52.9 | 62,862 | 3.36 | 12.4 | 0.633 | 157,717 | 167,010.46 | |
411 | 265 | 80 | 704 | $0.23 | $1.57 | $50,128 | $740,190 | 74.7 | 33,424 | 3.96 | 20.8 | 0.628 | 207,680 | 88,799.38 | |
412 | 253 | 60 | 629 | $0.27 | $1.80 | $78,687 | $493,840 | 59.6 | 52,570 | 2.97 | 26.6 | 0.637 | 162,738 | 139,667.05 | |
421 | 187 | 7 | 80 | 457 | $0.21 | $1.42 | $42,079 | $718,750 | 77 | 30,957 | 3.77 | 27.3 | 0.297 | 147,261 | 82,244.33 |
422 | 157 | 8 | 60 | 417 | $0.23 | $1.54 | $58,940 | $566,503 | 68.4 | 41,715 | 3.17 | 29 | 0.589 | 35,865 | 110,827.09 |
431 | 265 | 80 | 704 | $0.23 | $1.57 | $50,128 | $740,190 | 74.7 | 33,424 | 3.96 | 20.8 | 0.627 | 207,680 | 88,799.38 | |
432 | 238 | 12 | 60 | 604 | $0.27 | $1.79 | $77,165 | $514,371 | 60.6 | 51,313 | 3.09 | 25.4 | 0.642 | 18,686 | 136,326.93 |
441 | 265 | 80 | 704 | $0.23 | $1.57 | $50,128 | $740,190 | 74.7 | 33,424 | 3.96 | 20.8 | 0.627 | 207,680 | 88,799.38 | |
442 | 253 | 60 | 629 | $0.27 | $1.80 | $78,687 | $493,840 | 59.6 | 52,570 | 2.97 | 26.6 | 0.637 | 162,738 | 139,667.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, A.; Awalin, L.J.; Al-Khaykan, A.; Fard, H.F.; Alhamrouni, I.; Salem, M. Techno-Economic and Environmental Study of Optimum Hybrid Renewable Systems, including PV/Wind/Gen/Battery, with Various Components to Find the Best Renewable Combination for Ponorogo Regency, East Java, Indonesia. Sustainability 2023, 15, 1802. https://doi.org/10.3390/su15031802
Xu A, Awalin LJ, Al-Khaykan A, Fard HF, Alhamrouni I, Salem M. Techno-Economic and Environmental Study of Optimum Hybrid Renewable Systems, including PV/Wind/Gen/Battery, with Various Components to Find the Best Renewable Combination for Ponorogo Regency, East Java, Indonesia. Sustainability. 2023; 15(3):1802. https://doi.org/10.3390/su15031802
Chicago/Turabian StyleXu, Aoqi, Lilik Jamilatul Awalin, Ameer Al-Khaykan, Habib Forootan Fard, Ibrahim Alhamrouni, and Mohamed Salem. 2023. "Techno-Economic and Environmental Study of Optimum Hybrid Renewable Systems, including PV/Wind/Gen/Battery, with Various Components to Find the Best Renewable Combination for Ponorogo Regency, East Java, Indonesia" Sustainability 15, no. 3: 1802. https://doi.org/10.3390/su15031802
APA StyleXu, A., Awalin, L. J., Al-Khaykan, A., Fard, H. F., Alhamrouni, I., & Salem, M. (2023). Techno-Economic and Environmental Study of Optimum Hybrid Renewable Systems, including PV/Wind/Gen/Battery, with Various Components to Find the Best Renewable Combination for Ponorogo Regency, East Java, Indonesia. Sustainability, 15(3), 1802. https://doi.org/10.3390/su15031802