Establishment of a Model and System for Secondary Fertilization of Nutrient Solution and Residual Liquid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water and Fertilizer Integration Operation Process
2.2. Structure of Multi-Element Fertilizer Compounding System
2.3. Establishment of the Model of Secondary Fertilization with Nutrient Ion in Residual Liquid
2.4. Selection of Water-Soluble Inorganic Salts and Definition of Solution Variables
- N (nitrogen source): Urea, NH4H2PO4, Ca(NO3)2, NH4NO3—main, KNO3, (NH4)2SO4, NH4Cl—auxiliary;
- P (phosphorus source): KH2PO4, diammonium phosphate (DAP), NH4H2PO4, H3PO4;
- K: KH2PO4—main, KNO3—auxiliary;
- Ca: Ca (NO3)2, CaCl2;
- Mg: MgSO4;
- S: Sulfate.
2.5. Solving the Model of Fertilizer with Nutrient Ion in Residual Liquid
- 1.
- Determine the amount of
- 2.
- Determine the amount of
- 3.
- Determine the amount of
- 4.
- Determine the amount of
- 5.
- Determine the value of to determine the amount of ,
- 6.
- Determine the amount of
2.6. Preparation and Detection Method of Nutrient Solution Stock Solution and Recovery Solution
3. Results and Discussion
3.1. Verification of the Model System of Secondary Fertilizer Compounding with Nutrient Ions in Residual Liquid
3.2. Analysis of the Terification Results of the Secondary Fertilization Model of Residual Liquid Nutrient Ions
3.3. Discussion on the Application Effect of the Secondary Fertilization Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, J.; Cheng, M.; Zhao, C.; Li, B.; Peng, H.; Zhang, Y.; Shao, Q.; Hassan, M. Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives. Ind. Crop. Prod. 2022, 176, 114267. [Google Scholar] [CrossRef]
- Liu, N.; Xu, C.; Chen, B.; Xiong, Z.; Li, H.; Li, G. Research and Experiment on Key Technology of Water-Fertilizer Integration Intelligent Equipment. In Proceedings of the 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 15–17 July 2021; pp. 493–497. [Google Scholar]
- Wu, Y.; Li, L.; Li, S.; Wang, H.; Zhang, M.; Sun, H.; Sygrimis, N.; Li, M. Optimal control algorithm of fertigation system in greenhouse based on EC model. Int. J. Agric. Biol. Eng. 2019, 12, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Mihalache, G.; Peres, C.I.; Bodale, I.; Achitei, V.; Gheorghitoaie, M.V.; Teliban, G.C.; Cojocaru, A.; Butnariu, M.; Muraru, V.; Stoleru, V. Tomato Crop Performances under Chemical Nutrients Monitored by Electric Signal. Agronomy 2020, 10, 1915. [Google Scholar] [CrossRef]
- Zhai, Z.; Chen, X.; Zhang, Y.; Zhou, R. Decision-making technology based on knowledge engineering and experiment on the intelligent water-fertilizer irrigation system. J. Comput. Methods Sci. Eng. 2021, 21, 665–684. [Google Scholar] [CrossRef]
- Nithiya, S.; Annapurani, K. Optimised fertiliser suggestion in smart agriculture system based on fuzzy inference rule. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2021, 71, 191–201. [Google Scholar] [CrossRef]
- Elvanidi, A.; Reascos, C.M.B.; Gourzoulidou, E.; Kunze, A.; Max, J.F.J.; Katsoulas, N. Implementation of the Circular Economy Concept in Greenhouse Hydroponics for Ultimate Use of Water and Nutrients. Horticulturae 2020, 6, 83. [Google Scholar] [CrossRef]
- Hodgson, B.; Sharvelle, S. Development of generalized empirical models for comparing effectiveness of wastewater nutrient removal technologies. Environ. Sci. Pollut. Res. 2019, 26, 27915–27929. [Google Scholar] [CrossRef]
- Zimmermann, M.; Fischer, M. Impact assessment of water and nutrient reuse in hydroponic systems using Bayesian Belief Networks. J. Water Reuse Desalination 2020, 10, 431–442. [Google Scholar] [CrossRef]
- Mehra, M.; Saxena, S.; Sankaranarayanan, S.; Tom, R.J.; Veeramanikandan, M. IoT based hydroponics system using Deep Neural Networks. Comput. Electron. Agric. 2018, 155, 473–486. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, J.; Ma, X.; Wang, J.; Gao, Z.; Hu, X. Effects of different N, P, K and Ca levels on tomato yield, quality and fertiliser use efficiency. Plant. Soil Environ. 2020, 66, 569–575. [Google Scholar] [CrossRef]
- Yan, W.; Fan, W. Research on the Current Situation and Development of Intelligent Precision Fertilizer Technology. In Proceedings of the 11th IFIP WG 5.14 International Conference on Computer and Computing Technologies in Agriculture (CCTA), Jilin, China, 12–15 August 2019. [Google Scholar]
- Milon, C.; Nafiul, I.M.; Nasim, R.M.; Mohammod, A.L.I.; Kamal, R.; Shafik, K.; Daehyun, L.E.E.; Sun-Ok, C. Sensor-Based Nutrient Recirculation for Aeroponic Lettuce Cultivation. J. Biosyst. Eng. 2021, 46, 81–92. [Google Scholar]
- Moreno-Pérez, E.D.C.; Castillo, S.D.; Gutiérrez-Tlaque, J.; González-Molina, L.; Pineda-Pineda, J. Greenhouse lettuce production with and without nutrient solution recycling. Rev. Chapingo Ser. Hortic. 2015, 21, 43–55. [Google Scholar] [CrossRef]
- Miller, A.; Adhikari, R.; Nemali, K. Recycling Nutrient Solution Can Reduce Growth Due to Nutrient Deficiencies in Hydroponic Production. Front. Plant Sci. 2020, 11, 607643. [Google Scholar] [CrossRef] [PubMed]
- Park, C.J.; Ok, Y.S.; Eui, Y.J.; Yoal, Y.K. Recycling of Hydroponic Waste Solution for Red Pepper (Capsicum annum L.) Growth. Korean J. Environ. Agric. 2005, 24, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Mungray, A.A.; Mungray, A.K. Technologies for the recovery of nutrients, water and energy from human urine: A review. Chemosphere 2020, 259, 127372. [Google Scholar] [CrossRef] [PubMed]
- Benni, S.; Tassinari, P.; Bonora, F.; Barbaresi, A.; Torreggiani, D. Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build. 2016, 125, 276–286. [Google Scholar] [CrossRef]
- Chen, J.; Xu, F.; Tan, D.P.; Shen, Z.; Zhang, L.B.; Ai, Q.L. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Appl. Energy 2015, 141, 106–118. [Google Scholar] [CrossRef]
- Yuan, H.; Li, L.; Wang, J.; Wang, H.; Sigrimis, N.A. Design and test of regulation and control equipment for nutrient solution of water and fertilizer integration in greenhouse. Trans. Chin. Soc. Agric. Eng. 2016, 32, 27–32. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, M.; Li, L.; Wang, H. Influence of Different Fertilization on-Phenotypic Data of Greenhouse Tomato in all Growth Periods. Trans. Chin. Soc. Agric. Mach. 2017, 48, 321–326. [Google Scholar]
- Ohana-Levi, N.; Ben-Gal, A.; Peeters, A.; Termin, D.; Linker, R.; Baram, S.; Raveh, E.; Paz-Kagan, T. A comparison between spatial clustering models for determining N-fertilization management zones in orchards. Precis. Agric. 2021, 22, 99–123. [Google Scholar] [CrossRef]
- Wang, H.; Fu, Q.; Meng, F.; Mei, S.; Wang, J.; Li, L. Optimal design and experiment of fertilizer EC regulation based on subsection control algorithm of fuzzy and PI. Trans. Chin. Soc. Agric. Eng. 2016, 32, 110–116. [Google Scholar]
Solve Variables | Representative | Fertilizer | Element | The Complementary Mass of the Element’s Corresponding Ion (g) |
---|---|---|---|---|
NH4NO3 | N | A-a | ||
KH2PO4 | P | B-b | ||
(H3PO4) | ||||
KH2PO4 | K | C-c | ||
K2SO4 | ||||
KNO3 | ||||
Ca (NO3)2 | Ca | D-d | ||
CaCl2 | ||||
MgSO4 | Mg | E-e | ||
MgSO4 | S | F-f | ||
K2SO4 | ||||
(H2SO4) | ||||
HNO3 | acid | / | ||
NaOH | alkali | / |
Serial Number | Report Number | Sample Name | EC | pH | S | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
/ | |||||||||||
1 | Y200155 | original 1 | 1.46 | 7.42 | 8.08 | 190.2 | 5.1 | 56.38 | 346.4 | 86.9 | 53.6 |
2 | Y200156 | original 2 | 1.60 | 7.73 | 7.56 | 171.5 | 10.7 | 53.79 | 287.6 | 85.9 | 54.1 |
3 | Y200157 | original 3 | 1.34 | 7.16 | 7.01 | 175.1 | 5.6 | 48.82 | 275.9 | 86.3 | 52.7 |
4 | Y200158 | original 4 | 1.42 | 7.55 | 0.00 | 22.1 | 3.7 | 49.72 | 219.6 | 84.2 | 46.8 |
5 | Y200159 | original 5 | 1.41 | 7.78 | 0.00 | 29.7 | 7.5 | 44.28 | 186.2 | 79.4 | 44.7 |
6 | Y200160 | original 6 | 1.42 | 7.92 | 0.00 | 19.8 | 4.2 | 44.35 | 186.8 | 81.8 | 41.4 |
m | S | |||||||
---|---|---|---|---|---|---|---|---|
A-a | B-b | C-c | D-d | E-e | F-f | |||
Supplement 1 | 0.44 | 2.71 | 6.16 | 0.015 | 0.17 | 3.17 | 0.11 | 0.071 |
Supplement 2 | 0.42 | 2.29 | 5.45 | 0.034 | 0.24 | 2.54 | 0.27 | 0.098 |
Supplement 3 | 0.39 | 2.50 | 6.41 | 0.015 | 0.11 | 2.23 | 0.19 | 0.118 |
x1 | x2 | x3 | x4 | x5’ | x5 | x6 | x7 | x8 | x10 | x11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Supplement 1 | 0.0615 | 0.0150 | 0 | 0.155 | 3.1700 | 0.1585 | 0.1100 | 0 | 0.065 | 0 | 3.0115 |
Supplement 2 | 0.0651 | 0.0340 | 0 | 0.206 | 2.5400 | 0.1449 | 0.2700 | 0 | 0.004 | 0 | 2.3951 |
Supplement 3 | 0.0526 | 0.0150 | 0 | 0.095 | 2.2300 | 0.1424 | 0.1900 | 0 | 0.100 | 0 | 2.8760 |
Serial Number | Report Number | Sample Name | EC | pH | S | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
/ | |||||||||||
1 | Y200155 | original 1 | 1.46 | 7.42 | 8.08 | 190.2 | 5.1 | 56.38 | 346.4 | 86.9 | 53.6 |
2 | Y200156 | original 2 | 1.60 | 7.73 | 7.56 | 171.5 | 10.7 | 53.79 | 287.6 | 85.9 | 54.1 |
3 | Y200157 | original 3 | 1.34 | 7.16 | 7.01 | 175.1 | 5.6 | 48.82 | 275.9 | 86.3 | 52.7 |
4 | Y200214 | original 4 | 1.44 | 7.32 | 6.93 | 178.9 | 7.8 | 66.53 | 351.1 | 84.7 | 66.3 |
5 | Y200215 | original 5 | 1.71 | 7.39 | 7.87 | 165.7 | 8.5 | 62.11 | 282.4 | 86.7 | 61.5 |
6 | Y200216 | original 6 | 1.66 | 7.54 | 5.51 | 188.6 | 7.8 | 57.36 | 272.1 | 89.6 | 61.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fang, W.; Zhao, Z. Establishment of a Model and System for Secondary Fertilization of Nutrient Solution and Residual Liquid. Sustainability 2023, 15, 1851. https://doi.org/10.3390/su15031851
Wang X, Fang W, Zhao Z. Establishment of a Model and System for Secondary Fertilization of Nutrient Solution and Residual Liquid. Sustainability. 2023; 15(3):1851. https://doi.org/10.3390/su15031851
Chicago/Turabian StyleWang, Xinzhong, Weiquan Fang, and Zhongfeng Zhao. 2023. "Establishment of a Model and System for Secondary Fertilization of Nutrient Solution and Residual Liquid" Sustainability 15, no. 3: 1851. https://doi.org/10.3390/su15031851
APA StyleWang, X., Fang, W., & Zhao, Z. (2023). Establishment of a Model and System for Secondary Fertilization of Nutrient Solution and Residual Liquid. Sustainability, 15(3), 1851. https://doi.org/10.3390/su15031851