Risks in Major Cryptocurrency Markets: Modeling the Dual Long Memory Property and Structural Breaks
Abstract
:1. Introduction
2. Dual Long Memory Models with Structural Breaks
3. Data and Preliminary Statistics
4. Empirical Results
4.1. Estimation Results, with and without Structural Breaks
4.2. Evaluation of Forecasting Accuracy and Diebold and Mariano (DM) Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
BTC | DASH | ETH | LTC | XMR | XRP | |
---|---|---|---|---|---|---|
A. Conditional mean equation | ||||||
0.0730 (0.0455) | 0.1010 (0.0958) | 0.1961 ** (0.0991) | −0.0295 (0.0353) | 0.1273 * (0.0722) | −0.1678 *** (0.0546) | |
- | −0.1695 (0.1225) | - | - | - | - | |
−0.0102 (0.0138) | −0.0318 ** (0.0149) | −0.0113 (0.0155) | −0.0644 *** (0.0118) | −0.0466 *** (0.0146) | −0.0277 ** (0.0133) | |
B. Conditional variation equation | ||||||
2.6424 * (1.3817) | 18.155 (14.606) | 3.5248 (2.5354) | 3.4735 (2.2756) | 60.753 *** (22.070) | 14.127 (15.236) | |
−2.4547 * (1.3651) | −15.358 (13.832) | −0.3786 (1.9222) | −1.0387 (5.5905) | −56.585 *** (21.776) | −14.353 (15.269) | |
5.2440 * (2.8119) | −8.6414 (11.425) | - | −3.5754 (2.3052) | −58.460 *** (21.881) | −3.1874 (10.132) | |
−2.1341 * (1.2693) | −14.767 (13.432) | - | - | - | −11.901 (13.249) | |
0.6940 *** (0.1562) | 0.6257 *** (0.1988) | 0.5933 *** (0.1489) | 0.6212 *** (0.0944) | 0.6189 *** (0.1247) | 0.4328 *** (0.0592) | |
0.3453 *** (0.1054) | 0.2790 * (0.1649) | 0.1017 (0.1316) | 0.5388 *** (0.1285) | 0.1935 ** (0.0816) | 0.3413 (0.6512) | |
0.7659 *** (0.0819) | 0.5465 ** (0.2563) | 0.4982 *** (0.1380) | 0.8345 *** (0.0504) | 0.5934 *** (0.0810) | 0.3000 (0.6510) | |
−0.0501 ** (0.0220) | 0.0760 *** (0.0245) | 0.0693 *** (0.0269) | 0.0271 (0.0205) | 0.0469 * (0.0269) | 0.0156 (0.0239) | |
2.4971 *** (0.1345) | 3.1631 *** (0.2170) | 2.7898 *** (0.2124) | 2.2380 *** (0.0947) | 3.6152 *** (0.2791) | 2.4985 *** (0.1588) | |
0.2053 * (0.1222) | −0.0189 (0.0772) | 0.1744 (0.1322) | 0.5508 ** (0.2627) | −0.0308 (0.0564) | 0.6386 ** (0.2563) | |
C. Diagnostic checking | ||||||
−6983.22 | −7452.73 | −5767.67 | −7762.52 | −7374.35 | −7579.83 | |
5.1319 | 6.1278 | 6.0790 | 5.6979 | 6.3043 | 5.7716 | |
63.43 *** | 42.32 *** | 52.16 *** | 51.13 *** | 52.32 *** | 35.07 *** | |
6.35 | 5.80 | 11.58 | 4.37 | 16.60 | 1.14 | |
0.43 | 0.35 | 1.01 | 0.07 | 1.21 | 0.06 |
BTC | DASH | ETH | LTC | XMR | XRP | |
---|---|---|---|---|---|---|
A. Conditional mean equation | ||||||
0.0987 ** (0.0427) | 0.0853 (0.0892) | 0.2253 ** (0.0990) | −0.0351 (0.0354) | 0.1878 ** (0.0766) | −0.1255 ** (0.0530) | |
- | −0.1502 (0.1146) | - | - | - | - | |
−0.0127 (0.0153) | −0.0373 *** (0.0139) | −0.0116 (0.0158) | −0.0636 *** (0.0122) | −0.0478 *** (0.0142) | −0.0269 * (0.0155) | |
B. Conditional variation equation | ||||||
127.58 *** (13.697) | 95.258 *** (35.191) | 248.27 (673.67) | 167.92 *** (16.933) | 304.58 *** (103.76) | 86.419 *** (26.356) | |
−42.149 ** (20.290) | −14.238 (10.453) | 67.692 (247.51) | −24.909 (18.485) | −19.594 (135.00) | −2.1122 (6.8424) | |
128.42 *** (8.5360) | 16.185 (28.737) | - | −267.27 *** (27.069) | 8.0732 (218.50) | 49.194 ** (22.530) | |
119.02 *** (11.214) | 23.391 (33.446) | - | - | - | 54.502 ** (22.185) | |
0.6631 *** (0.0492) | 0.5065 *** (0.0548) | 0.5621 ** (0.2224) | 0.4116 *** (0.0684) | 0.6007 *** (0.1003) | 0.5227 *** (0.0335) | |
0.2668 *** (0.0697) | 0.1265 (0.1491) | 0.1049 (0.1082) | 0.4331 *** (0.1408) | 0.1930 *** (0.0749) | 0.2881 * (0.1610) | |
0.7037 *** (0.0737) | 0.3715 ** (0.1734) | 0.4453 *** (0.1643) | 0.6113 *** (0.1412) | 0.6103 *** (0.0604) | 0.3973 ** (0.1883) | |
−0.0741 (0.0570) | 0.0253 (0.0685) | −0.0580 (0.0681) | −0.1761 *** (0.0529) | −0.2238 *** (0.0604) | −0.1120 * (0.0615) | |
1.9995 *** (0.1631) | 1.2106 *** (0.1589) | 1.8034 ** (0.7282) | 2.3373 *** (0.0577) | 1.680 1*** (0.1793) | 1.0804 *** (0.0971) | |
−0.0438 ** (0.0212) | 0.0771 *** (0.0242) | 0.0767 *** (0.0265) | 0.0233 (0.0214) | 0.0613 ** (0.0290) | 0.0299 (0.0228) | |
3.0358 *** (0.1063) | 3.3493 *** (0.2109) | 3.0959 *** (0.4091) | 2.7428 *** (0.0706) | 3.6221 *** (0.2920) | 2.8861 *** (0.1458) | |
C. Diagnostic checking | ||||||
−7000.46 | −7446.49 | −5765.72 | −7765.63 | −7366.23 | −7581.62 | |
5.1474 | 6.1259 | 6.0809 | 5.7030 | 6.3007 | 5.7759 | |
59.43 *** | 47.08 *** | 50.19 *** | 51.82 *** | 49.49 *** | 39.01 *** | |
5.92 | 9.85 | 15.02 | 8.51 | 13.32 | 2.28 | |
0.38 | 0.67 | 1.14 | 0.06 | 1.05 | 0.10 |
References
- Urquhart, A. What causes the attention of Bitcoin? Econ. Lett. 2018, 166, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Urquhart, A. The inefficiency of Bitcoin. Econ. Lett. 2016, 148, 80–82. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Jana, R.K.; Das, D.; Roubaud, D. Informational efficiency of Bitcoin—An extension. Econ. Lett. 2018, 163, 106–109. [Google Scholar] [CrossRef]
- Nadarajah, S.; Chu, J. On the inefficiency of Bitcoin. Econ. Lett. 2017, 150, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Bariviera, A.F. The inefficiency of Bitcoin revisited: A dynamic approach. Econ. Lett. 2017, 161, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Katsiampa, P. Volatility estimation for Bitcoin: A comparison of GARCH models. Econ. Lett. 2017, 158, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Takaishi, T. Statistical properties and multifractality of Bitcoin. Phys. A 2018, 506, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Sensoy, A. The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Financ. Res. Lett. 2019, 28, 68–73. [Google Scholar] [CrossRef]
- Vidal-Tomás, D.; Ibañez, A. Semi-strong efficiency of Bitcoin. Financ. Res. Lett. 2018, 27, 259–265. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, J.; Rodriguez, E.; Ibarra-Valdez, C. Long-range correlations and asymmetry in the Bitcoin market. Phys. A 2018, 492, 948–955. [Google Scholar] [CrossRef]
- Dyhrberg, A.H. Bitcoin, gold and the dollar—A GARCH volatility analysis. Financ. Res. Lett. 2016, 16, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Ramirez, J.; Rodriguez, E. A singular value decomposition approach for testing the efficiency of Bitcoin and Ethereum markets. Econ. Lett. 2021, 206, 109997. [Google Scholar] [CrossRef]
- Duan, K.; Li, Z.; Urquhart, A.; Ye, J. Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach. Int. Rev. Financ. Anal. 2021, 75, 101725. [Google Scholar] [CrossRef]
- López-Martín, C.; Benito Muela, S.; Arguedas, R. Efficiency in cryptocurrency markets: New evidence. Eurasian Econ. Rev. 2021, 11, 403–431. [Google Scholar] [CrossRef]
- Kakinaka, S.; Umeno, K. Cryptocurrency market efficiency in short-and long-term horizons during COVID-19: An asymmetric multifractal analysis approach. Financ. Res. Lett. 2022, 46, 102319. [Google Scholar] [CrossRef]
- Phiri, A. Can wavelets produce a clearer picture of weak-form market efficiency in Bitcoin? Eurasian Econ. Rev. 2022, 12, 373–386. [Google Scholar] [CrossRef]
- Aggarwal, R.; Inclan, C.; Leal, R. Volatility in emerging stock markets. J. Financ. Quant. Anal. 1999, 34, 33–55. [Google Scholar] [CrossRef]
- Lamoureux, C.G.; Lastrapes, W.D. Persistence in variance, structural change, and the GARCH model. J. Bus. Econ. Stat. 1990, 8, 225–234. [Google Scholar]
- Lastrapes, W.D. Exchange rate volatility and U.S. monetary policy: An ARCH application. J. Money Credit. Bank. 1989, 21, 66–77. [Google Scholar] [CrossRef]
- Yıldırım, D.Ç.; Cevik, E.I.; Esen, Ö. Time-varying volatility spillovers between oil prices and precious metal prices. Resour. Policy 2020, 68, 101783. [Google Scholar] [CrossRef]
- Caporale, G.M.; Karanasos, M.; Yfanti, S.; Kartsaklas, A. Investors’ trading behaviour and stock market volatility during crisis periods: A dual long-memory model for the Korean Stock Exchange. Int. J. Financ. Econ. 2021, 26, 4441–4461. [Google Scholar] [CrossRef]
- Luo, J.; Demirer, R.; Gupta, R.; Ji, Q. Forecasting oil and gold volatilities with sentiment indicators under structural breaks. Energy Econ. 2022, 105, 105751. [Google Scholar] [CrossRef]
- Pan, Q.; Mei, X.; Gao, T. Modeling dynamic conditional correlations with leverage effects and volatility spillover effects: Evidence from the Chinese and US stock markets affected by the recent trade friction. N. Am. J. Econ. Financ. 2022, 59, 101591. [Google Scholar] [CrossRef]
- Vougas, D.V. Analysing long memory and volatility of returns in the Athens stock exchange. Appl. Financ. Econ. 2004, 14, 457–460. [Google Scholar] [CrossRef]
- Kang, S.H.; Yoon, S.-M. Long memory properties in return and volatility: Evidence from the Korean stock market. Phys. A 2007, 385, 591–600. [Google Scholar] [CrossRef]
- Kasman, A.; Torun, E. Long memory in the Turkish stock market return and volatility. Cent. Bank Rev. 2007, 7, 13–27. [Google Scholar]
- Kasman, A.; Kasman, S.; Torun, E. Dual long memory property in returns and volatility: Evidence from the CEE countries’ stock markets’. Emerg. Mark. Rev. 2009, 10, 122–139. [Google Scholar] [CrossRef]
- Mensi, W.; Hammoudeh, S.; Yoon, S.-M. Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements. Int. Rev. Econ. Financ. 2014, 30, 101–119. [Google Scholar] [CrossRef]
- Marchese, M.; Kyriakou, I.; Tamvakis, M.; Di Iorio, F. Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models. Energy Econ. 2020, 88, 104757. [Google Scholar] [CrossRef]
- Rehman, M.U. Do bitcoin and precious metals do any good together? An extreme dependence and risk spillover analysis. Resour. Policy 2020, 68, 101737. [Google Scholar] [CrossRef]
- Boubaker, H.; Saidane, B.; Ben Saad Zorgati, M. Modelling the dynamics of stock market in the gulf cooperation council countries: Evidence on persistence to shocks. Financ. Innov. 2022, 8, 1–22. [Google Scholar] [CrossRef]
- González-Pla, F.; Lovreta, L. Modeling and forecasting firm-specific volatility: The role of asymmetry and long-memory. Financ. Res. Lett. 2022, 48, 102931. [Google Scholar] [CrossRef]
- Lovcha, Y.; Perez-Laborda, A. Long-memory and volatility spillovers across petroleum futures. Energy 2022, 243, 122950. [Google Scholar] [CrossRef]
- Mensi, W.; Hammoudeh, S.; Yoon, S.-M. Structural breaks, dynamic correlations, asymmetric volatility transmission, and hedging strategies for petroleum prices and USD exchange rate. Energy Econ. 2015, 48, 46–60. [Google Scholar] [CrossRef]
- Inclán, C.; Tiao, G.C. Use of cumulative sums of squares for retrospective detection of changes of variance. J. Am. Stat. Assoc. 1994, 89, 913–923. [Google Scholar]
- Bai, J.; Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econom. 2003, 18, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Baillie, R.T.; Bollerslev, T.; Mikkelsen, H.O. Fractionally integrated generalized autoregressive conditional heteroskedasticity. J. Econom. 1996, 74, 3–30. [Google Scholar] [CrossRef]
- Chung, C.-F. Estimating the Fractionally Integrated GARCH Model; Discussion Paper; National Taiwan University: New Taipei, Taiwan, 1999. [Google Scholar]
- Bollerslev, T.; Mikkelsen, H.O. Modeling and pricing long memory in stock market volatility. J. Econom. 1996, 73, 151–184. [Google Scholar] [CrossRef]
- Tse, Y.K. The conditional heteroscedasticity of the yen–dollar exchange rate. J. Appl. Econom. 1998, 13, 49–55. [Google Scholar] [CrossRef]
- Nelson, D.B. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 1991, 59, 347–370. [Google Scholar] [CrossRef]
- Davidson, J. Moment and memory properties of linear conditional heteroscedasticity models, and a new model. J. Bus. Econ. Stat. 2004, 22, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Bartos, J. Does Bitcoin follow the hypothesis of efficient market? Int. J. Econ. Sci. 2015, 4, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Brailsford, T.J.; Faff, R.W. An evaluation of volatility forecasting techniques. J. Bank. Financ. 1996, 20, 419–438. [Google Scholar] [CrossRef]
- Brook, C.; Persand, G. Volatility forecasting for risk management. J. Forecast. 2003, 22, 1–22. [Google Scholar] [CrossRef]
- Degiannakis, S. Volatility forecasting: A fractional integrated asymmetric power ARCH skewed-t model. Appl. Financ. Econ. 2004, 14, 1333–1342. [Google Scholar] [CrossRef]
BTC | DASH | ETH | LTC | XMR | XRP | |
---|---|---|---|---|---|---|
A. Descriptive statistics | ||||||
Mean | 0.1635 | 0.2117 | 0.2584 | 0.0921 | 0.1848 | 0.1406 |
Maximum | 35.7451 | 127.0565 | 41.2337 | 82.8968 | 58.4637 | 102.7356 |
Minimum | −46.4729 | −46.7565 | −130.2105 | −51.3925 | −49.4208 | −61.6273 |
Std. Dev | 4.2497 | 7.4348 | 6.8929 | 6.3026 | 6.8015 | 6.9866 |
Kurtosis | 12.2749 | 45.1602 | 71.8075 | 25.9537 | 7.8084 | 31.6827 |
Skewness | −0.5889 | 2.8712 | −3.4718 | 1.5024 | 0.4495 | 2.0074 |
Jarque–Bera | 17,366 *** | 211,559 *** | 414,411 *** | 77,961.5 *** | 6059.6 *** | 112,360 *** |
B. Results of the unit root tests for the logarithmic prices | ||||||
ADF | −1.12 | −2.21 | −2.05 | −1.29 | −0.70 | −1.45 |
PP | −0.81 | −2.22 | −1.45 | −1.11 | −0.70 | −1.13 |
KPSS | 0.47 *** | 0.92 *** | 1.09 *** | 0.55 *** | 0.87 *** | 0.57 *** |
C. Results of the unit root tests for the returns | ||||||
ADF | −10.63 *** | −49.67 *** | −7.69 *** | −17.24 *** | −12.79 *** | −14.19 *** |
PP | −53.14 *** | −49.71 *** | −42.30 *** | −51.88 *** | −49.07 *** | −49.45 *** |
KPSS | 0.08 | 0.34 | 0.26 | 0.09 | 0.16 | 0.08 |
D. Statistical properties | ||||||
34.59 *** | 31.9 *** | 28.3 * | 36.4 *** | 30.5 ** | 62.9 *** | |
304.7 *** | 293.7 *** | 126.0 *** | 488.4 *** | 350.5 *** | 391.3 *** | |
ARCH(12) | 16.3 *** | 31.8 *** | 9.5 *** | 32.3 *** | 16.1 *** | 24.1 *** |
BTC | DASH | ETH | LTC | XMR | XRP | |
---|---|---|---|---|---|---|
A. Conditional mean equation | ||||||
0.1039 ** (0.0447) | 0.0238 (0.0705) | 0.1868 * (0.0977) | −0.0334 (0.0357) | 0.1432 ** (0.0713) | −0.1408 *** (0.0419) | |
−0.0048 (0.0150) | −0.0275 * (0.0144) | −0.0116 (0.0154) | −0.0607 *** (0.0125) | −0.0492 *** (0.0145) | −0.0505 *** (0.0134) | |
B. Conditional variation equation | ||||||
102.83 * (53.063) | 330.11 *** (13.694) | 232.60 *** (14.771) | 117.80 * (60.299) | 683.23 *** (24.150) | 48.932 *** (14.858) | |
0.6978 *** (0.0650) | 0.5345 *** (0.0396) | 0.5052 *** (0.0465) | 0.7212 *** (0.0679) | 0.6344 *** (0.0314) | 0.5227 *** (0.0560) | |
0.2517 *** (0.0524) | 0.1813 (0.2120) | 0.0893 (0.1297) | 0.2950 *** (0.0567) | 0.1679 ** (0.0775) | 0.1738 *** (0.0667) | |
0.7364 *** (0.0607) | 0.4101 * (0.2478) | 0.3654 *** (0.1324) | 0.7919 *** (0.0518) | 0.4635 *** (0.0843) | 0.6029 *** (0.0666) | |
−0.0380 * (0.0205) | 0.0781 *** (0.0237) | 0.0646 ** (0.0258) | 0.0274 (0.0208) | 0.0581 ** (0.0292) | 0.0562 ** (0.0269) | |
3.2116 *** (0.1170) | 3.2621 *** (0.1582) | 3.0608 *** (0.1646) | 2.9527 *** (0.0819) | 3.6222 *** (0.2208) | 3.5099 *** (0.2094) | |
C. Diagnostic checking | ||||||
−7018.98 | −7463.62 | −5783.06 | −7785.53 | −5868.94 | −7374.36 | |
5.1446 | 6.1182 | 6.0872 | 5.7060 | 6.1739 | 6.2944 | |
58.64 *** | 51.87 *** | 4.49 ** | 54.95 *** | 56.44 *** | 53.34 *** | |
5.97 | 5.81 | 0.36 | 2.62 | 17.38 | 16.89 | |
0.34 | 0.34 | 1.19 | 0.09 | 1.20 | 1.17 |
Cryptocurrency | Conditional Mean | Time Period |
---|---|---|
BTC | 0.1654 | 30 April 2013~29 October 2020 |
DASH | 0.5925 | 15 February 2014~20 December 2017 |
−0.3010 | 21 December 2017~29 October 2020 | |
ETH | 0.2584 | 10 August 2015~29 October 2020 |
LTC | 0.0922 | 30 April 2013~29 October 2020 |
XMR | 0.1849 | 22 May 2014~29 October 2020 |
XRP | 0.1406 | 5 August 2013~29 October 2020 |
Cryptocurrency | Standard Deviation | Time Period |
---|---|---|
BTC | 6.4391 | 30 April 2013~14 April 2014 |
3.1868 | 16 April 2014~5 May 2017 | |
5.5929 | 6 May 2017~24 April 2018 | |
3.6916 | 25 April 2018~29 October 2020 | |
DASH | 17.6279 | 15 February 2014~19 August 2014 |
5.3276 | 20 August 2014~31 December 2016 | |
7.8378 | 1 January 2017~12 February 2018 | |
5.2387 | 13 February 2018~29 October 2020 | |
ETH | 8.5226 | 10 August 2015~7 February 2018 |
4.9148 | 8 February 2018~29 October 2020 | |
LTC | 5.3273 | 30 April 2013~15 November 2013 |
14.0939 | 16 November 2013~13 April 2014 | |
5.5548 | 14 April 2014~29 October 2020 | |
XMR | 15.3774 | 22 May 2014~23 July 2014 |
7.2966 | 24 July 2014~12 March 2018 | |
4.8902 | 13 March 2018~29 October 2020 | |
XRP | 10.9748 | 5 August 2013~28 May 2014 |
4.4208 | 29 May 2014~20 March 2017 | |
12.5448 | 21 March 2017~12 February 2018 | |
4.6843 | 13 February 2018~29 October 2020 |
BTC | DASH | ETH | LTC | XMR | XRP | |
---|---|---|---|---|---|---|
A. Conditional mean equation | ||||||
0.0937 ** (0.0440) | 0.0938 (0.0929) | 0.2136 ** (0.0990) | −0.0319 (0.0349) | 0.1454 ** (0.0713) | −0.1652 *** (0.0573) | |
- | −0.1526 (0.1194) | - | - | - | - | |
−0.0077 (0.0143) | −0.0324 ** (0.0149) | −0.0104 (0.0157) | −0.0607 *** (0.0125) | −0.0494 *** (0.0145) | −0.0256 * (0.0132) | |
B. Conditional variation equation | ||||||
132.34 *** (14.012) | 933.77 *** (140.81) | 441.10 *** (17.116) | 62.953 (38.906) | 830.21 *** (134.47) | 735.43 * (423.29) | |
−42.464 *** (12.923) | −285.41 *** (47.521) | 123.17 *** (21.982) | −11.456 (20.308) | −41.883 (128.53) | −78.947 (84.269) | |
135.64 *** (11.104) | −29.852 (134.33) | - | −82.862 *** (25.994) | 2.5130 (28.504) | 572.12 (413.70) | |
126.63 *** (12.202) | 87.502 (142.55) | - | - | - | 664.26 (465.98) | |
0.6591 *** (0.0486) | 0.6207 *** (0.0409) | 0.5970 *** (0.0366) | 0.4587 *** (0.0648) | 0.6536 *** (0.0344) | 0.6589 *** (0.0619) | |
0.2626 *** (0.0638) | 0.1805 (0.1843) | 0.0914 (0.1093) | 0.3868 *** (0.0876) | 0.1689 ** (0.0691) | 0.2684 *** (0.0909) | |
0.6919 *** (0.0710) | 0.4708 ** (0.2029) | 0.4469 *** (0.1023) | 0.6459 *** (0.0797) | 0.6138 *** (0.0654) | 0.4536 *** (0.1001) | |
−0.0434 ** (0.0211) | 0.0771 *** (0.0247) | 0.0759 *** (0.0264) | 0.0305 (0.0210) | 0.0577 ** (0.0270) | 0.0202 (0.0244) | |
3.0250 *** (0.1074) | 3.1176 *** (0.1536) | 3.0441 *** (0.1616) | 3.0322 *** (0.1025) | 3.4819 *** (0.2061) | 2.9105 *** (0.1072) | |
C. Diagnostic checking | ||||||
−7001.55 | −7451.21 | −5766.36 | −7777.29 | −7373.98 | −7588.03 | |
5.1424 | 6.1233 | 6.0737 | 5.7057 | 6.3007 | 5.7748 | |
58.91 *** | 43.92 *** | 50.22 *** | 56.02 *** | 53.31 *** | 38.78 *** | |
6.28 | 7.58 | 15.99 | 2.89 | 16.60 | 2.66 | |
0.39 | 0.47 | 1.19 | 0.06 | 0.08 | 0.15 |
BTC | DASH | ETH | LTC | XMR | XRP | |
---|---|---|---|---|---|---|
(A) Standard GARCH model without structural break dummies | ||||||
MAE | 15.2040 | 28.5379 | 29.4993 | 49.2557 | 21.5686 | 27.7451 |
MSE | 497.11 | 2702.96 | 1484.65 | 4433.68 | 1018.60 | 1464.10 |
(B) ARFIMA-FIGARCH model without structural break dummies | ||||||
MAE | 8.7251 | 22.4812 | 22.8393 | 21.8084 | 19.2678 | 13.0244 |
DM test | 8.36 *** | 7.24 *** | 6.15 *** | 8.43 *** | 5.64 *** | 6.98 *** |
MSE | 317.93 | 2391.58 | 1135.21 | 2035.86 | 950.62 | 440.12 |
DM test | 4.51 *** | 3.03 *** | 2.26 *** | 3.73 *** | 2.39 *** | 3.36 *** |
(C) ARFIMA-FIGARCH model with structural break dummies | ||||||
MAE | 9.6617 | 23.9853 | 23.3647 | 21.2344 | 19.4171 | 14.7833 |
DM test | 8.06 *** | 6.29 *** | 6.38 *** | 8.36 *** | 5.56 *** | 7.36 *** |
MSE | 323.72 | 2449.47 | 1158.05 | 2003.24 | 954.80 | 494.91 |
DM test | 4.94 *** | 2.89 *** | 2.40 *** | 3.70 *** | 2.40 *** | 3.62 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Mensi, W.; Yoon, S.-M. Risks in Major Cryptocurrency Markets: Modeling the Dual Long Memory Property and Structural Breaks. Sustainability 2023, 15, 2193. https://doi.org/10.3390/su15032193
Jiang Z, Mensi W, Yoon S-M. Risks in Major Cryptocurrency Markets: Modeling the Dual Long Memory Property and Structural Breaks. Sustainability. 2023; 15(3):2193. https://doi.org/10.3390/su15032193
Chicago/Turabian StyleJiang, Zhuhua, Walid Mensi, and Seong-Min Yoon. 2023. "Risks in Major Cryptocurrency Markets: Modeling the Dual Long Memory Property and Structural Breaks" Sustainability 15, no. 3: 2193. https://doi.org/10.3390/su15032193
APA StyleJiang, Z., Mensi, W., & Yoon, S. -M. (2023). Risks in Major Cryptocurrency Markets: Modeling the Dual Long Memory Property and Structural Breaks. Sustainability, 15(3), 2193. https://doi.org/10.3390/su15032193