Renewable Energy Potential for Micro-Grid at Hvide Sande
Abstract
:1. Introduction
2. Method
2.1. Cases
- Supply power to analyse the RESs potential;
- Net load: how RESs potential covers HSF’s needs to estimate the periods of negative energy;
- Net load and battery to estimate the battery size needed to fully fulfil the HSF demand.
2.2. Environmental Data Input
2.2.1. Solar Irradiance and Wind Data
2.2.2. Wave Data
2.3. Energy Infrastructure
2.3.1. RESs Supply Power
2.3.2. The Heat Demand
2.3.3. The Battery Model
3. Results
3.1. Case 1: RESs Potential
3.2. Case 2: Net Load
3.3. Case 3: Net Load and Battery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EU | European Union |
RESs | Renewable energy sources |
HSF | Hvide Sande Fjernvarme |
WECs | Wave energy converters |
ECMWF | European Centre for Medium-Range Weather Forecasts |
4D | 4-dimensional |
IFS | Integrated Forecasting System |
SWAN | Simulating WAves Nearshore |
PV | Photovoltaic |
FZO | Frequency of zero occurrences |
FNVO | Frequency of negative values occurrence |
ERDF | European Regional Development Fund |
References
- Merk, O. Shipping Emissions in Ports; International Transport Forum: Paris, France, 2014. [Google Scholar]
- Dual Ports Will Enhance Energy Efficiency. Available online: https://www.dualports.eu/ (accessed on 14 March 2022).
- 100% Community-Owned Wind Turbines. Available online: https://folkecenter.wordpress.com/hvide-sande/ (accessed on 5 January 2023).
- Hvide Sande Fjernvarme. 2022. Available online: http://www.energyweb.dk/hvidesande/ (accessed on 26 July 2022).
- Falcao, A.F. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Falcao, A.F.; Henriques, J.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy 2016, 85, 1391–1424. [Google Scholar] [CrossRef]
- Contestabile, P.; Crispino, G.; Di Lauro, E.; Ferrante, V.; Gisonni, C.; Vicinanza, D. Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead. Renew. Energy 2020, 147, 705–718. [Google Scholar] [CrossRef]
- Al Shami, E.; Zhang, R.; Wang, X. Point Absorber Wave Energy Harvesters: A Review of Recent Developments. Energies 2019, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Salter, S. Wave energy: Nostalgic Ramblings, future hopes and heretical suggestions. J. Ocean Eng. Mar. Energy 2016, 2, 399–428. [Google Scholar] [CrossRef] [Green Version]
- Xiros, N.I.; Dhanak, M.R. Ocean Wave Energy Conversion Concepts. In Springer Handbook of Ocean Engineering; Dhanak, M.R., Xiros, N.I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1117–1146. [Google Scholar] [CrossRef]
- A Stable Grid Needs a Reliable Power Source: Ocean Waves. 2022. Available online: https://seabased.com/ (accessed on 1 June 2022).
- Leijon, M.; Danielsson, O.; Eriksson, M.; Thorburn, K.; Bernhoff, H.; Isberg, J.; Sundberg, J.; Ivanova, I.; Sjostedt, E.; Agren, O.; et al. An electrical approach to wave energy conversion. Renew. Energy 2006, 31, 1309–1319. [Google Scholar] [CrossRef]
- Thorpe, T.W. A Brief Review of Wave Energy. In A Report Produced for The UK Department of Trade and Industry; Harwell Laboratory, Energy Technology Support Unit: Didcot, UK, 1999. [Google Scholar]
- Friedrich, D.; Lavidas, G. Combining offshore and onshore renewables with energy storage and diesel generators in a stand-alone Hybrid Energy System. In Proceedings of the OSES Offshore Energy Storage Symposium, Edinburgh, UK, 1–3 July 2015. [Google Scholar]
- Falnes, J. A review of wave-energy extraction. Mar. Struct. 2007, 20, 185–201. [Google Scholar] [CrossRef]
- Mork, G.; Barstow, S.; Kabuth, A.; Pontes, M.T. Assessing the Global Wave Energy Potential. In Proceedings of the 29th International Conference on Ocean, Offshore Mechanics and Arctic Engineering, Shanghai, China, 6–11 June 2010; Volume 4. [Google Scholar] [CrossRef]
- Olauson, J.; Ayob, M.N.; Bergkvist, M.; Carpman, N.; Castellucci, V.; Goude, A.; Lingfors, D.; Waters, R.; Widén, J. Net load variability in Nordic countries with a highly or fully renewable power system. Nat. Energy 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Gupta, M. Frontier Technology Issues: Lithium-Ion Batteries: A Pillar for a Fossil Fuel-Free Economy? 2021. Available online: https://www.un.org/development/desa/dpad/publication/frontier-technology-issues-lithium-ion-batteries-a-pillar-for-a-fossil-fuel-free-economy/ (accessed on 1 June 2022).
- Stoutenburg, E.D.; Jenkins, N.; Jacobson, M.Z. Power output variations of co-located offshore wind turbines and wave energy converters in California. Renew. Energy 2010, 35, 2781–2791. [Google Scholar] [CrossRef]
- López, M.; Rodríguez, N.; Iglesias, G. Combined Floating Offshore Wind and Solar PV. J. Mar. Sci. Eng. 2020, 8, 576. [Google Scholar] [CrossRef]
- Friedrich, D.; Lavidas, G. Evaluation of the effect of flexible demand and wave energy converters on the design of Hybrid Energy Systems. IET Renew. Power Gener. 2017, 11, 1113–1119. [Google Scholar] [CrossRef] [Green Version]
- Keiner, D.; Salcedo-Puerto, O.; Immonen, E.; van Sark, W.G.; Nizam, Y.; Shadiya, F.; Duval, J.; Delahaye, T.; Gulagi, A.; Breyer, C. Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives. Appl. Energy 2022, 308, 118360. [Google Scholar] [CrossRef]
- Milone, D.; Curto, D.; Franzitta, V.; Guercio, A.; Cirrincione, M.; Mohammadi, A. An Economic Approach to Size of a Renewable Energy Mix in Small Islands. Energies 2022, 15, 2005. [Google Scholar] [CrossRef]
- Franzitta, V.; Curto, D.; Rao, D.; Milone, D. Near zero energy island with sea wave energy: The case study of Pantelleria in Mediterranean Sea. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Viola, A.; Cirrincione, M.; Kumar, A. A renewable energy mix to supply small islands. A comparative study applied to Balearic Islands and Fiji. J. Clean. Prod. 2019, 241, 118356. [Google Scholar] [CrossRef]
- European Centre for Medium-Range Weather Forecasts. Available online: https://www.ecmwf.int/ (accessed on 14 March 2022).
- ERA5. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (accessed on 14 December 2022).
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.; J., M.S.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
- Lavidas, G.; Venugopal, V. Application of numerical wave models at European coastlines: A review. Renew. Sustain. Energy Rev. 2018, 92, 489–500. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. WMO Guidelines on the Calculation of Climate Normals; World Meteorological Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Deltares Systems. Delft3D-WAVE. Simulation of Short-Crested Waves with SWAN. User Manual. 2020. Available online: https://www.academia.edu/30002977/Delft3D_WAVE_Simulation_of_short_crested_waves_with_SWAN_User_Manual (accessed on 14 March 2022).
- Temiz, I.; Potapenko, T.; Kumar, A.V. Wave energy resource assessment at Hvide Sande on the west coast of Denmark. In Proceedings of the European Wave and Tidal Energy Conference (EWTEC) 2021, Plymouth, UK, 5–9 September 2021. [Google Scholar]
- Vestas V112-3.0 MW Wind Turbine. Available online: https://dokumen.tips/documents/vestas-v112-30-mw-wind-turbine.html (accessed on 14 March 2022).
- Electricity Production and Prices: Current Status throughout Denmark. Available online: https://www.emd-international.com/ (accessed on 14 March 2022).
- European Commission. Batteried Europe: Strategic Research Agenda for Batteries Report; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Golden, R.; Paulos, B. Curtailment of Renewable Energy in California and Beyond. Electr. J. 2015, 28, 36–50. [Google Scholar] [CrossRef]
RESs | Correlation Coefficient | Lower Bound | Upper Bound |
---|---|---|---|
Wave and Wind | 0.402 | 0.3997 | 0.404 |
Wave and Solar | −0.09 | −0.093 | −0.087 |
Solar and Wind | −0.082 | −0.084 | −0.079 |
Year/RESs | Wind | Wind, Solar | Wind, Solar, Wave | ||||||
---|---|---|---|---|---|---|---|---|---|
, MWh | , MWh | , MWh | , MWh | , MWh | , MWh | , MWh | , MWh | , MWh | |
1991 | 304 | 754 | 36,437 | 110 | 228 | 60,671 | 84 | 173 | 91,880 |
1992 | 316 | 577 | 36,167 | 202 | 347 | 60,462 | 86 | 217 | 95,097 |
1993 | 5493 | 2061 | 2061 | 378 | 8730 | 20,290 | 224 | 781 | 47,700 |
1994 | 5514 | 1944 | 1944 | 360 | 12,450 | 20,576 | 243 | 1836 | 48,924 |
1995 | 519 | 1113 | 35,666 | 393 | 601 | 60,039 | 109 | 337 | 96,072 |
1996 | 482 | 760 | 33,836 | 204 | 461 | 57,711 | 111 | 190 | 85,335 |
1997 | 370 | 2435 | 33,181 | 230 | 1189 | 57,229 | 82 | 260 | 89,138 |
1998 | 426 | 511 | 39,003 | 101 | 371 | 63,581 | 75 | 207 | 100,430 |
1999 | 492 | 628 | 34,666 | 195 | 437 | 58,888 | 87 | 225 | 93,161 |
2000 | 318 | 487 | 36,896 | 195 | 303 | 61,182 | 93 | 171 | 96,045 |
2001 | 544 | 720 | 33,873 | 138 | 457 | 57,898 | 105 | 253 | 86,974 |
2002 | 189 | 463 | 34,030 | 96 | 179 | 58,405 | 56 | 100 | 87,010 |
2003 | 797 | 1984 | 31,414 | 220 | 708 | 54,697 | 89 | 396 | 83,081 |
2004 | 320 | 788 | 35,262 | 160 | 274 | 58,994 | 89 | 177 | 92,045 |
2005 | 310 | 484 | 36,462 | 119 | 314 | 60,816 | 90 | 128 | 95,071 |
2006 | 311 | 856 | 33,389 | 146 | 439 | 57,677 | 88 | 173 | 88,588 |
2007 | 1123 | 1600 | 36,434 | 399 | 1244 | 60,531 | 191 | 727 | 97,447 |
2008 | 629 | 899 | 35,064 | 260 | 551 | 59,000 | 110 | 328 | 94,865 |
2009 | 500 | 1253 | 36,285 | 266 | 323 | 60,036 | 109 | 171 | 89,876 |
2010 | 403 | 996 | 34,712 | 141 | 279 | 58,655 | 87 | 174 | 86,456 |
2011 | 584 | 648 | 36,771 | 121 | 392 | 60,952 | 101 | 285 | 94,455 |
2012 | 268 | 711 | 38,190 | 121 | 253 | 62,459 | 83 | 101 | 97,409 |
2013 | 306 | 571 | 38,315 | 221 | 250 | 62,283 | 83 | 152 | 96,961 |
2014 | 280 | 370 | 37,724 | 200 | 222 | 62,001 | 103 | 149 | 97,205 |
2015 | 709 | 1139 | 40,497 | 237 | 598 | 64,625 | 93 | 392 | 105,190 |
2016 | 539 | 1417 | 39,778 | 195 | 384 | 63,612 | 90 | 165 | 95,196 |
2017 | 308 | 383 | 40,110 | 202 | 255 | 64,511 | 86 | 161 | 101,828 |
2018 | 257 | 555 | 37,487 | 122 | 378 | 61,599 | 85 | 139 | 94,488 |
2019 | 425 | 624 | 36,819 | 103 | 252 | 61,207 | 78 | 143 | 95,020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potapenko, T.; Döhler, J.S.; Francisco, F.; Lavidas, G.; Temiz, I. Renewable Energy Potential for Micro-Grid at Hvide Sande. Sustainability 2023, 15, 2234. https://doi.org/10.3390/su15032234
Potapenko T, Döhler JS, Francisco F, Lavidas G, Temiz I. Renewable Energy Potential for Micro-Grid at Hvide Sande. Sustainability. 2023; 15(3):2234. https://doi.org/10.3390/su15032234
Chicago/Turabian StylePotapenko, Tatiana, Jessica S. Döhler, Francisco Francisco, George Lavidas, and Irina Temiz. 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande" Sustainability 15, no. 3: 2234. https://doi.org/10.3390/su15032234
APA StylePotapenko, T., Döhler, J. S., Francisco, F., Lavidas, G., & Temiz, I. (2023). Renewable Energy Potential for Micro-Grid at Hvide Sande. Sustainability, 15(3), 2234. https://doi.org/10.3390/su15032234