Uncertainty and Financial Analysts’ Optimism: A Comparison between High-Tech and Low-Tech European Firms
Abstract
:1. Introduction
2. Sample and Variables
2.1. Sample
2.2. Variables
- E and Et-1 are, respectively, the current earnings per share for year t and the prior earnings per share for year t-1.
- Fn is the consensus forecast of current earnings E (n) months before the current earnings release month E (n = 1, 2, 3…11).
- ERRn is the forecast error (n) months before the actual earnings announcement month, defined as ERRn = (E − Fn)/|E|. A negative forecast error (ERRn < 0) expresses optimism.
- REVn is the forecast revision (n) months before the current earnings release month, described as REVn = (Fn − Fn+1)/׀Fn׀. REVn > 0 expresses an upward revision for the month (n) due to positive information. An excessive upward forecast revision implies optimism. REVn < 0 expresses a downward revision for the month (n) due to negative information. An insufficient downward forecast revision implies optimism.
- FCHn is the forecast change (n) months before the month of actual earnings release E, described as FCHn= (Fn − Et-1)/|Fn|. FCHn > 0 implies an upward forecast change. An excessive upward forecast change implies optimism. FCHn < 0 implies a downward forecast change. An insufficient downward forecast change implies optimism.
- HT is a dummy variable that is equal to 1 if the firm is in the high-tech subsample (HT) and otherwise 0.
- DISPn is the forecast dispersion (n) months before the month of actual earnings release E, described as DISPn = Stdn/׀Fn׀, where Stdn represents the standard deviation reported by I/B/E/S for the month n. The forecast change (FCH11) 11 months before the month of actual earnings release E is equal to the forecast revision (REV11) one month after the prior earnings announcement month Et-1.
3. Empirical Results
3.1. Forecast Revisions: Analysts’ Anchor to Previous Forecast
3.1.1. Descriptive Analysis
3.1.2. Regression Analysis
3.2. Forecast Changes: Analysts’ Anchor to Prior Earnings
3.2.1. Descriptive Analysis
3.2.2. Regression Analysis
3.3. Robustness Tests
4. Discussions and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Forecast Dispersion as a Second Proxy for Uncertainty
Year | Number of Firms | ERR Mean (Median) | DISP Mean (Median) | ||||||
---|---|---|---|---|---|---|---|---|---|
HDISP&LDISP | LDISP | HDISP | HDISP&LDISP | LDISP | HDISP | HDISP&LDISP | LDISP | HDISP | |
2010 | 1485 | 743 | 742 | −0.489 (−0.102) | −0.379(−0.079) | −0.712 *** (−0.197 ***) | 1.117 (0.645) | 0.816 (0.411) | 1.401 *** (0.848 ***) |
2011 | 1446 | 723 | 723 | −0.449 (−0.095) | −0.265 (−0.052) | −0.659 *** (−0.178 ***) | 1.131 (0.653) | 0.825 (0.423) | 1.396 *** (0.861 ***) |
2012 | 1586 | 793 | 793 | −0.487 (−0.110) | −0.368 (−0.072) | −0.591 *** (−0.152 ***) | 1.054 (0.613) | 0.782 (0.389) | 1.367 *** (0.828 ***) |
2013 | 1601 | 801 | 800 | −0.568 (−0.125) | −0.452 (−0.085) | −0.615 *** (−0.181 ***) | 1.121 (0.649) | 0.773 (0.372) | 1.395 *** (0.763 ***) |
2014 | 1695 | 848 | 847 | −0.488 (−0.088) | −0.341 (−0.076) | −0.501 *** (−0.166 ***) | 1.108 (0.633) | 0.762 (0.423) | 1.402 *** (0.741 ***) |
2015 | 1768 | 884 | 884 | −0.334 (−0.074) | −0.229 (−0.054) | −0.434 *** (−0.129 ***) | 1.092 (0.587) | 0.739 (0.354) | 1.341 *** (0.711 ***) |
2016 | 1785 | 893 | 892 | −0.240 (−0.061) | −0.156(−0.025) | −0.362 *** (−0.104 ***) | 1.055 (0.542) | 0.705 (0.303) | 1.301 *** (0.664 ***) |
2017 | 1812 | 906 | 906 | −0.337 (−0.094) | −0.243(−0.049) | −0.547 *** (−0.136 ***) | 1.002 (0.501) | 0.698 (0.292) | 1.276 *** (0.623 ***) |
2018 | 1862 | 931 | 931 | −0.355 (−0.073) | −0.287(−0.056) | −0.506 *** (−0.125 ***) | 0.945 (0.488) | 0.676 (0.279) | 1.208 *** (0.591 ***) |
2019 | 1902 | 951 | 951 | −0.248 (−0.068) | −0.197(−0.041) | −0.387 *** (−0.117 ***) | 0.966 (0.495) | 0.659 (0.284) | 1.227 *** (0.562 ***) |
(2010–2019) | 16,942 | 8473 | 8469 | −0.399 (−0.092) | −0.295 (−0.065) | −0.545 *** (−0.139 ***) | 1.092 (0.602) | 0.766 (0.375) | 1.226 *** (0.717 ***) |
n | REV > 0 | REV < 0 | Obs | ||||||
---|---|---|---|---|---|---|---|---|---|
HDISP | LDISP | HDISP | LDISP | ||||||
% | ERR Mean (Median) | % | ERR Mean (Median) | % | ERR Mean (Median) | % | ERR Mean (Median) | ||
1 | 49.4 | −0.031 ** (−0.022 ***) | 49.6 | 0.016 (0.008) | 65.2 *** | −0.314 ** (−0.167 ***) | 49.9 | −0.091 (−0.024) | 15,248 |
2 | 51.5 ** | −0.105 ** (−0.053 ***) | 50.5 | −0.053 (−0.025) | 70.1 *** | −0.411 ** (−0.263 ***) | 52.7 | −0.122 (−0.059) | 15,108 |
3 | 53.1 *** | −0.162 *** (−0.076 ***) | 50.6 | −0.094 (−0.035) | 73.3 *** | −0.509 *** (−0.271 ***) | 55.5 | −0.164 (−0.062) | 14,556 |
4 | 54.9 *** | −0.271 *** (−0.085 ***) | 51.8 | −0.119 (−0.042) | 75.8 *** | −0.675 *** (−0.288 ***) | 58.9 | −0.217 (−0.071) | 14,125 |
5 | 58.8 *** | −0.315 *** (−0.101 ***) | 52.2 | −0.158 (−0.059) | 77.6 *** | −0.731 *** (−0.362 ***) | 61.9 | −0.294 (−0.079) | 13,159 |
6 | 64.7 *** | −0.377 *** (−0.117 ***) | 52.4 | −0.153 (−0.075) | 77.7 *** | −0.749 *** (−0.371 ***) | 63.3 | −0.334 (−0.083) | 13,022 |
7 | 63.8 *** | −0.371 *** (−0.114 ***) | 51.6 | −0.148 (−0.067) | 77.3 *** | −0.752 *** (−0.389 ***) | 62.6 | −0.311 (−0.095) | 12,908 |
8 | 65.0 *** | −0.402 *** (−0.171 ***) | 53.5 | −0.179 (−0.077) | 78.4 *** | −0.771 *** (−0.397 ***) | 64.0 | −0.338 (−0.098) | 12,532 |
9 | 65.8 *** | −0.476 *** (−0.185 ***) | 54.3 | −0.205 (−0.085) | 78.8 *** | −0.788 *** (−0.402 ***) | 65.3 | −0.394 (−0.117) | 11,975 |
10 | 66.9 *** | −0.499 *** (−0.203 ***) | 55.5 | −0.243 (−0.092) | 79.9 *** | −0.811 *** (−0.425 ***) | 65.7 | −0.378 (−0.129) | 11,692 |
REV > 0 | ||||||||
---|---|---|---|---|---|---|---|---|
HDISP | LDISP | Difference HDISP vs. LDISP | ||||||
n | α0 + α1 (t) | β0 + β1 (t) | α0 (t) | β0 (t) | α1 (t) | β1 (t) | R2 | Obs |
1 | −0.034 | −0.115 | 0.009 | −0.034 | −0.043 | −0.081 | 0.07 | 6785 |
(−1.415) | (−1.979 **) | (0.488) | (−1.315) | (1.919 **) | (−2.897 ***) | |||
2 | −0.057 | −0.276 | −0.035 | −0.068 | −0.022 | −0.208 | 0.011 | 6650 |
(−1.547 *) | (−4.345 ***) | (−1.319) | (−1.741 *) | (−1.559 *) | (−3.791 ***) | |||
3 | −0.062 | −0.442 | −0.049 | −0.139 | −0.013 | −0.303 | 0.020 | 6270 |
(−1.634 *) | (−6.147 ***) | (−1.584 *) | (−2.869 ***) | (−1.413) | (−4.647 ***) | |||
4 | −0.091 | −0.744 | −0.059 | −0.302 | −0.032 | −0.442 | 0.025 | 6485 |
(−2.087 **) | (−7.585 ***) | (−1.621 *) | (−3.625 ***) | (−1.605 *) | (−6.497 ***) | |||
5 | −0.109 | −0.815 | −0.062 | −0.338 | −0.047 | −0.477 | 0.031 | 5543 |
(−2.857 ***) | (−8.147 ***) | (−1.579 *) | (−4.252 ***) | (−1.952 **) | (−5.278 ***) | |||
6 | −0.197 | −0.954 | −0.079 | −0.384 | −0.118 | −0.570 | 0.038 | 5006 |
(−3.584 ***) | (−9.021 ***) | (−2.078 **) | (−5.514 ***) | (−2.651 ***) | (−5.663 ***) | |||
7 | −0.274 | −1.015 | −0.125 | −0.502 | −0.149 | −0.513 | 0.039 | 5258 |
(−4.286 ***) | (−10.714 ***) | (−2.442 **) | (−6.185 ***) | (−2.981 ***) | (−5.890 ***) | |||
8 | −0.349 | −0.948 | −0.141 | −0.538 | −0.208 | −0.410 | 0.044 | 5213 |
(−5.087 ***) | (−10.715 ***) | (−3.832 ***) | (−6.546 ***) | (−4.324 ***) | (−6.099 ***) | |||
9 | −0.473 | −1.126 | −0.235 | −0.597 | −0.238 | −0.529 | 0.047 | 4976 |
(−6.114 ***) | (−11.158 ***) | (−4.395 ***) | (−6.941 ***) | (−4.236 ***) | (−6.748 ***) | |||
10 | −0.508 | −1.105 | −0.264 | −0.634 | −0.244 | −0.471 | 0.052 | 4781 |
(−6.651 ***) | (−10.349 ***) | (−4.604 ***) | (−7.681 ***) | (−4.445 ***) | (−6.549 ***) |
REV < 0 | ||||||||
---|---|---|---|---|---|---|---|---|
HDISP | LDISP | Difference HDISP vs. LDISP | ||||||
n | α0 + α1 | β0 + β1 | α0 | β0 | α1 | β1 | R2 | Obs |
1 | −0.218 | 0.793 | −0.082 | 0.325 | −0.136 | 0.468 | 0.041 | 6122 |
(−10.096 ***) | (6.841 ***) | (−4.654 ***) | (4.586 ***) | (−10.058 ***) | (5.267 ***) | |||
2 | −0.436 | 0.982 | −0.136 | 0.489 | −0.300 | 0.493 | 0.054 | 5872 |
(−14.175 ***) | (8.141 ***) | (−7.754 ***) | (5.104 ***) | (−12.869 ***) | (5.183 ***) | |||
3 | −0.531 | 1.015 | −0.164 | 0.678 | −0.367 | 0.337 | 0.061 | 5436 |
(18.649 ***) | (9.845 ***) | (−8.214 ***) | (6.057 ***) | (−13.458 ***) | (4.967 ***) | |||
4 | −0.617 | 1.128 | −0.215 | 0.784 | −0.402 | 0.344 | 0.068 | 5172 |
(−22.215 ***) | (10.991 ***) | (−10.454 ***) | (6.897 ***) | (−14.829 ***) | (5.238 ***) | |||
5 | −0.725 | 1.259 | −0.268 | 0.928 | −0.457 | 0.331 | 0.069 | 4632 |
(−25.345 ***) | (11.128 ***) | (−11.587 ***) | (7.661 ***) | (−16.114 ***) | (6.895 ***) | |||
6 | −0.815 | 1.443 | −0.358 | 0.996 | −0.457 | 0.447 | 0.086 | 4657 |
(−26.109 ***) | (13.280 ***) | (16.584 ***) | (8.561 ***) | (−16.549 ***) | (7.596 ***) | |||
7 | −0.898 | 1.725 | −0.369 | 1.142 | −0.529 | 0.583 | 0.098 | 4546 |
(−26.857 ***) | (16.529 ***) | (−15.542 ***) | (9.782 ***) | (−18.227 ***) | (8.769 ***) | |||
8 | −0.925 | 1.913 | −0.410 | 1.373 | −0.515 | 0.540 | 0.105 | 4345 |
(−29.421 ***) | (18.471 ***) | (−18.526 ***) | (10.551 ***) | (−17.864 ***) | (9.854 ***) | |||
9 | −0.992 | 2.105 | −0.486 | 1.286 | −0.506 | 0.819 | 0.118 | 3734 |
(−31.024 ***) | (19.813 ***) | (−21.415 ***) | (10.426 ***) | (−18.782 ***) | (10.534 ***) | |||
10 | −1.124 | 2.321 | −0.602 | 1.518 | −0.522 | 0.803 | 0.124 | 4013 |
(−31.652 ***) | (21.606 ***) | (−25.649 ***) | (15.326 ***) | (−19.225 ***) | (10.238 ***) |
n | FCH >0 | FCH < 0 | Obs | ||||||
---|---|---|---|---|---|---|---|---|---|
HDISP | LDISP | HDISP | LDISP | ||||||
% | ERR Mean (Median) | % | ERR Mean (Median) | % | ERR Mean (Median) | % | ERR Mean (Median) | ||
1 | 56.3 *** | −0.109 *** (−0.045 ***) | 49.1 | −0.015 (−0.007) | 63.1 *** | −0.222 ** (−0.168 ***) | 56.2 | −0.092 (−0.049) | 16,407 |
2 | 57.5 *** | −0.202 *** (−0.067 ***) | 50.9 | −0.062 (−0.038) | 64.2 *** | −0.265 ** (−0.101 ***) | 55.6 | −0.102 (−0.034) | 16,235 |
3 | 57.9 *** | −0.358 *** (−0.101 ***) | 52.2 | −0.114 (−0.079) | 62.4 *** | −0.345 *** (−0.138 ***) | 53.9 | −0.124 (−0.056) | 16,111 |
4 | 63.2 *** | −0.474 *** (−0.163 ***) | 54.6 | −0.143 (−0.095) | 63.9 *** | −0.427 *** (−0.201 ***) | 55.1 | −0.152 (−0,0084) | 15,805 |
5 | 62.1 *** | −0.429 *** (−0.151 ***) | 55.1 | −0.158 (−0.088) | 62.5 *** | −0.369 *** (−0.151 ***) | 52.8 | −0.149 (−0.079) | 15,687 |
6 | 63.6 *** | −0.501 *** (−0.184 ***) | 56.4 | −0.142 (−0.098) | 62.1 *** | −0.351 *** (−0.138 ***) | 52.2 | −0.124 (−0.064) | 15,434 |
7 | 63.5 *** | −0.552 *** (−0.196 ***) | 56.7 | −0.131 (−0.105) | 61.3 *** | −0.401 *** (−0.197 ***) | 51.8 | −0.152 (−0.084) | 15,216 |
8 | 65.4 *** | −0.530 *** (−0.184 ***) | 55.6 | −0.167 (−0.139) | 60.1 *** | −0.472 *** (−0.234 ***) | 51.5 | −0.135 (−0.078) | 15,112 |
9 | 66.7 *** | −0.641 *** (−0.259 ***) | 57.3 | −0.232 (−0.167) | 59.9 *** | −0.532 *** (−0.281 ***) | 51.9 | −0.181 (−0.111) | 14,965 |
10 | 67.6 *** | −0.732 *** (−0.342 ***) | 57.8 | −0.259 (−0.201) | 56.5 *** | −0.517 *** (−0.262 ***) | 51.2 | −0.225 (−0.121) | 14,831 |
11 | 67.9 *** | −0.715 *** (−0.318 ***) | 58.2 | −0.385 (−0.221) | 55.6 *** | −0.484 *** (−0.288 ***) | 50.8 | −0.212 (−0.124) | 14,625 |
FCH > 0 | ||||||||
---|---|---|---|---|---|---|---|---|
HDISP | LDISP | Difference HDISP vs. LDISP | ||||||
n | α0 + α1 | β0 + β1 | α0 | β0 | α1 | β1 | R2 | Obs |
1 | −0.074 | −0.177 | −0.028 | 0.059 | −0.046 | −0.236 | 0.055 | 9745 |
(−2.224 **) | (−3.622 ***) | (−1.606 *) | −1.049 | (−4.511 ***) | (−4.217 ***) | |||
2 | −0.094 | −0.211 | −0.042 | −0.078 | −0.052 | −0.133 | 0.068 | 10,087 |
(−2.698 ***) | (−4.451 ***) | (2.161 **) | (−1.287) | (−3.971 ***) | (−3.948 ***) | |||
3 | −0.084 | −0.341 | −0.067 | −0.154 | −0.017 | −0.187 | 0.079 | 10,359 |
(−3.066 ***) | (−6.108 ***) | (−2.328 **) | (−1.591 *) | (−2.885 ***) | (4.057 ***) | |||
4 | −0.069 | −0.492 | −0.047 | −0.239 | −0.022 | −0.253 | 0.079 | 10,662 |
(−2.945 ***) | (−7.854 ***) | (−2.748 **) | (−1.787 *) | (−3.421 ***) | (−4.562 ***) | |||
5 | −0.107 | −0.641 | −0.058 | −0.379 | −0.049 | −0.262 | 0.088 | 10,763 |
(−3.105 ***) | (−9.111 ***) | (−2.889 ***) | (−2.925 ***) | (−3.987 ***) | (−5.334 ***) | |||
6 | −0.116 | −0.827 | −0.062 | −0.458 | −0.054 | −0.369 | 0.093 | 11,012 |
(−3.541 ***) | (−10.432 ***) | (−3.019 ***) | (−3.587 ***) | (−4.110 ***) | (−5.117 ***) | |||
7 | −0.148 | −0.974 | −0.086 | −0.586 | −0.062 | −0.388 | 0.106 | 10,886 |
(−4.101 ***) | (−11.563 ***) | (−3.415 ***) | (−4.145 ***) | (−4.471 ***) | (−5.849 ***) | |||
8 | −0.174 | −0.957 | −0.088 | −0.526 | −0.086 | −0.431 | 0.107 | 11,546 |
(−5.303 ***) | (−11.423 ***) | (−3.554 ***) | (−3.584 ***) | (−4.225 ***) | (−6.247 ***) | |||
9 | −0.219 | −1.031 | −0.096 | −0.636 | −0.123 | −0.395 | 0.115 | 11,225 |
(−5.917 ***) | (−12.714 ***) | (−3.852 ***) | (−3.605 ***) | (5.474 ***) | (−6.853 ***) | |||
10 | −0.262 | −1.056 | −0.128 | −0.559 | −0.134 | −0.497 | 0.118 | 11,145 |
(−6.457 ***) | (−13.415 ***) | (−4.824 ***) | (−3.846 ***) | (−6.214 ***) | (−7.254 ***) | |||
11 | −0.281 | −1.099 | −0.145 | −0.545 | −0.136 | −0.554 | 0.123 | 10,980 |
(−6.847 ***) | (−14.121 ***) | (−5.227 ***) | (−4.778 ***) | (−5.841 ***) | (−7.802 ***) |
FCH < 0 | ||||||||
---|---|---|---|---|---|---|---|---|
HDISP | LDISP | Difference HDISP vs. LDISP | ||||||
n | α0 + α1 (t) | β0 + β1 (t) | α0 (t) | β0 (t) | α1 (t) | β1 (t) | R2 | Obs |
1 | −0.191 | 0.108 | −0.077 | 0.038 | −0.114 | 0.070 | 0.007 | 6662 |
(−8.121 ***) | (2.124 **) | (−2.388 **) | −1.105 | (−7.659 ***) | (3.138 ***) | |||
2 | −0.296 | 0.152 | −0.098 | 0.044 | −0.198 | 0.108 | 0.010 | 6148 |
(−10.867 ***) | (2.658 ***) | (−2.994 ***) | −1.289 | (−8.883 ***) | (4.002 ***) | |||
3 | −0.265 | 0.214 | −0.117 | 0.079 | −0.148 | 0.135 | 0.013 | 5752 |
(−11.427 ***) | (3.008 ***) | (−3.676) | (2.165 **) | (−8.774 ***) | (3.954 ***) | |||
4 | −0.299 | 0.264 | −0.157 | 0.112 | −0.456 | 0.152 | 0.019 | 5143 |
(−12.840 ***) | (3.545 ***) | (−4.687 ***) | (2.884 ***) | (−9.649 ***) | (4.127 ***) | |||
5 | −0.311 | 0.334 | −0.165 | 0.154 | −0.146 | 0.180 | 0.031 | 4924 |
(−13.187 ***) | (4.145 ***) | (−5.008 ***) | (3.450 ***) | (−8.802 ***) | (4.528 ***) | |||
6 | −0.410 | 0.447 | −0.225 | 0.186 | −0.185 | 0.261 | 0.039 | 4422 |
(−14.552 ***) | (4.978 ***) | (−6.847 ***) | (4.111 ***) | (−9.648 ***) | (5.437 ***) | |||
7 | −0.401 | 0.564 | −0.185 | 0.264 | −0.586 | 0.300 | 0.051 | 4330 |
(−14.384 ***) | (5.756 ***) | (−6.425 ***) | (5.099 ***) | (−12.547 ***) | (6.648 ***) | |||
8 | −0.452 | 0.604 | −0.235 | 0.319 | −0.217 | 0.285 | 0.063 | 3566 |
(−15.122 ***) | (6.547 ***) | (−7.627 ***) | (6.228 ***) | (−9.894 ***) | (6.245 ***) | |||
9 | −0.433 | 0.645 | −0.215 | 0.354 | −0.218 | 0.291 | 0.059 | 3740 |
(−14.605 ***) | (6.958 ***) | (−7.845 ***) | (6.756 ***) | (−10.277 ***) | (4.975 ***) | |||
10 | −0.489 | 0.692 | −0.286 | 0.424 | −0.203 | 0.268 | 0.068 | 3686 |
(−15.615 ***) | (8.168 ***) | (−9.374 ***) | (7.107 ***) | (−10.618 ***) | (5.319 ***) | |||
11 | −0.513 | 0.845 | −0.244 | 0.474 | −0.269 | 0.371 | 0.072 | 3645 |
(−15.954 ***) | (9.127 ***) | (−9.175 ***) | (8.259 ***) | (−10.527 ***) | (6.659 ***) |
References
- Fama, E.F. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ. 1970, 25, 383–417. [Google Scholar] [CrossRef]
- Jensen, M.C. Some anomalous evidence regarding market efficiency. J. Financ. Econ. 1978, 6, 95–101. [Google Scholar] [CrossRef]
- Givoly, D.; Lakonishok, J. Properties of analysts’ forecasts of earnings: A review and analysis of the research. J. Account. Lit. 1984, 3, 117–152. [Google Scholar]
- Francis, J.; Philbrick, D. Analysts’ decisions as products of a multi-task environment. J. Account. Res. 1993, 31, 216–230. [Google Scholar] [CrossRef]
- Schipper, K. Analysts’ forecasts. Account. Horiz. 1991, 5, 105–121. [Google Scholar]
- Brown, L.D.; Call, A.C.; Clement, M.B.; Sharp, N.Y. Inside the “black box” of sell-side financial analysts. J. Account. Res. 2015, 53, 1–47. [Google Scholar] [CrossRef]
- Zhao, C.; Lie, Y.; Govindaraj, S.; Zhong, Z. CDS trading and analyst optimism. Br. Account. Rev. 2022, 54, 101109. [Google Scholar] [CrossRef]
- Brown, A.B.; Lin, G.; Zhou, A. Analysts’ forecast optimism: The effects of managers’ incentives on analysts’ forecasts. J. Behav. Exp. 2022, 35, 100708. [Google Scholar] [CrossRef]
- McNichols, M.F.; O’Brien, P.C. Self-selection and Analyst Coverage. J. Account. Res. 1997, 35, 167–199. [Google Scholar] [CrossRef]
- Mendenhall, R. Evidence of possible underweighting of earnings-related information. J. Account. Res. 1991, 29, 170–180. [Google Scholar] [CrossRef]
- Ali, A.; Klein, A.; Rosenfeld, J. Analysts’ use of information about permanent and transitory components in forecasting annual EPS. Account. Rev. 1992, 67, 183–198. [Google Scholar]
- Abarbanell, J.; Bernard, V. Tests of analysts’ overreaction/underreaction to earnings information as an explanation for anomalous stock price behaviour. J. Financ. 1992, 47, 1181–1207. [Google Scholar] [CrossRef]
- De Bondt, W.; Thaler, R. Further evidence on investor overreaction and stock market seasonality. J. Financ. 1987, 42, 557–581. [Google Scholar] [CrossRef]
- De Bondt, W.; Thaler, R. Does security analysts overreact. Am. Econ. Rev. 1990, 80, 51–57. [Google Scholar]
- Sinha, N.R. Underreaction to News in the US Stock Market. Q. J. Financ. 2016, 6, 1–46. [Google Scholar] [CrossRef]
- Huynh, T.D.; Smith, D.R. Stock Price Reaction to News: The Joint Effect of Tone and Attention on Momentum. J. Behav. Financ. 2017, 18, 304–328. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef] [Green Version]
- Czaczkes, B.; Ganzach, Y. The natural selection of prediction heuristics: Anchoring and adjustment versus representativeness. J. Behav. Decis. Mak. 1996, 9, 125–140. [Google Scholar] [CrossRef]
- Campbell, S.D.; Sharpe, S. Anchoring Bias in Consensus Forecasts and Its Effect on Market Prices. J. Financ. Quant. Anal. 2009, 44, 369–390. [Google Scholar] [CrossRef] [Green Version]
- Amir, E.; Ganzach, Y. Overreaction and underreaction in analysts’forecasts. J. Enonomic Behav. Organ. 1998, 37, 333–347. [Google Scholar] [CrossRef] [Green Version]
- Marsden, A.; Veeraraghavan, M.; Ye, M. Heuristics of Representativeness, Anchoring and Adjustment, and Leniency: Impact on Earnings’ Forecasts by Australian Analysts. Q. J. Financ. Account. 2008, 47, 83–102. [Google Scholar] [CrossRef]
- Barberis, N.; Shleifer, A.; Vishny, R. A model of investor sentiment. NBER Work. Pap. 1997, 5926. [Google Scholar]
- Easterwood, J.; Nutt, S. Inefficiency in analysts’ earnings forecasts: Systematic misreaction or systematic optimism? J. Financ. 1999, 54, 1777–1797. [Google Scholar] [CrossRef]
- Gu, Z.; Xue, J. Do analysts overreact to extreme good news in earnings? Rev. Quant. Financ. Account. Vol. 2007, 29, 415–431. [Google Scholar] [CrossRef]
- Bessière, V.; Kaestner, M. Sur et sous réactions des analystes financiers: Une étude des évolutions post-krach. Banq. Et Marchés 2008, 91, 6–20. [Google Scholar]
- Bouteska, A.; Regaieg, B. Psychology and behavioral finance: Anchoring bias by financial analysts on the Tunisian stock market. EuroMed. J. Bus. 2020, 15, 39–64. [Google Scholar] [CrossRef]
- Kumar, I. Hard-to-Value Stocks, Behavioral Biases, and Informed Trading. J. Financ. Quant. Anal. 2009, 44, 1375–1401. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, S.; Fischhoff, B. Do those who know more also know more about how much they know? The calibration of probability judgments. Organ. Behav. Hum. Perform. 1977, 3, 552–564. [Google Scholar]
- Griffin, D.; Tversky, A. The Weighing of Evidence and the Determinants of Overconfidence. Cogn. Psychol. 1992, 24, 411–435. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. On the psychology of prediction. Psychol. Rev. 1973, 80, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Hirshleifer, D. Investor psychology and asset pricing. J. Financ. 2001, 56, 1533–1597. [Google Scholar] [CrossRef] [Green Version]
- Daniel, K.; Hirshleifer, D.; Subrahmanyam, A. Overconfidence, arbitrage, and equilibrium asset pricing. J. Financ. 2001, 56, 921–965. [Google Scholar] [CrossRef]
- Zhang, X. Information uncertainty and analyst forecast behavior. Contemp. Account. Res. 2006, 23, 565–590. [Google Scholar] [CrossRef]
- Chang, J.W.; Choi, H.M. Analyst Optimism and Incentives under Market Uncertainty. Financ. Rev. 2017, 52, 307–345. [Google Scholar] [CrossRef]
- Bessière, V.; Elkemali, T. Does uncertainty boost overconfidence? The case of financial analysts’ forecasts. Manag. Financ. 2014, 4, 300–324. [Google Scholar] [CrossRef]
- Kwon, S. Financial analysts’ forecast accuracy and dispersion: High-tech versus low-tech firms. Rev. Quant. Financ. Account. 2002, 19, 65–91. [Google Scholar] [CrossRef]
- Sun, L.; Wei, C.J. Intangible Information and analyst behavior. SSRN 1781172 2011. [Google Scholar] [CrossRef]
- Barron, O.; Byard, D.; Kile, C.; Riedl, E. High-technology intangibles and analysts’ forecasts. J. Account. Res. 2002, 40, 289–312. [Google Scholar] [CrossRef]
- Amir, E.; Lev, B.; Sougiannis, T. Do financial analysts get intangibles? Eur. Account. Rev. 2003, 12, 635–659. [Google Scholar] [CrossRef]
- Elkemali, T.; Ben Rejeb, A. R&D intensity and financing decisions: Evidence from European firms. Econ. Bull. 2015, 35, 1042–1055. [Google Scholar]
- Zhang, X. Information uncertainty and stock returns. J. Financ. 2006, 61, 105–137. [Google Scholar] [CrossRef]
- Bali, T.G.; Zhou, H. Risk, Uncertainty, and Expected Returns. J. Financ. Quant. Anal. 2016, 51, 707–735. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Lee, J. Estimating the uncertainty R&D investment relationship and its interactions with firm size. Small Bus. Econ. 2021, 57, 1243–1267. [Google Scholar]
- Elmarzouky, M.; Hussainey, K.; Abdelfattah, T.; Karim, A.E. Corporate risk disclosure and key audit matters: The egocentric theory. Int. J. Account. Inf. Manag. 2022, 30, 230–251. [Google Scholar] [CrossRef]
- Elmarzouky, M.; Albitar, K.; Karim, A.E.; Moussa, A.S. COVID-19 disclosure: A novel measurement and annual report uncertainty. J. Risk Financ. Manag. 2021, 14, 616. [Google Scholar] [CrossRef]
- Cooper, R.; Day, L.; Lewis, C. Following the leader: A study of individual analysts’ earnings forecasts. J. Financ. Econ. 2001, 61, 383–416. [Google Scholar] [CrossRef]
- Amiram, D.; Landsman, W.R.; Owens, E.L.; Stubben, S. How are analysts’ forecasts affected by high uncertainty? J. Bus. Financ. Account. 2017, 45, 295–318. [Google Scholar] [CrossRef]
- Loh, R.K.; Stulz, R.M. Is sell-side research more valuable in bad times? J. Financ. 2018, 73, 959–1013. [Google Scholar] [CrossRef]
Year | Number of Firms | ERR Mean (Median) | DISP Mean (Median) | ||||||
---|---|---|---|---|---|---|---|---|---|
HT< | LT | HT | HT< | LT | HT | HT< | LT | HT | |
2010 | 1485 | 997 | 488 | −0.489 (−0.102) | −0.341 (−0.046) | −0.732 *** (−0.208 ***) | 1.117 (0.645) | 0.785 (0.395) | 1.408 *** (0.875 ***) |
2011 | 1446 | 877 | 569 | −0.449(−0.095) | −0.239 (−0.033) | −0.845 *** (−0.192 ***) | 1.131 (0.653) | 0.801 (0.402) | 1.413 *** (0.899 ***) |
2012 | 1586 | 984 | 602 | −0.487(−0.110) | −0.333 (−0.041) | −0.611 *** (−0.176 ***) | 1.054 (0.613) | 0.745 (0.377) | 1.398 *** (0.852 ***) |
2013 | 1601 | 949 | 652 | −0.568 (−0.125) | −0.423 (−0.039) | −0.655 *** (−0.196 ***) | 1.121 (0.649) | 0.755 (0.392) | 1.425 *** (0.786 ***) |
2014 | 1695 | 1034 | 661 | −0.488 (−0.088) | −0.314 (−0.041) | −0.529 *** (−0.189 ***) | 1.108 (0.633) | 0.748 (0.411) | 1.418 *** (0.764 ***) |
2015 | 1768 | 1063 | 705 | −0.334 (−0.074) | −0.212 (−0.026) | −0.469 *** (−0.145 ***) | 1.092 (0.587) | 0.722 (0.333) | 1.363 *** (0.742 ***) |
2016 | 1785 | 1083 | 702 | −0.240 (−0.061) | −0.124 (−0.010) | −0.388 *** (−0.115 ***) | 1.055 (0.542) | 0.688 (0.295) | 1.329 *** (0.686 ***) |
2017 | 1812 | 1103 | 709 | −0.337 (−0.094) | −0.213 (−0.035) | −0.593 *** (−0.158 ***) | 1.002 (0.501) | 0.673 (0.277) | 1.299 *** (0.646 ***) |
2018 | 1862 | 1143 | 719 | −0.355 (−0.073) | −0.265 (−0.043) | −0.516 *** (−0.143 ***) | 0.945 (0.488) | 0.624 (0.254) | 1.219 *** (0.602 ***) |
2019 | 1902 | 1179 | 723 | −0.248 (−0.068) | −0.189 (−0.033) | −0.409 ***(−0.138 ***) | 0.966 (0.495) | 0.629 (0.265) | 1.242 *** (0.598 ***) |
(2010–2019) | 16,942 | 10,412 | 6530 | −0.399 (−0.092) | −0.288 (−0.037) | −0.581 *** (−0.169 ***) | 1.092 (0.602) | 0.731 (0.358) | 1.328 ***(0.739 ***) |
Month | REV > 0 | REV < 0 | Obs | ||
---|---|---|---|---|---|
(n) | % | ERR Mean (Median) | % | ERR Mean (Median) | |
1 | 49.6 | 0.012 *** (0.009 ***) | 54.2 *** | −0.176 (−0.088) | 15,248 |
2 | 51.4 * | −0.086 *** (−0.034 ***) | 55.3 *** | −0.265 (−0.105) | 15,108 |
3 | 52.5 ** | −0.101 *** (−0.055 ***) | 60.1 *** | −0.314 (−0.135) | 14,556 |
4 | 54.0 *** | −0.187 *** (−0.068 ***) | 65.3 *** | −0.385 (−0.144) | 14,125 |
5 | 57.1 *** | −0.202 *** (−0.089 ***) | 68.9 *** | −0.482 (−0.163) | 13,159 |
6 | 57.4 *** | −0.227 *** (−0.092 ***) | 69.5 *** | −0.490 (−0.185) | 13,022 |
7 | 58.0 *** | −0.242 *** (−0.078 ***) | 69.2 *** | −0.485 (−0.155) | 12,908 |
8 | 59.1 *** | −0.258 *** (−0.085 ***) | 70.1 *** | −0.502 (−0.203) | 12,532 |
9 | 60.1 *** | −0.323 *** (−0.101 ***) | 71.0 *** | −0.523 (−0.199) | 11,975 |
10 | 62.1 *** | −0.326 *** (−0.125 ***) | 72.1 *** | −0.545 (−0.210) | 11,692 |
(n) | REV > 0 | REV < 0 | Obs | ||||||
---|---|---|---|---|---|---|---|---|---|
HT | LT | HT | LT | ||||||
% | ERR Mean (Median) | % | ERR Mean (Median) | % | ERR Mean (Median) | % | ERR Mean (Median) | ||
1 | 49.6 | −0.042 ** (−0.018 ***) | 49.4 | 0.025 (0.012) | 65.7 *** | −0.336 ** (−0.188 ***) | 49.7 | −0.082 (−0.005) | 15,248 |
2 | 51.9 ** | −0.125 ** (−0.068 ***) | 50.3 | −0.036 (−0.016) | 70.5 *** | −0.424 ** (−0.297 ***) | 52.3 | −0.102 (−0.036) | 15,108 |
3 | 53.2 *** | −0.184 *** (−0.089 ***) | 50.1 | −0.082 (−0.023) | 73.6 *** | −0.528 *** (−0.294 ***) | 55.1 | −0.148 (−0.044) | 14,556 |
4 | 55.0 *** | −0.290 *** (−0.095 ***) | 51.3 | −0.107 (−0.036) | 76.0 *** | −0.695 *** (−0.305 ***) | 58.6 | −0.197 (−0.059) | 14,125 |
5 | 59.1 *** | −0.335 *** (−0.111 ***) | 51.9 | −0.152 (−0.048) | 78.1 *** | −0.744 *** (−0.384 ***) | 61.7 | −0.277 (−0.066) | 13,159 |
6 | 65.0 *** | −0.394 *** (−0.131 ***) | 52.0 | −0.146 (−0.060) | 78.0 *** | −0.785 *** (−0.395 ***) | 63.0 | −0.315 (−0.062) | 13,022 |
7 | 64.0 *** | −0.389 *** (−0.125 ***) | 51.2 | −0.135 (−0.053 | 77.6 *** | −0.776 *** (−0.407 ***) | 62.4 | −0.294 (−0.083 | 12,908 |
8 | 65.1 *** | −0.412 *** (−0.182 ***) | 53.1 | −0.167 (−0.063) | 78.6 *** | −0.795 *** (−0.417 ***) | 63.7 | −0.325 (−0.093) | 12,532 |
9 | 66.1 *** | −0.489 *** (−0.194 ***) | 54.0 | −0.195 (−0.071) | 79.1 *** | −0.802 *** (−0.411 ***) | 64.9 | −0.387 (−0.102) | 11,975 |
10 | 67.2 *** | −0.521 *** (−0.215 ***) | 55.1 | −0.228 (−0.085) | 80.2 *** | −0.826 *** (−0.445 ***) | 65.3 | −0.369 (−0.105) | 11,692 |
n | α | β | R2 | Obs |
---|---|---|---|---|
1 | −0.044 (2.074 **) | 0.262 (3.015 ***) | 0.012 | 15,248 |
2 | −0.094 (4.111 **) | 0.489 (4.326 ***) | 0.016 | 15,108 |
3 | −0.142 (−5.011 ***) | 0.618 (6.007 ***) | 0.025 | 14,556 |
4 | −0.188 (−8.172 ***) | 0.627 (7.274 ***) | 0.031 | 14,125 |
5 | −0.244 (−12.074 ***) | 0.893 (9.189 ***) | 0.029 | 13,159 |
6 | −0.222 (−11.751 ***) | 0.886 (8.745 ***) | 0.037 | 13,022 |
7 | −0.276 (−15.112 ***) | 0.973 (10.101 ***) | 0.031 | 12,908 |
8 | −0.345 (−18.547 ***) | 1.176 (13.127 ***) | 0.043 | 12,532 |
9 | −0.389 (−20.187 ***) | 1.345 (14.224 ***) | 0.042 | 11,975 |
10 | −0.436 (−25.742 ***) | 1.465 (15.246 ***) | 0.057 | 11,692 |
n | REV > 0 | REV < 0 | ||||||
---|---|---|---|---|---|---|---|---|
α | β | R2 | Obs | α | β | R2 | Obs | |
1 | 0.011 (0.732) | −0.067 (−1.335) | 0.002 | 6785 | −0.135 (−8.782 ***) | 0.489 (5.332 ***) | 0.015 | 8463 |
2 | −0.032 (−1.489) | −0.188 (−1.962 **) | 0.004 | 6650 | −0.281 (−10.746 ***) | 0.675 (6.412 ***) | 0.020 | 8458 |
3 | −0.054 (−1.808 *) | −0.255 (−4.121 ***) | 0.009 | 6270 | −0.301 (−15.197) | 0.894 (7.662 ***) | 0.029 | 8286 |
4 | −0.071 (−1.858 *) | −0.451 (−5.709 ***) | 0.015 | 6485 | −0.339 (−18.907 ***) | 1.075 (9.608 ***) | 0.038 | 7640 |
5 | −0.065 (−1.828 *) | −0.539 (−6.192 ***) | 0.020 | 5543 | −0.444 (−20.341 ***) | 1.303 (11.618 ***) | 0.040 | 7616 |
6 | −0.088 (−2.213 **) | −0.609 (−6.814 ***) | 0.027 | 5006 | −0.459 (−22.428 ***) | 1.283 (11.486 ***) | 0.049 | 8016 |
7 | −0.122 (−2.328 **) | −0.701 (−7.981 ***) | 0.032 | 5258 | −0.436 (−24.741 ***) | 1.418 (13.147 ***) | 0.054 | 7650 |
8 | −0.184 (−3.302 ***) | −0.692 (−7.638 ***) | 0.038 | 5213 | −0.568 (−25.162 ***) | 1.746 (16.302 ***) | 0.059 | 7319 |
9 | −0.288 (−4.744 ***) | −0.787 (−8.281 ***) | 0.042 | 4976 | −0.677 (−28.315 ***) | 1.947 (18.018 ***) | 0.065 | 6999 |
10 | −0.326 (−5.618 ***) | −0.836 (−8.474 ***) | 0.037 | 4781 | −0.728 (−29.236 ***) | 2.244 (19.213 ***) | 0.068 | 6911 |
REV > 0 | ||||||||
---|---|---|---|---|---|---|---|---|
HT | LT | Difference HT vs. LT | ||||||
n | α0 + α1 | β0 + β1 | α0 | β0 | α1 | β1 | R2 | Obs |
1 | −0.043 | −0.129 | 0.019 | −0.015 | −0.062 | −0.114 | 0.004 | 6785 |
(−1.598 *) | (−2.001 **) | (0.545) | (−1.005) | (−1.689 *) | (−1.954 **) | |||
2 | −0.065 | −0.289 | −0.007 | −0.059 | −0.058 | −0.230 | 0.008 | 6650 |
(−1.847 *) | (−4.555 ***) | (−1.289) | (−1.643 *) | (−1.658 *) | (3.021 ***) | |||
3 | −0.108 | −0.458 | −0.023 | −0.126 | −0.085 | −0.332 | 0.015 | 6270 |
(−2.151 **) | (−6.542 ***) | (−1.408) | (−2.821 ***) | (−1.902 **) | (−3.950 ***) | |||
4 | −0.102 | −0.761 | −0.046 | −0.284 | −0.056 | −0.477 | 0.021 | 6485 |
(−2.107 **) | (−8.114 ***) | (−1.645 *) | (−3.519 ***) | (−1.625 *) | (−4.349 ***) | |||
5 | −0.124 | −0.861 | −0.042 | −0.306 | −0.082 | −0.555 | 0.029 | 5543 |
(−2.942 ***) | (−8.525 ***) | (−1.528 *) | (−4.452 ***) | (−2.124 **) | (−5.945 ***) | |||
6 | −0.209 | −0.987 | −0.066 | −0.359 | −0.143 | −0.628 | 0.036 | 5006 |
(−3.629 ***) | (−9.186 ***) | (−1.878 **) | (−5.409 ***) | (2.625 ***) | (−6.889 ***) | |||
7 | −0.286 | −1.065 | −0.101 | −0.486 | −0.185 | −0.579 | 0.038 | 5258 |
(−4.315 ***) | (−10.919 ***) | (−2.408 **) | (−6.115 ***) | (2.946 ***) | (−6.112 ***) | |||
8 | −0.357 | −1.049 | −0.137 | −0.512 | −0.220 | −0.537 | 0.042 | 5213 |
(−5.162 ***) | (−10.907 ***) | (−3.612 ***) | (−6.447 ***) | (−3.002 ***) | (−5.835 ***) | |||
9 | −0.486 | −1.174 | −0.227 | −0.584 | −0.259 | −0.590 | 0.039 | 4976 |
(−6.201 ***) | (−11.019 ***) | (−4.402 ***) | (−6.888 ***) | (−3.121 ***) | (−6.798 ***) | |||
10 | −0.516 | −1.145 | −0.258 | −0.606 | −0.258 | −0.539 | 0.048 | 4781 |
(−6.852 ***) | (−10.541 ***) | (−4.618 ***) | (−7.512 ***) | (−3.099 ***) | (−6.647 ***) |
REV < 0 | ||||||||
---|---|---|---|---|---|---|---|---|
HT | LT | Difference HT vs. LT | ||||||
n | α0 + α1 | β0 + β1 | α0 | β0 | α1 | β1 | R2 | Obs |
1 | −0.246 | 0.814 | −0.048 | 0.298 | −0.198 | 0.516 | 0.037 | 6122 |
(−10.212 ***) | (7.005 ***) | (−4.311 ***) | (3.331 ***) | (−10.252 ***) | (5.014 ***) | |||
2 | −0.448 | 1.002 | −0.126 | 0.503 | −0.322 | 0.499 | 0.049 | 5872 |
(−14.445 ***) | (9.254 ***) | (−7.583 ***) | (5.457 ***) | (−13.144 ***) | (4.835 ***) | |||
3 | −0.549 | 1.225 | −0.114 | 0.631 | −0.435 | 0.594 | 0.057 | 5436 |
(18.741 ***) | (10.212 ***) | (−7.414 ***) | (5.948 ***) | (−16.011 ***) | (6.227 ***) | |||
4 | −0.624 | 1.436 | −0.188 | 0.712 | −0.436 | 0.724 | 0.066 | 5172 |
(−22.008 ***) | (12.112 ***) | (−9.554 ***) | (6.686 ***) | (−17.514 ***) | (7.028 ***) | |||
5 | −0.747 | 1.644 | −0.239 | 0.888 | −0.508 | 0.756 | 0.062 | 4632 |
(−25.145 ***) | (13.358 ***) | (−12.201 ***) | (7.334 ***) | (−19.440 ***) | (7.648 ***) | |||
6 | −0.831 | 1.527 | −0.335 | 0.913 | −0.496 | 0.614 | 0.079 | 4657 |
(−28.117 ***) | (12.477 ***) | (16.337 ***) | (8.221 ***) | (−19.384 ***) | (7.104 ***) | |||
7 | −0.817 | 1.954 | −0.310 | 1.011 | −0.507 | 0.943 | 0.088 | 4546 |
(−27.114 ***) | (18.102 ***) | (−15.287 ***) | (9.514 ***) | (−21.461 ***) | (8.889 ***) | |||
8 | −0.912 | 2.115 | −0.381 | 1.345 | −0.531 | 0.770 | 0.098 | 4345 |
(−29.287 ***) | (18.641 ***) | (−18.217 ***) | (10.356 ***) | (−23.331 ***) | (8.405 ***) | |||
9 | −1.025 | 2.245 | −0.447 | 1.223 | −0.578 | 1.022 | 0.114 | 3734 |
(−31.112 ***) | (21.253 ***) | (−21.236 ***) | (10.027 ***) | (−25.497 ***) | (9.858 ***) | |||
10 | −1.180 | 2.536 | −0.513 | 1.421 | −0.667 | 1.115 | 0.125 | 4013 |
(−32.142 ***) | (23.015 ***) | (−25.245 ***) | (14.235 ***) | (−26.245 ***) | (10.022 ***) |
n | FCH > 0 | FCH < 0 | Obs | ||
---|---|---|---|---|---|
% | ERR Mean (Median) | % | ERR Mean (Median) | ||
1 | 49.3 | −0.032 *** (0.000 ***) | 59.1 *** | −0.184 (−0.074) | 16,407 |
2 | 51.8 * | −0.079 *** (−0.024 ***) | 57.3 *** | −0.224 (−0.109) | 16,235 |
3 | 53.4 ** | −0.174 *** (−0.034 ***) | 58.2 *** | −0.328 (−0.130) | 16,111 |
4 | 56.5 *** | −0.218 *** (−0.0051 ***) | 60.2 *** | −0.403 (−0.142) | 15,805 |
5 | 57.8 *** | −0.294 *** (−0.064 ***) | 58.4 *** | −0.377 (−0.132) | 15,687 |
6 | 59.4 *** | −0.359 *** (−0.108 ***) | 55.5 *** | −0.316 (−0.127) | 15,434 |
7 | 58.3 *** | −0.331 *** (−0.114 ***) | 56.4 *** | −0.328 (−0.146) | 15,216 |
8 | 60.1 *** | −0.377 *** (−0.131 ***) | 56.1 *** | −0.375 (−0.173) | 15,112 |
9 | 62.9 *** | −0.389 *** (−0.142 ***) | 57.2 *** | −0.424 (−0.214) | 14,965 |
10 | 63.6 *** | −0.465 *** (−0.192 ***) | 56.3 *** | −0.401 (−0.195) | 14,831 |
11 | 64.4 *** | −0.446 *** (−0.178 ***) | 54.2 *** | −0.355 (−0.189) | 14,625 |
n | FCH > 0 | FCH <0 | Obs | ||||||
---|---|---|---|---|---|---|---|---|---|
HT | LT | HT | LT | ||||||
% | ERR Mean (Median) | % | ERR Mean (Median) | % | ERR Mean (Median) | % | ERR Mean (Median) | ||
1 | 55.7 ** | −0.119 ** (−0.052 ***) | 48.5 | 0.039 (0.007) | 63.3 *** | −0.236 *** (−0.188 ***) | 55.8 | −0.076 (−0.035) | 16,407 |
2 | 57.9 *** | −0.215 ** (−0.089 ***) | 50.6 | −0.047 (−0.025) | 64.7 *** | −0.284 *** (−0.099 ***) | 55.2 | −0.095 (−0.024) | 16,235 |
3 | 58.2 *** | −0.377 *** (−0.122 ***) | 51.1 | −0.096 (−0.071) | 62.6 *** | −0.345 ***(−0.143 ***) | 53.1 | −0.118 (−0.042) | 16,111 |
4 | 63.4 *** | −0.490 *** (−0.182 ***) | 53.4 | −0.144 (−0.092) | 64.4 *** | −0.439 *** (−0.215 ***) | 54.8 | −0.138 (−0.091) | 15,805 |
5 | 62.5 *** | −0.441 *** (−0.168 ***) | 54.7 | −0.136 (−0.086) | 63.1 *** | −0.389 *** (−0.168 ***) | 52.5 | −0.152 (−0.072) | 15,687 |
6 | 64.0 *** | −0.524 *** (−0.197 ***) | 56.1 | −0.124 (−0.091) | 62.3 *** | −0.365 *** (−0.152 ***) | 51.9 | −0.107 (−0.052) | 15,434 |
7 | 63.8 *** | −0.568 *** (−0.210 ***) | 56.3 | −0.112 (−0.099) | 61.6 *** | −0.412 *** (−0.208 ***) | 51.3 | −0.138 (−0.069) | 15,216 |
8 | 65.9 *** | −0.546 *** (−0.193 ***) | 55.2 | −0.144 (−0.122) | 60.4 *** | −0.489 *** (−0.245 ***) | 50.6 | −0.114 (−0.056) | 15,112 |
9 | 67.2 *** | −0.662 *** (−0.279 ***) | 56.8 | −0.202 (−0.157) | 60.1 *** | −0.543 ***(−0.288 ***) | 51.6 | −0.151 (−0.099) | 14,965 |
10 | 68.1 *** | −0.758 *** (−0.361 ***) | 57.5 | −0.245 (−0.194) | 56.9 *** | −0.525 *** (−0.274 ***) | 50.9 | −0.205 (−0.115) | 14,831 |
11 | 68.4 *** | −0.728 *** (−0.334 ***) | 57.8 | −0.368 (−0.201) | 56.2 *** | −0.495 *** (−0.296 ***) | 50.3 | −0.196 (−0.108) | 14,625 |
n | α | β | R2 | Obs |
---|---|---|---|---|
1 | −0.088 (−3.126 ***) | −0.028 (−1.566 *) | 0.000 | 16,407 |
2 | −0.101 (−3.949 ***) | −0.019 (−1.453) | 0.007 | 16,235 |
3 | −0.096 (−3.884 ***) | −0.078 (−1.947 **) | 0.008 | 16,111 |
4 | −0.128 (−4.657 ***) | −0.176 (−3.101 ***) | 0.021 | 15,805 |
5 | 0.138 (−5.114 ***) | −0.296 (−3.414 ***) | 0.036 | 15,687 |
6 | −0.173 (−6.118 ***) | −0.328 (−4.854 ***) | 0.038 | 15,434 |
7 | −0.190 (−7.114 ***) | −0.389 (−5.446 ***) | 0.043 | 15,216 |
8 | −0.214 (−8.724 ***) | −0.481 (−6.424 ***) | 0.054 | 15,112 |
9 | −0.255 (−10.548 ***) | −0.587 (−7.825 ***) | 0.057 | 14,965 |
10 | −0.287 (−12.247 ***) | −0.613 (−8.653 ***) | 0.062 | 14,831 |
11 | −0.325 (−13.454 ***) | −0.658 (−8.425 ***) | 0.063 | 14,625 |
FCH > 0 | FCH < 0 | |||||||
---|---|---|---|---|---|---|---|---|
n | α | β | R2 | Obs | α | β | R2 | Obs |
1 | −0.045 | −0.108 | 0.024 | 9745 | −0.186 | 0.089 | 0.001 | 6662 |
(−2.110 **) | (−2.835 ***) | (−8.241 ***) | (2.002 **) | |||||
2 | −0.084 | −0,148 | 0.039 | 10,087 | −0.246 | 0.096 | 0.001 | 6148 |
(−3.219 ***) | (−3.122 ***) | (−9.701 ***) | (2.912 ***) | |||||
3 | −0.061 | −0.183 | 0.044 | 10,359 | −0.211 | 0.107 | 0.005 | 5752 |
(−2.901 ***) | (−4.120 ***) | (−8.105 ***) | (3.002 ***) | |||||
4 | −0.073 | −0.286 | 0.053 | 10,662 | −0.245 | 0.115 | 0.008 | 5143 |
(−3.112 ***) | (−4.624 ***) | (−9.817 ***) | (4.447 ***) | |||||
5 | −0.092 | −0.415 | 0.062 | 10,763 | −0.294 | 0.214 | 0.011 | 4924 |
(−3.616 ***) | (−5.002 ***) | (−10.141 ***) | (5.774 ***) | |||||
6 | −0.084 | −0.576 | 0.075 | 11,012 | −0.322 | 0.291 | 0.019 | 4422 |
(−3.416 ***) | (−7.331 ***) | (−10.824 ***) | (6.455 ***) | |||||
7 | −0.117 | −0.685 | 0.084 | 10,886 | −0.385 | 0.308 | 0.022 | 4330 |
(−3.917 **) | (−8.794 ***) | (−12.892 ***) | (7.156 ***) | |||||
8 | −0.123 | −0.745 | 0.091 | 11,546 | −0.315 | 0.391 | 0.029 | 3566 |
(−4.121 ***) | (−10.081 ***) | (−14.922 ***) | (7.754 ***) | |||||
9 | −0.161 | −0.804 | 0.104 | 11,225 | −0.367 | 0.487 | 0.039 | 3740 |
(−4.402 ***) | (−11.851 ***) | (−15.787 ***) | (8.001 ***) | |||||
10 | −0.154 | −0.841 | 0.121 | 11,145 | −0.355 | 0.543 | 0.042 | 3686 |
(−4.211 ***) | (−12.125 ***) | (−15.333 ***) | (8.147 ***) | |||||
11 | −0.176 | −0.869 | 0.125 | 10,980 | −0.382 | 0.566 | 0.049 | 3645 |
(−4.889) | (−12.556 ***) | (−15.773 ***) | (8.847 ***) |
FCH > 0 | ||||||||
---|---|---|---|---|---|---|---|---|
HT | LT | Difference HT vs. LT | ||||||
n | α0 + α1 | β0 + β1 | α0 | β0 | α1 | β1 | R2 | Obs |
1 | −0.096 | −0.191 | −0.015 | 0.041 | −0.081 | −0.232 | 0.042 | 9745 |
(−2.110 **) | (−3.801 ***) | (−1.441) | −1.119 | (−2.731 ***) | (−3.925 ***) | |||
2 | −0.102 | −0.233 | −0.026 | −0.069 | −0.076 | −0.164 | 0.062 | 10,087 |
(−2.798 ***) | (−4.779 ***) | (1.773 *) | (−1.317) | (−2.625 ***) | (−3.845 ***) | |||
3 | −0.096 | −0.376 | −0.053 | −0.115 | −0.043 | −0.261 | 0.074 | 10,359 |
(−3.168 ***) | (−6.445 ***) | (−2.441 **) | (−1.661 *) | (−1.625 *) | (−4.585 ***) | |||
4 | −0.085 | −0.509 | −0.024 | −0.204 | −0.061 | −0.713 | 0.083 | 10,662 |
(−3.005 ***) | (−8.225 ***) | (−1.917 **) | (−1.727 *) | (−2.325 **) | (−9.217 ***) | |||
5 | −0.112 | −0.688 | −0.036 | −0.356 | −0.076 | −0.332 | 0.094 | 10,763 |
(−3.275 ***) | (−9.524 ***) | (−2.720 ***) | (−2.339 **) | (−2.803 ***) | (−4.975 ***) | |||
6 | −0.122 | −0.857 | −0.041 | −0.434 | −0.081 | −0.423 | 0,095 | 11,012 |
(−3.848 ***) | (−10.202 ***) | (−2.776 ***) | (−2.890 ***) | (−3.127 ***) | (−5.874 ***) | |||
7 | −0.165 | −0.997 | −0.063 | −0.552 | −0.102 | −0.445 | 0.102 | 10,886 |
(−4.113 ***) | (−13.761 ***) | (−3.127 ***) | (−3.202 ***) | (−3.475 ***) | (−6.874 ***) | |||
8 | −0.193 | −0.971 | −0.076 | −0.492 | −0.117 | −0.479 | 0.105 | 11,546 |
(−5.614 ***) | (−11.632 ***) | (−3.421 ***) | (−3.007 ***) | (−4.827 ***) | (−7.012 ***) | |||
9 | −0.235 | −1.010 | −0.089 | −0.610 | −0.146 | −0.400 | 0.118 | 11,225 |
(−6.214 ***) | (−12.698 ***) | (−3.719 ***) | (−3.442 ***) | (−5.423 ***) | (−6.129 ***) | |||
10 | −0.275 | −1.104 | −0.105 | −0.525 | −0.170 | −0.579 | 0.121 | 11,145 |
(−6.889 ***) | (−13.536 ***) | (−4.211 ***) | (−3.221 ***) | (−6.124 ***) | (−8.545 ***) | |||
11 | −0.294 | −1.125 | −0.113 | −0.511 | −0.181 | −0.614 | 0.129 | 10,980 |
(−7.111 ***) | (−14.309 ***) | (−4.617 ***) | (−4.112 ***) | (−6.554 ***) | (8.869 ***) |
FCH < 0 | ||||||||
---|---|---|---|---|---|---|---|---|
HT | LT | Difference HT vs. LT | ||||||
n | α0 + α1 | β0 + β1 | α0 | β0 | α1 | β1 | R2 | Obs |
1 | −0.202 | 0.129 | −0.062 | 0.024 | −0.140 | 0.105 | 0.005 | 6662 |
(−8.312 ***) | (2.357 **) | (−2.317 **) | −1.461 | (−5.381 ***) | (2.865 ***) | |||
2 | −0.296 | 0.167 | −0.087 | 0.026 | −0.209 | 0.141 | 0.007 | 6148 |
(−10.867 ***) | (2.745 ***) | (−2.832 ***) | −1.120 | (−6.421 ***) | (3.172 ***) | |||
3 | −0.303 | 0.231 | −0.096 | 0.057 | −0.207 | 0.174 | 0.009 | 5752 |
(−11.832 ***) | (3.156 ***) | (−3.423) | (2.050 **) | (−6.898 ***) | (3.647 ***) | |||
4 | −0.335 | 0.271 | 0.125 | 0.087 | −0.460 | 0.184 | 0.011 | 5143 |
(−13.410 ***) | (3.813 ***) | (−4.404 ***) | (2.995 ***) | (−8.585 ***) | (4.581 ***) | |||
5 | −0.325 | 0.324 | −0.114 | 0.127 | −0.211 | 0.197 | 0.021 | 4924 |
(−13.216 ***) | (4.778 ***) | (−4.267 ***) | (3.567 ***) | (−6.42 ***5) | (4.315 ***) | |||
6 | −0.395 | 0.489 | −0.191 | 0.197 | −0.204 | 0.292 | 0.032 | 4422 |
(−14.661 ***) | (5.124 ***) | (−6.476 ***) | (4.043 ***) | (−6.318 ***) | (5.345 ***) | |||
7 | −0.413 | 0.585 | 0.164 | 0.227 | −0.577 | 0.358 | 0.047 | 4330 |
(−15.295 ***) | (5.456 ***) | (6.150 ***) | (4.753 ***) | (−11.205 ***) | (6.228 ***) | |||
8 | −0.489 | 0.626 | −0.203 | 0.298 | −0.286 | 0.328 | 0.058 | 3566 |
(−16.426 ***) | (6.751 ***) | (−7.938 ***) | (5.970 ***) | (−7.369 ***) | (5.875 ***) | |||
9 | −0.458 | 0.662 | −0.196 | 0.329 | −0.262 | 0.333 | 0.054 | 3740 |
(−15.754 ***) | (7.227 ***) | (−6.746 ***) | (6.175 ***) | (−7.425 ***) | (6.047 ***) | |||
10 | −0.509 | 0.736 | −0.247 | 0.385 | −0.262 | 0.351 | 0.069 | 3686 |
(−16.332 ***) | (8.725 ***) | (−8.767 ***) | (6.872 ***) | (−7.741 ***) | (7.258 ***) | |||
11 | −0.524 | 0.879 | −0.211 | 0.413 | −0.313 | 0.466 | 0.065 | 3645 |
(−16.825 ***) | (9.343 ***) | (−8.515 ***) | (7.108 ***) | (−9.369 ***) | (6.648 ***) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkemali, T. Uncertainty and Financial Analysts’ Optimism: A Comparison between High-Tech and Low-Tech European Firms. Sustainability 2023, 15, 2270. https://doi.org/10.3390/su15032270
Elkemali T. Uncertainty and Financial Analysts’ Optimism: A Comparison between High-Tech and Low-Tech European Firms. Sustainability. 2023; 15(3):2270. https://doi.org/10.3390/su15032270
Chicago/Turabian StyleElkemali, Taoufik. 2023. "Uncertainty and Financial Analysts’ Optimism: A Comparison between High-Tech and Low-Tech European Firms" Sustainability 15, no. 3: 2270. https://doi.org/10.3390/su15032270
APA StyleElkemali, T. (2023). Uncertainty and Financial Analysts’ Optimism: A Comparison between High-Tech and Low-Tech European Firms. Sustainability, 15(3), 2270. https://doi.org/10.3390/su15032270