Not a Good Place to Live for Most, but Excellent for a Few—Diversity of Zooplankton in a Shallow Coastal Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cognetti, G.; Maltagliati, F. Biodiversity and adaptive mechanisms in brackish water fauna. Mar. Pollut. Bull. 2000, 40, 7–14. [Google Scholar] [CrossRef]
- Paturej, E.; Gutkowska, A. The effect of salinity levels on the structure of zooplankton communities. Arch. Biol. Sci. 2015, 67, 483–492. [Google Scholar] [CrossRef]
- Vilas-Boas, J.A.; Arenas-Sánchez, A.; Vighi, M.; Romo, S.; Van den Brink, P.J.; Pedroso Dias, R.J.; Rico, A. Multiple stressors in Mediterranean coastal wetland ecosystems: Influence of salinity and an insecticide on zooplankton communities under different temperature conditions. Chemosphere 2021, 269, 129381. [Google Scholar] [CrossRef] [PubMed]
- Wooldridge, T.H.; Deyzel, S.H.P. Temperature and salinity as abiotic drivers of zooplankton community dynamics in the Great Berg Estuary. Trans. R. Soc. S. Afr. 2009, 62, 219–237. [Google Scholar] [CrossRef]
- Aladin, N.V. Salinity tolerance and morphology of the osmoregulation organs in Cladocera with special reference to Cladocera from the Aral Sea. Hydrobiologia 1991, 225, 291–299. [Google Scholar] [CrossRef]
- Frey, D.G. The penetration of cladocerans into saline waters. Hydrobiologia 1993, 267, 233–248. [Google Scholar] [CrossRef]
- Remane, A.; Schlieper, C. Biology of brackish waters. Binnengewässer 1972, 25, 1–372. [Google Scholar]
- Ojaveer, H.; Jaanus, A.; MacKenzie, B.; Martin, G.; Olenin, S.; Radziejewska, T.; Telesh, I.; Zettler, M.L.; Zaiko, A. Status of biodiversity in the Baltic Sea. PLoS ONE 2010, 5, e12467. [Google Scholar] [CrossRef] [Green Version]
- Tunowski, J. Zooplankton structure in heated lakes with differing thermal regimes and water retention. Arch. Pol. Fish. 2009, 17, 291–303. [Google Scholar] [CrossRef]
- Paturej, E.; Gutkowska, A.; Koszałka, J.; Bowszys, M. Effect of physicochemical parameters on zooplankton in the brackish, coastal Vistula Lagoon. Oceanologia 2017, 59, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Zettler, E.R.; Carter, J.C.H. Zooplankton community and species responses to a natural turbidity gradient in Lake Temiskaming, Ontario-Quebec. Can. J. Fish. Aquat. Sci. 1986, 43, 665–673. [Google Scholar] [CrossRef]
- Goździejewska, A.M.; Kruk, M. Zooplankton network conditioned by turbidity gradient in small anthropogenic reservoirs. Sci. Rep. 2022, 12, 3938. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- Paaijmans, K.P.; Takken, W.; Githeko, A.K.; Jacobs, A.F.G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 2008, 52, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Kirk, K.L.; Gilbert, J.J. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 1990, 71, 1741–1755. [Google Scholar] [CrossRef]
- Kirk, K.L. Effects of suspended clay on Daphnia body growth and fitness. Freshw. Biol. 1992, 28, 103–109. [Google Scholar] [CrossRef]
- Levine, S.N.; Zehrer, R.F.; Burns, C.W. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshw. Biol. 2005, 50, 1515–1536. [Google Scholar] [CrossRef]
- Paturej, E.; Kruk, M. The impact of environmental factors on zooplankton communities in the Vistula Lagoon. Oceanol. Hydrobiol. Stud. 2011, 40, 37–48. [Google Scholar] [CrossRef]
- Kornijów, R. Ecosystem of the Polish part of the Vistula Lagoon from the perspective of alternative stable states concept, with implications for management issues. Oceanologia 2018, 60, 390–404. [Google Scholar] [CrossRef]
- Różańska, Z. Zooplankton of the Vistula Lagoon. Zesz. Nauk. Wyższej Szkoły Rol. W Olszt. 1963, 16, 41–57. (In Polish) [Google Scholar]
- Adamkiewicz-Chojnacka, B. Dynamics of the Vistula Lagoon zooplankton numbers. Oceanologia 1983, 16, 97–132. [Google Scholar]
- Paturej, E.; Gutkowska, A.; Mierzejewska, J. Long-term quantitative and qualitative changes in the zooplankton community of the Vistula Lagoon. J. Coast. Res. 2014, 30, 337–343. [Google Scholar] [CrossRef]
- Kornijów, R.; Karpowicz, M.; Ejsmont-Karabin, J.; Nawrocka, L.; de Eyto, E.; Grzonkowski, K.; Magnuszewski, A.; Jakubowska, A.; Wodzinowski, T.; Woźniczka, A. Patchy distribution of phyto- and zooplankton in large and shallow lagoon under ice cover and resulting trophic interactions. Mar. Freshw. Res. 2020, 71, 1327–1341. [Google Scholar] [CrossRef]
- Kownacka, J.; Całkiewicz, J.; Kornijów, R. A turning point in the development of phytoplankton in the Vistula Lagoon (southern Baltic Sea) at the beginning of the 21st century. Oceanologia 2020, 62, 538–555. [Google Scholar] [CrossRef]
- Nawrocka, L.; Kobos, J. The trophic state of the Vistula Lagoon: An assessment based on selected biotic and abiotic parameters according to the Water Framework Directive. Oceanologia 2011, 53, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Chubarenko, B.V.; Leitsina, L.V.; Esiukova, E.E.; Kurennoy, D.N. Model analysis of the currents and wind waves in the Vistula Lagoon of the Baltic Sea. Oceanology 2012, 52, 748–753. [Google Scholar] [CrossRef]
- Błędzki, L.A.; Rybak, J.I. Freshwater Crustacean Zooplankton of Europe; Springer: Cham, Switzerland, 2016; 918p. [Google Scholar]
- Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydrobiol. 1998, 45, 513–522. [Google Scholar]
- McAleece, N.; Gage, J.D.G.; Lambshead, P.J.D.; Paterson, G.L.J. BioDiversity Professional Statistics Analysis Software; Publishing Physics Web: Bristol, UK, 1997. [Google Scholar]
- Dumont, H.J.; Segers, H. Estimating lacustrine zooplankton species richness and complementarity. Hydrobiologia 1996, 341, 125–132. [Google Scholar] [CrossRef]
- Brucet, S.; Boix, D.; Gascón, S.; Sala, J.; Quintana, X.; Badosa, A.; Søndergaard, M.; Lauridsen, T.L.; Jeppesen, E. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: North temperate Denmark and Mediterranean Catalonia (Spain). Ecography 2009, 32, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, V.R. Confusing Invader: Acanthocyclops americanus (Copepoda: Cyclopoida) and Its Biological, Anthropogenic and Climate-Dependent Mechanisms of Rapid Distribution in Eurasia. Water 2021, 13, 1423. [Google Scholar] [CrossRef]
- Szymczak, E. Characteristics of Sediments in a Changing Environmental Conditions in Vistula Lagoon (Poland). IOP Conf. Ser. Earth Environ. Sci. 2019, 362, 012048. [Google Scholar] [CrossRef] [Green Version]
- Arruda, J.A.; Marzolf, G.R.; Faulk, R.T. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 1983, 65, 1225–1235. [Google Scholar] [CrossRef]
- McCabe, G.D.; O’Brien, W.J. The effects of suspended silt on feeding and reproduction of Daphnia pulex. Am. Midl. Nat. 1983, 110, 324–337. [Google Scholar] [CrossRef]
- Gliwicz, Z.M. Suspended clay concentration controlled by filter-feeding zooplankton in a tropical reservoir. Nature 1986, 323, 330–332. [Google Scholar] [CrossRef]
- Hammer, U.T. Zooplankton distribution and abundance in saline lakes of Alberta and Saskatchewan, Canada. Int. J. Salt Lake Res. 1993, 2, 111–132. [Google Scholar] [CrossRef]
- Bielańska-Grajner, I.; Cudak, A. Effects of Salinity on Species Diversity of Rotifers in Anthropogenic Water Bodies. Pol. J. Environ. Stud. 2014, 23, 27–34. [Google Scholar]
- Wetzel, R.G. Limnology. Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2001; 1006p. [Google Scholar]
- Gilbert, J.J. Competition between rotifers and Daphnia. Ecology 1985, 66, 1943–1950. [Google Scholar] [CrossRef]
- Karpowicz, M.; Ejsmont-Karabin, J.; Więcko, A.; Górniak, A.; Cudowski, A. A place in space—The horizontal vs vertical factors that influence zooplankton (Rotifera, Crustacea) communities in a mesotrophic lake. J. Limnol. 2019, 78, 243–258. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J.; Gorelysheva, Z.; Kalinowska, K.; Weglenska, T. Role of Zooplankton (Ciliata, Rotifera and Crustacea) in phosphorus removal from cycling: Lakes of the river Jorka watershed (Masuria Lakeland, Poland). Pol. J. Ecol. 2004, 52, 275–284. [Google Scholar]
- Sługocki, Ł.; Rymaszewska, A.; Kirczuk, L. To fit or to belong: Characterization of the non-native invader Eurytemora carolleeae (Copepoda: Calanoida) in the Oder River system (Central Europe). Aquat. Invasions 2021, 16, 443–460. [Google Scholar] [CrossRef]
- Karlsson, K.; Winder, M. Adaptation potential of the copepod Eurytemora affinis to a future warmer Baltic Sea. Ecol. Evol. 2020, 10, 5135–5151. [Google Scholar] [CrossRef]
- Diekmann, A.B.S.; Clemmesen, C.; John, M.A.S.; Paulsen, M.; Peck, M.A. Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: A case study of Acartia, Temora and Eurytemora species in the south-west Baltic. Mar. Biol. 2012, 159, 2399–2414. [Google Scholar] [CrossRef]
- Rajasilta, M.; Hänninen, J.; Vuorinen, I. Decreasing salinity improves the feeding conditions of the Baltic herring (Clupea harengus membras) during spring in the Bothnian Sea, northern Baltic. ICES Mar. Sci. Symp. 2014, 71, 1148–1152. [Google Scholar] [CrossRef] [Green Version]
- Hernroth, L.; Ackefors, H. The zooplankton of the Baltic Proper: A long-term investigation of the fauna, its biology and ecology. Rep. Inst. Mar. Res. Uddevalla 1979, 2, 1–60. [Google Scholar]
- Sellner, K.G.; Bundy, M.H. Preliminary results of experiments to determine the effects of suspended sediments on the estuarine copepod Eurytemora affinis. Cont. Shelf Res. 1987, 7, 1435–1438. [Google Scholar] [CrossRef]
- Gasparini, S.; Castel, J.; Irigoien, X. Impact of suspended particulate matter on egg production of the estuarine copepod, Eurytemora affinis. J. Mar. Syst. 1999, 22, 195–205. [Google Scholar] [CrossRef]
- Kimmel, D.G.; Bradley, B.P. Specific protein responses in the calanoid copepod Eurytemora affinis (Poppe, 1880) to salinity and temperature variation. J. Exp. Mar. Biol. Ecol. 2001, 266, 135–149. [Google Scholar] [CrossRef]
- Seuront, L. Effect of salinity on the swimming behaviour of the estuarine calanoid copepod Eurytemora affinis. J. Plankton Res. 2006, 28, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Labuce, A.; Ikauniece, A.; Strāķe, S.; Souissi, A. Survey of Presence of Non-Indigenous Eurytemora carolleeae in the Gulf of Riga (Baltic Sea) Five Years After its First Discovery. Proc. Latv. Acad. Sci. 2018, 72, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Sukhikh, N.; Souissi, A.; Souissi, S.; Holl, A.C.; Schizas, N.V.; Alekseev, V. Life in sympatry: Coexistence of native Eurytemora affinis and invasive Eurytemora carolleeae in the Gulf of Finland (Baltic Sea). Oceanologia 2019, 61, 227–238. [Google Scholar] [CrossRef]
- Semenova, A.S.; Tchougounov, V.K. The distribution of Moina micrura Kurz, 1875 (Crustacea: Moinidae) in the Russian part of the Vistula Lagoon (Baltic Sea). Russ. J. Biol. Invasions 2018, 9, 175–183. [Google Scholar] [CrossRef]
- Karpowicz, M.; Świsłocka, M.; Sługocki, Ł.; Czerniawski, R.; López, C.; Kornijów, R. Distribution of Diaphanosoma (Diplostraca: Sididae) genus in Central Europe—Morphological and molecular approach. Eur. Zool. J. 2022, 89, 1115–1128. [Google Scholar] [CrossRef]
- Korovchinsky, N.M.; Sanoamuang, L.-O. Overview of Sididae (Crustacea: Cladocera: Ctenopoda) of Northeast and East Thailand, with description of a new species of the genus Diaphanosoma. Zootaxa 2008, 1682, 45–61. [Google Scholar] [CrossRef]
- Lazareva, V.I.; Bolotov, S.E. Analysis of coexistence of the recent invader Diaphanosoma orghidani Negrea with the aboriginal species D. brachyurum (Lievin) (Crustacea, Cladocera) in the Rybinsk Reservoir. Russ. J. Biol. Invasions 2013, 4, 161–173. [Google Scholar] [CrossRef]
- Liu, P.; Xu, L.; Xu, S.-L.; Martínez, A.; Chen, H.; Cheng, D.; Dumont, H.J.; Han, B.-P.; Fontaneto, D. Species and hybrids in the genus Diaphanosoma Fischer, 1850 (Crustacea: Branchiopoda: Cladocera). Mol. Phylogenet. Evol. 2018, 118, 369–378. [Google Scholar] [CrossRef]
- Lazareva, V.I.; Bolotov, S.E. Peculiarities of the biology of two Diaphanosoma species (Crustacea, Cladocera) in Rybinsk Reservoir. Inland Water Biol. 2014, 7, 108–116. [Google Scholar] [CrossRef]
- Karpowicz, M.; Ejsmont-Karabin, J. Diversity and Structure of Pelagic Zooplankton (Crustacea, Rotifera) in NE Poland. Water 2021, 13, 456. [Google Scholar] [CrossRef]
- Weiler, W. Erstfund von Diaphanosoma orghidani Negrea 1982 (Crustacea: Sididae) für Deutschland und ihre Begleitarten [First record of Diaphanosoma orghidani Negrea 1982 (Crustacea: Sididae) in Germany and its companions]. Lauterbornia H 1997, 32, 73–77. [Google Scholar]
- Illyova, M.; Nemethova, D. Long-term changes in cladoceran assemblages in the Danube floodplain area (Slovak-Hungarian stretch). Limnologica 2005, 35, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, V.R.; Fefilova, E.; Dumont, H.J. Some noteworthy free-living copepods from surface freshwater in Belgium. Belg. J. Zool. 2002, 132, 133–139. [Google Scholar]
- Sahuquillo, M.; Miracle, M.R. The role of historic and climatic factors in the distribution of crustacean communities in Iberian Mediterranean ponds. Freshw. Biol. 2013, 58, 1251–1266. [Google Scholar] [CrossRef]
- Miracle, M.R.; Alekseev, V.R.; Monchenko, V.; Sentandreu, V.; Vicente, E. Molecular-genetic-based contribution to the taxonomy of the Acanthocyclops robustus group. J. Nat. Hist. 2013, 47, 863–888. [Google Scholar] [CrossRef]
- Anufriieva, E.; Hołyńska, M.; Shadrin, N. Current Invasions of Asian Cyclopid Species (Copepoda: Cyclopidae) in Crimea, with Taxonomical and Zoogeographical Remarks on the Hypersaline and Freshwater Fauna. Annal. Zool. 2014, 64, 109–130. [Google Scholar] [CrossRef]
- Karabin, A.; Ejsmont-Karabin, J. Zespoły zooplanktonu jezior Suwalskiego Parku Krajobrazowego (Zooplankton communities in the lakes of Suwałki Lanscape Park). In Jeziora Suwalskiego Parku Krajobrazowego; Hillbricht-Ilkowska, A., Wisniewski, R.J., Eds.; Zesz Nauk Komitetu Człowiek i Środowisko, PAN: Warsaw, Poland, 1994; Volume 7, pp. 215–242. (In Polish) [Google Scholar]
- Karpowicz, M. Biodiversity of microcrustaceans (Cladocera, Copepoda) in a lowland river ecosystem. J. Limnol. 2017, 76, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Ejsmont-Karabin, J.; Kalinowska, K.; Karpowicz, M. Structure of ciliate, rotifer, and crustacean communities in lake systems of Northeastern Poland. In Polish River Basins and Lakes—Part II; Springer: Cham, Switzerland, 2020; Volume 87, pp. 77–101. [Google Scholar] [CrossRef]
- Bláha, M. Descriptions of copepodid and adult Acanthocyclops trajani (Mirabdullayev Defaye 2002) and A. einslei (Mirabdullayev Defaye 2004) (Copepoda: Cyclopoida) with notes on their discrimination. Fundam. Appl. Limnol. 2010, 177, 223–240. [Google Scholar] [CrossRef]
- Linkowski, T.B.; Kornijów, R.; Karpowicz, M. Comparison of methods for nocturnal sampling of predatory zooplankters in shallow waters. Oceanologia 2021, 63, 71–79. [Google Scholar] [CrossRef]
- Tang, F. Biological Invasions in Brackish Waters. Ph.D. Thesis, Churchill College, University of Cambridge, Cambridge, UK, August 2020. [Google Scholar] [CrossRef]
Calanoida | Cephalodella gibba (Ehrenberg, 1830) | * | |
Acartia bifilosa (Giesbrecht, 1881) | *** | Collotheca pelagica (Rousselet, 1893) | * |
Eurytemora affinis (Poppe, 1880) | **** | Colurella colurus (Ehrenberg, 1830) | * |
Centropages hamatus (Lilljeborg, 1853) | * | Colurella dicentra (Gosse, 1887) | * |
Cyclopoida | Euchlanis deflexa (Gosse, 1851) | * | |
Acanthocyclops americanus (Marsh, 1893) | *** | Euchlanis dilatata Ehrenberg, 1832 | * |
Cyclops vicinus Uljanin, 1875 | * | Filinia brachiata (Rousselet, 1901) | * |
Mesocyclops leuckarti (Claus, 1857) | * | Filinia longiseta (Ehrenberg, 1834) | ** |
Thermocyclops oithonoides (Sars G.O., 1863) | * | Hexarthra fennica (Levander, 1892) | ** |
Harpacticoida spp. | *** | Keratella cochlearis Gosse, 1851 | **** |
Cladocera | Keratella cruciformis (Thompson, 1892) | **** | |
Acroperus harpae (Baird, 1834) | * | Keratella quadrata Müller, 1786 | **** |
Bosmina (Eubosmina) coregoni Baird, 1857 | * | Keratella tecta (Gosse, 1851) | **** |
Bosmina (Bosmina) longirostris (O.F. Müller, 1785) | * | Keratella testudo (Ehrenberg, 1832) | * |
Chydorus sphaericus (O.F. Müller, 1776) | ** | Lecane closterocerca (Schmarda, 1859) | * |
Coronatella rectangula (Sars, 1862) | * | Lecane luna (Müller, 1776) | * |
Daphnia cucullata G.O. Sars, 1862 | * | Notholca acuminata (Ehrenberg 1832) | * |
Diaphanosoma spp. | *** | Polyarthra dolichoptera Idelson, 1925 | * |
Sida crystallina (O.F. Müller, 1776) | * | Polyarthra vulgaris Carlin, 1943 | * |
Leptodora kindtii (Focke, 1844) | * | Synchaeta cecilia Rousselet, 1902 | * |
Rotifera | Synchaeta sp. | ** | |
Brachionus angularis Gosse, 1851 | ** | Synchaeta stylata Wierzejski, 1893 | * |
Brachionus calyciflorus Pallas, 1776 | *** | Trichocerca dixon-nuttallii (Jennings, 1903) | ** |
Brachionus urceolaris Müller, 1773 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpowicz, M.; Kornijów, R.; Ejsmont-Karabin, J. Not a Good Place to Live for Most, but Excellent for a Few—Diversity of Zooplankton in a Shallow Coastal Ecosystem. Sustainability 2023, 15, 2345. https://doi.org/10.3390/su15032345
Karpowicz M, Kornijów R, Ejsmont-Karabin J. Not a Good Place to Live for Most, but Excellent for a Few—Diversity of Zooplankton in a Shallow Coastal Ecosystem. Sustainability. 2023; 15(3):2345. https://doi.org/10.3390/su15032345
Chicago/Turabian StyleKarpowicz, Maciej, Ryszard Kornijów, and Jolanta Ejsmont-Karabin. 2023. "Not a Good Place to Live for Most, but Excellent for a Few—Diversity of Zooplankton in a Shallow Coastal Ecosystem" Sustainability 15, no. 3: 2345. https://doi.org/10.3390/su15032345
APA StyleKarpowicz, M., Kornijów, R., & Ejsmont-Karabin, J. (2023). Not a Good Place to Live for Most, but Excellent for a Few—Diversity of Zooplankton in a Shallow Coastal Ecosystem. Sustainability, 15(3), 2345. https://doi.org/10.3390/su15032345