Evaluating Sediment Yield Response to Watershed Management Practices (WMP) by Employing the Concept of Sediment Connectivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Description of the Index of Connectivity (SC)
2.3. Watershed Management Practices
2.4. WMP Configuration, Implementation, and Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Pérès, G.; Tondoh, J. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Prager, K.; Schuler, J.; Helming, K.; Zander, P.; Ratinger, T.; Hagedorn, K. Soil degradation, farming practices, institutions and policy responses: An analytical framework. Land Degrad. Dev. 2011, 22, 32–46. [Google Scholar] [CrossRef]
- Ricci, G.; Jeong, J.; De Girolamo, A.; Gentile, F. Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed. Land Use Policy 2020, 90, 104306. [Google Scholar] [CrossRef]
- Ekholm, P.; Lehtoranta, J. Does control of soil erosion inhibit aquatic eutrophication? J. Environ. Manag. 2012, 93, 140–146. [Google Scholar] [CrossRef]
- Tang, X.; Wu, M.; Yang, W.; Yin, W.; Jin, F.; Ye, M.; Currie, N.; Scholz, M. Ecological strategy for eutrophication control. Water Air Soil Pollut. 2012, 223, 723–737. [Google Scholar] [CrossRef]
- Zarfl, C.; Lucía, A. The connectivity between soil erosion and sediment entrapment in reservoirs. Curr. Opin. Environ. Sci. Health 2018, 5, 53–59. [Google Scholar] [CrossRef]
- Christiansson, C. Notes on morphology and soil erosion in Kondoa and Singida Districts, Central Tanzania. Geogr. Ann. Ser. A Phys. Geogr. 1972, 54, 319–324. [Google Scholar] [CrossRef]
- Kothyari, U.C. Erosion and sedimentation problems in India. IAHS Publ.-Ser. Proc. Rep.-Intern Assoc Hydrol. Sci. 1996, 236, 531–540. [Google Scholar]
- Sepehri, M.; Ildoromi, A.R.; Malekinezhad, H.; Ghahramani, A.; Ekhtesasi, M.R.; Cao, C.; Kiani-Harchegani, M. Assessment of check dams’ role in flood hazard mapping in a semi-arid environment. Geomat. Nat. Hazards Risk 2019, 10, 2239–2256. [Google Scholar] [CrossRef] [Green Version]
- Pollard, J.; Spencer, T.; Brooks, S. The interactive relationship between coastal erosion and flood risk. Prog. Phys. Geogr. Earth Environ. 2019, 43, 574–585. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S.; Balouei, F.; Haji, K.; Khaledi Darvishan, A.; Karydas, C.G. Country-scale spatio-temporal monitoring of soil erosion in Iran using the G2 model. Int. J. Digit. Earth 2021, 14, 1019–1039. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R. Soil erosion in Iran: State of the art, tendency and solutions. Poljopr. I Sumar. 2017, 63, 33–37. [Google Scholar]
- Jiao, J.; Wang, W.; Li, J.; Zheng, B. Soil and water conservation benefit of warping dams in hilly and gully regions on the Leoss Plateau. J. Arid. Land Resour. Environ. 2001, 15, 78–83. [Google Scholar]
- Fu, S.; Yang, Y.; Liu, B.; Liu, H.; Liu, J.; Liu, L.; Li, P. Peak flow rate response to vegetation and terraces under extreme rainstorms. Agric. Ecosyst. Environ. 2020, 288, 106714. [Google Scholar] [CrossRef]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Lei, T.; Yuan, C.; Lei, Q.; Yang, X.; Zhang, M.; Su, G.; An, L. Effects of watershed management practices on the relationships among rainfall, runoff, and sediment delivery in the hilly-gully region of the Loess Plateau in China. Geomorphology 2015, 228, 735–745. [Google Scholar] [CrossRef]
- Himanshu, S.K.; Pandey, A.; Yadav, B.; Gupta, A. Evaluation of best management practices for sediment and nutrient loss control using SWAT model. Soil Tillage Res. 2019, 192, 42–58. [Google Scholar] [CrossRef]
- Maetens, W.; Poesen, J.; Vanmaercke, M. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth-Sci. Rev. 2012, 115, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, A.; García-Comendador, J.; Fortesa, J.; López-Tarazón, J.; Crema, S.; Cavalli, M.; Calvo-Cases, A.; Estrany, J. Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment. Geomorphology 2018, 318, 162–171. [Google Scholar] [CrossRef]
- Singh, M.; Sinha, R. Evaluating dynamic hydrological connectivity of a floodplain wetland in North Bihar, India using geostatistical methods. Sci. Total Environ. 2019, 651, 2473–2488. [Google Scholar] [CrossRef] [PubMed]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Ortíz-Rodríguez, A.; Borselli, L.; Sarocchi, D. Flow connectivity in active volcanic areas: Use of index of connectivity in the assessment of lateral flow contribution to main streams. Catena 2017, 157, 90–111. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Srinivasan, V.S.; Suzuki, K.; Watanabe, M. Application of an optimization technique to a physically based erosion model. Hydrol. Process. Inglaterra 2003, 17, 989–1003. [Google Scholar] [CrossRef]
- Mahoney, D.; Fox, J.; Al-Aamery, N.; Clare, E. Integrating connectivity theory within watershed modelling part I: Model formulation and investigating the timing of sediment connectivity. Sci. Total Environ. 2020, 740, 140385. [Google Scholar] [CrossRef]
- Haas, M.B.; Guse, B.; Fohrer, N. Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. J. Environ. Manag. 2017, 196, 347–364. [Google Scholar] [CrossRef]
- Strauch, M.; Lima, J.E.; Volk, M.; Lorz, C.; Makeschin, F. The impact of Best Management Practices on simulated streamflow and sediment load in a Central Brazilian catchment. J. Environ. Manag. 2013, 127, S24–S36. [Google Scholar] [CrossRef]
- Ricci, G.F.; De Girolamo, A.M.; Abdelwahab, O.M.; Gentile, F. Identifying sediment source areas in a Mediterranean watershed using the SWAT model. Land Degrad. Dev. 2018, 29, 1233–1248. [Google Scholar] [CrossRef]
- Persichillo, M.G.; Bordoni, M.; Cavalli, M.; Crema, S.; Meisina, C. The role of human activities on sediment connectivity of shallow landslides. Catena 2018, 160, 261–274. [Google Scholar] [CrossRef]
- Poeppl, R.E.; Dilly, L.A.; Haselberger, S.; Renschler, C.S.; Baartman, J.E. Combining soil erosion modeling with connectivity analyses to assess lateral fine sediment input into agricultural streams. Water 2019, 11, 1793. [Google Scholar] [CrossRef] [Green Version]
- Asadi, H.; Shahedi, K.; Jarihani, B.; Sidle, R.C. Rainfall-runoff modelling using hydrological connectivity index and artificial neural network approach. Water 2019, 11, 212. [Google Scholar] [CrossRef] [Green Version]
- Llena, M.; Vericat, D.; Cavalli, M.; Crema, S.; Smith, M. The effects of land use and topographic changes on sediment connectivity in mountain catchments. Sci. Total Environ. 2019, 660, 899–912. [Google Scholar] [CrossRef] [PubMed]
- López-Vicente, M.; Nadal-Romero, E.; Cammeraat, E.L. Hydrological connectivity does change over 70 years of abandonment and afforestation in the Spanish Pyrenees. Land Degrad. Dev. 2017, 28, 1298–1310. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Álvarez, S. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surf. Process. Landf. 2018, 43, 1403–1415. [Google Scholar] [CrossRef]
- López-Vicente, M.; Lana-Renault, N.; García-Ruiz, J.M.; Navas, A. Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. J. Soils Sediments 2011, 11, 1440–1455. [Google Scholar] [CrossRef]
- Hooke, J.; Souza, J.; Marchamalo, M. Evaluation of connectivity indices applied to a Mediterranean agricultural catchment. Catena 2021, 207, 105713. [Google Scholar] [CrossRef]
- Cowan, W.L. Estimating hydraulic roughness coefficients. Agric. Eng. 1956, 37, 473–475. [Google Scholar]
- Arcement, G.J.; Schneider, V.R. Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains; United States Government Printing Office: Washington, DC, USA, 1989.
- Foerster, S.; Wilczok, C.; Brosinsky, A.; Segl, K. Assessment of sediment connectivity from vegetation cover and topography using remotely sensed data in a dryland catchment in the Spanish Pyrenees. J. Soils Sediments 2014, 14, 1982–2000. [Google Scholar] [CrossRef] [Green Version]
- Bautista, S.; Mayor, A.G.; Bourakhouadar, J.; Bellot, J. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems 2007, 10, 987–998. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Poesen, J.; Navas, A.; Gaspar, L. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 2013, 102, 62–73. [Google Scholar] [CrossRef]
- Veale, B.; Cooke, S. Implementing integrated water management: Illustrations from the Grand River watershed. Int. J. Water Resour. Dev. 2017, 33, 375–392. [Google Scholar]
- Chen, J.; Xiao, H.; Li, Z.; Liu, C.; Ning, K.; Tang, C. How effective are soil and water conservation measures (SWCMs) in reducing soil and water losses in the red soil hilly region of China? A meta-analysis of field plot data. Sci. Total Environ. 2020, 735, 139517. [Google Scholar] [CrossRef] [PubMed]
- Teka, K.; Haftu, M.; Ostwald, M.; Cederberg, C. Can integrated watershed management reduce soil erosion and improve livelihoods? A study from northern Ethiopia. Int. Soil Water Conserv. Res. 2020, 8, 266–276. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Ni, J.; Xie, D. Best management practices for agricultural non-point source pollution in a small watershed based on the Ann AGNPS model. Soil Use Manag. 2020, 36, 45–57. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Shimizu, K.; Haregeweyn, N.; Negussie, A. Dynamics of soil erosion as influenced by watershed management practices: A case study of the Agula watershed in the semi-arid highlands of northern Ethiopia. Environ. Manag. 2016, 58, 889–905. [Google Scholar] [CrossRef]
- Zalidis, G.; Stamatiadis, S.; Takavakoglou, V.; Eskridge, K.; Misopolinos, N. Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric. Ecosyst. Environ. 2002, 88, 137–146. [Google Scholar] [CrossRef]
- Jeon, D.J.; Ki, S.J.; Cha, Y.; Park, Y.; Kim, J.H. New methodology of evaluation of best management practices performances for an agricultural watershed according to the climate change scenarios: A hybrid use of deterministic and decision support models. Ecol. Eng. 2018, 119, 73–83. [Google Scholar] [CrossRef]
- Ildoromi, A.R.; Sepehri, M.; Malekinezhad, H.; Kiani-Harchegani, M.; Ghahramani, A.; Hosseini, S.Z.; Artimani, M.M. Application of multi-criteria decision making and GIS for check dam Layout in the Ilanlu Basin, Northwest of Hamadan Province, Iran. Phys. Chem. Earth Parts A/B/C 2019, 114, 102803. [Google Scholar] [CrossRef]
- Giri, S.; Nejadhashemi, A.P. Application of analytical hierarchy process for effective selection of agricultural best management practices. J. Environ. Manag. 2014, 132, 165–177. [Google Scholar] [CrossRef]
- Zhen, X.-Y.J.; Yu, S.L.; Lin, J.-Y. Optimal location and sizing of stormwater basins at watershed scale. J. Water Resour. Plan. Manag. 2004, 130, 339–347. [Google Scholar] [CrossRef]
- Chimdesa, G. Historical perspectives and present scenarios of watershed management in Ethiopia. Int. J. Nat. Resour. Ecol. Manag. 2016, 1, 115–127. [Google Scholar]
- Ahluwalia, M. Representing Communities: The Case of a Community-Based Watershed Management Project in Rajas than, India. IDS Bull. 1997, 28, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Fenetahun, Y.; Yuan, Y.; Xinwen, X.; Yongdong, W. Effects of grazing enclosures on species diversity, phenology, biomass, and carrying capacity in Borana Rangeland, Southern Ethiopia. Front. Ecol. Evol. 2021, 517, 623627. [Google Scholar] [CrossRef]
- Kirkby, M. Hillslope runoff processes and models. J. Hydrol. 1988, 100, 315–339. [Google Scholar] [CrossRef]
- D'Odorico, P.; Rigon, R. Hillslope and channel contributions to the hydrologic response. Water Resour. Res. 2003, 39, 1113. [Google Scholar] [CrossRef]
- Bachmair, S.; Weiler, M.; Troch, P. Intercomparing hillslope hydrological dynamics: Spatio-temporal variability and vegetation cover effects. Water Resour. Res. 2012, 48, W05537. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Wang, L.; Zhang, X.; Yu, Y.; Jin, Z.; Lin, H.; Chen, Y.; Zhou, W.; An, Z. Exploring the role of land restoration in the spatial patterns of deep soil water at watershed scales. Catena 2019, 172, 387–396. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Yang, W.; Sun, Z.; Zhao, J. Variation in soil hydrological properties on shady and sunny slopes in the permafrost region, Qinghai–Tibetan Plateau. Environ. Earth Sci. 2019, 78, 100. [Google Scholar] [CrossRef]
- Deng, S.-f.; Yang, T.-b.; Zeng, B.; Zhu, X.-f.; Xu, H.-j. Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011. J. Mt. Sci. 2013, 10, 1050–1062. [Google Scholar] [CrossRef]
Statistical Properties | |||||
---|---|---|---|---|---|
Min | Max | Average | STD | Range Difference | |
Impact catchment | −7.19 | −0.15 | −3.94 | 0.61 | 7.04 |
Control catchment | −8.4 | −1.7 | −3.85 | 0.68 | 6.7 |
No. Plot | Coordinate System (x/y) | Data (Rainfall (mm)) | Rate of Sediment (ton/ha) | Average Sediment Rate (ton/ha) | Data (Rainfall (mm)) | Rate of Sediment (ton/ha) | Average Sediment Rate (ton/ha) | SC Values (Equation (1)) | |
---|---|---|---|---|---|---|---|---|---|
Control catchment | 1 | 48° 42′ 4/5″ and 34° 42′ 15/1″ | 15 April 2015 (42 mm) | 0.00544 | 0.00622 | 20 April 2016 (56.6) | 0.00029 | 0.00746 | −3.74 |
0.00804 | 0.00809 | ||||||||
0.00519 | 0.01400 | ||||||||
2 | 48° 42′ 3″ and 34° 42′ 9.7″ | 0.00671 | 0.00890 | 0.00902 | 0.00718 | −2.86 | |||
0.00739 | 0.00572 | ||||||||
0.01260 | 0.00681 | ||||||||
3 | 48° 41′ 59/4″ and 34° 42′ 12/4″ | 0.01640 | 0.00926 | 0.01210 | 0.00773 | −3.38 | |||
0.00490 | 0.00840 | ||||||||
0.00840 | 0.00210 | ||||||||
Impacted catchment | 4 | 48° 41′ 51/6″ and 34° 41′ 43″ | 15 April 2015 (42 mm) | 0.00159 | 0.00306 | 20 April 2016 (56.6) | 0.00039 | 0.00532 | −4.50 |
0.00292 | 0.00817 | ||||||||
0.00466 | 0.00739 | ||||||||
5 | 48° 41′ 46/2″ and 34° 41′38/3″ | 0.00501 | 0.00365 | 0.00379 | 0.00542 | −3.85 | |||
0.00495 | 0.00513 | ||||||||
0.00099 | 0.00735 | ||||||||
6 | 48° 41′ 40/1″ and 34° 41′ 36/8″ | 0.00385 | 0.00572 | 0.01070 | 0.00707 | −3.89 | |||
0.00490 | 0.00840 | ||||||||
0.00840 | 0.00210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazaripouya, H.; Sepehri, M.; Atapourfard, A.; Ghermezcheshme, B.; Santos, C.A.G.; Khoshbakht, M.; Meshram, S.G.; Rana, V.K.; Linh, N.T.T.; Pham, Q.B.; et al. Evaluating Sediment Yield Response to Watershed Management Practices (WMP) by Employing the Concept of Sediment Connectivity. Sustainability 2023, 15, 2346. https://doi.org/10.3390/su15032346
Nazaripouya H, Sepehri M, Atapourfard A, Ghermezcheshme B, Santos CAG, Khoshbakht M, Meshram SG, Rana VK, Linh NTT, Pham QB, et al. Evaluating Sediment Yield Response to Watershed Management Practices (WMP) by Employing the Concept of Sediment Connectivity. Sustainability. 2023; 15(3):2346. https://doi.org/10.3390/su15032346
Chicago/Turabian StyleNazaripouya, Hadi, Mehdi Sepehri, Abbas Atapourfard, Bagher Ghermezcheshme, Celso Augusto Guimarães Santos, Mehdi Khoshbakht, Sarita Gajbhiye Meshram, Vikas Kumar Rana, Nguyen Thi Thuy Linh, Quoc Bao Pham, and et al. 2023. "Evaluating Sediment Yield Response to Watershed Management Practices (WMP) by Employing the Concept of Sediment Connectivity" Sustainability 15, no. 3: 2346. https://doi.org/10.3390/su15032346
APA StyleNazaripouya, H., Sepehri, M., Atapourfard, A., Ghermezcheshme, B., Santos, C. A. G., Khoshbakht, M., Meshram, S. G., Rana, V. K., Linh, N. T. T., Pham, Q. B., & Anh, D. T. (2023). Evaluating Sediment Yield Response to Watershed Management Practices (WMP) by Employing the Concept of Sediment Connectivity. Sustainability, 15(3), 2346. https://doi.org/10.3390/su15032346