Evaluation of Indonesian Butterfly Pea (Clitoria ternatea L.) Using Stability Analysis and Sustainability Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Field Experiments and Data Collection
2.3. Statistical Analysis
3. Results
3.1. GEIs Estimation of the Yield and Yield Attributes of the Butterfly Pea Genotypes
3.2. Yield Stability Using AMMI and GGE Biplot
3.3. Yield Stability of Butterfly Pea using AMMI Stability Value (ASV) and Genotype Stability Index (GSI)
3.4. Sustainability Index (SI) on Yield of Butterfly Pea Genotypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GEIs | genotype by environment interactions |
SI | sustainability index |
AMMI | additive main effects and multiplicative interactions |
GGE | genotype plus genotype by environment interactions |
ASV | aMMI stability value |
RASV | rank of ASV |
GSI | genotype stability index |
RGSI | rank of GSI |
IPCA | interaction principal component axis |
RY | rank of yield |
CV | coefficient of variation |
COVID-19 | coronavirus disease 2019 |
FL | flower length (cm) |
FW | flower width (cm) |
CL | calix length (cm) |
SD | standard deviation |
Min | Minimum value |
Max | Maximum value |
References
- Al-Snafi, A.E. Anticancer effects of Arabian medicinal plants (part 1)—A review. IOSR J. Pharm. 2017, 7, 63–102. [Google Scholar] [CrossRef]
- von Rintelen, K.; Arida, E.; Häuser, C. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Res. Ideas Outcomes 2017, 3, e20860. [Google Scholar] [CrossRef] [Green Version]
- Ulimaz, T.A.; Ustari, D.; Aziza, V.; Suganda, T.; Concibido, V.; Levita, J.; Kurniawan, A. Genetic diversity of Butterfly pea (Clitoria ternatea) from Indonesia based on flower and yield component traits in two land conditions. J. AgroBiogen 2020, 16, 1–6. [Google Scholar] [CrossRef]
- Permatasari, H.K.; Nurkolis, F.; Gunawan, W.B.; Yusuf, V.M.; Yusuf, M.; Kusuma, R.J.; Sabrina, N.; Muharram, F.R.; Taslim, N.A.; Mayulu, N.; et al. Modulation of gut microbiota and markers of metabolic syndrome in mice on cholesterol and fat enriched diet by butterfly pea flower kombucha. Curr. Res. Food Sci. 2022, 5, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Karuniawan, A.; Ulimaz, T.A.; Ustari, D.; Concibido, V. Characterization of butterfly pea as a model of underutilized crop management in Indonesia. In Boosting the Big Data of Plant with Digital Identifiers, 1st ed.; IAARD Press: Jakarta, Indonesia, 2020; pp. 67–81. [Google Scholar]
- Hariadi, H.; Sunyoto, M.; Nurhadi, B.; Karuniawan, A. Comparison of phytochemical characteristics pigmen extract (Antosianin) sweet purple potatoes powder (Ipomoea batatas L) and clitoria flower (Clitoria ternatea) as natural dye powder. J. Pharmacogn. Phytochem. 2018, 7, 3420–3429. [Google Scholar]
- Oguis, G.K.; Gilding, E.K.; Jackson, M.A.; Craik, D.J. Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front. Plant Sci. 2019, 10, 645. [Google Scholar] [CrossRef] [Green Version]
- Mehla, J. Clitoria ternatea Linn : A herb with potential pharmacological activities: Future Prospects as therapeutic herbal medicine. J. Pharmacol. Rep. 2018, 3, 1–8. [Google Scholar]
- Kshetrimayum, B. Medicinal Plants and Its Therapeutic Uses; OMICS International: Foster City, CA, USA, 2017; pp. 1–117. [Google Scholar]
- Goh, S.E.; Kwong, P.J.; Ng, C.L.; Ng, W.J.; Ee, K.Y. Antioxidant-rich Clitoria ternatea L. flower and its benefits in improving murine reproductive performance. Food Sci. Technol. 2021, 2061, 1–7. [Google Scholar] [CrossRef]
- Anthika, B.; Kusumocahyo, S.P.; Sutanto, H. Ultrasonic approach in Clitoria ternatea (Butterfly Pea) extraction in water and extract sterilization by ultrafiltration for eye drop active ingredient. Procedia Chem. 2015, 16, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Afrianto, W.F.; Tamnge, F.; Hasanah, L.N. Review: A relation between ethnobotany and bioprospecting of edible flower Butterfly Pea (Clitoria ternatea) in Indonesia. Asian J. Ethnobiol. 2020, 3, 30202. [Google Scholar] [CrossRef]
- Aziza, V.; Ulimaz, T.A.; Ustari, D.; Suganda, T.; Concibido, V.; Irawan, B.; Karuniawan, A. Phenotypic diversity of double petal butterfly pea from Indonesia and Thailand based on flower morphology. Al-Kauniyah J. Biol. 2021, 14, 78–89. [Google Scholar] [CrossRef]
- Adnan, A.A.; Diels, J.; Jibrin, J.M.; Kamara, A.Y.; Shaibu, A.S.; Craufurd, P.; Menkir, A. CERES-Maize model for simulating genotype-by-environment interaction of maize and its stability in the dry and wet savannas of Nigeria. Field Crops Res. 2020, 253, 107826. [Google Scholar] [CrossRef]
- González-Barrios, P.; Díaz-García, L.; Gutiérrez, L. Mega-environmental design: Using genotype × environment interaction to optimize resources for cultivar testing. Crop Sci. 2019, 59, 1899–1915. [Google Scholar] [CrossRef] [Green Version]
- Maulana, H.; Nafi’ah, H.H.; Solihin, E.; Ruswandi, D.; Arifin, M.; Amien, S.; Karuniawan, A. Combined stability analysis to select stable and high yielding sweet potato genotypes in multi-environmental trials in West Java, Indonesia. Agric. Nat. Resour. 2022, 56, 761–772. [Google Scholar] [CrossRef]
- Andrade, M.I.; Naico, A.; Ricardo, J.; Eyzaguirre, R.; Makunde, G.S.; Ortiz, R.; Gruneberg, W.J. Genotype x environment interaction and selection for drought adaptation in sweetpotato (Ipomoea batatas [L.] Lam.) in Mozambique. Euphytica 2016, 209, 261–280. [Google Scholar] [CrossRef] [Green Version]
- Karuniawan, A.; Maulana, H.; Ustari, D.; Dewayani, S.; Solihin, E.; Solihin, M.A.; Amien, S.; Arifin, M. Yield stability analysis of orange-Fleshed sweet potato in Indonesia using AMMI and GGE biplot. Heliyon 2021, 7, e06881. [Google Scholar] [CrossRef]
- Ruswandi, D.; Syafii, M.; Maulana, H.; Ariyanti, M.; Indriani, N.P.; Yuwariah, Y. GGE biplot analysis for stability and adaptability of maize hybrids in Western Region of Indonesia. Int. J. Agron. 2021, 2021, 2166022. [Google Scholar] [CrossRef]
- Amien, S.; Maulana, H.; Ruswandi, D.; Nurjanah, S. Stevia (Stevia rebaudiana B.) genotypes assessment for leaf yield stability through genotype by environment interactions, AMMI, and GGE biplot analysis. Sabrao J. Breed. Genet. 2022, 54, 767–779. [Google Scholar] [CrossRef]
- Gangwar, B.; Katyal, V.; Anand, K.V. Stability and efficiency of cropping systems in Chhattisgarh and Madhya Pradesh. Indian J. Agric. Sci. 2004, 74, 521–528. [Google Scholar]
- Tuteja, O.P. Comparative studies on stability parameters and sustainability index for selecting stable genotypes in upland cotton (Gossypium hirsutum L.). Indian J. Genet. Plant Breed. 2006, 66, 221–224. [Google Scholar]
- Bose, L.K.; Jambhulkar, N.N.; Pande, K.; Singh, O.N. Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chill. J. Agric. Res. 2014, 74, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Ruswandi, D.; Syafii, M.; Wicaksana, N.; Maulana, H.; Ariyanti, M.; Indriani, N.P.; Suryadi, E.; Supriatna, J. Evaluation of High Yielding Maize Hybrids Based on Combined Stability Analysis, Sustainability Index, and GGE Biplot. Biomed Res. Int. 2022, 2022, 3963850. [Google Scholar] [CrossRef] [PubMed]
- Wicaksana, N.; Maulana, H.; Yuwariah, Y.; Ismail, A.; Ruswandi, Y.A.R.; Ruswandi, D. Selection of high yield and stable maize hybrids in mega-environments of Java island, Indonesia. Agronomy 2022, 12, 2923. [Google Scholar] [CrossRef]
- Gauch, H.G. A Simple Protocol for AMMI Analysis of Yield Trials. Crop Sci. 2013, 53, 1860–1869. [Google Scholar] [CrossRef]
- Suwarno, W.B.; Sobir Aswidinnoor, H.; Syukur, M. PBSTAT: A web-based statistical analysis software for participatory plant breeding. In Proceedings of the 3rd International Conference on Mathematics and Statistics, Bogor, Indonesia, 5–6 August 2008; pp. 852–858. [Google Scholar]
- Purchase, J.L.; Hatting, H.; van Deventer, C.S. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa : II. Stability analysis of yield performance. S. Afr. J. Plant Soil 2000, 17, 101–107. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data : Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef] [Green Version]
- Atta, B.M.; Shah, T.M.; Abbas, G.; Haq, M.A. Genotype x environment interaction for seed yield in kabuli chickpea (Cicer arietinum L.) genotypes developed through mutation breeding. Pak. J. Bot. 2009, 41, 1883–1890. [Google Scholar]
- Ngailo, S.; Shimelis, H.; Sibiya, J.; Mtunda, K.; Mashilo, J. Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon 2019, 5, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ruswandi, D.; Azizah, E.; Maulana, H.; Ariyanti, M.; Nuraini, A. Selection of high-yield maize hybrid under different cropping systems based on stability and adaptability parameters. Open Agric. 2022, 7, 161–170. [Google Scholar] [CrossRef]
- Katsenios, N.; Sparangis, P.; Chanioti, S.; Giannoglou, M.; Leonidakis, D.; Christopoulos, M.V.; Katsaros, G.; Efthimiadou, A. Genotype × environment interaction of yield and grain quality traits of maize hybrids in Greece. Agronomy 2021, 11, 357. [Google Scholar] [CrossRef]
- Vaezi, B.; Pour-Aboughadareh, A.; Mohammadi, R.; Mehraban, A.; Pour-Hossein, T.; Koohkan, E.; Gasemi, S.; Moradkhani, H.; Siddique, K.H.M. Integrating different stability models to investigate genotype x environment interactions and identify stable and high-yielding barley genotypes. Euphytica 2019, 215, 63. [Google Scholar] [CrossRef]
- Wijaya, A.A.; Maulana, H.; Susanto, G.W.A.; Sumardi, D.; Suseno, A.; Ruswandi, D.; Karuniawan, A. Grain yield stability of black soybean lines across three agroecosystems in West Java, Indonesia. Open Agric. 2022, 7, 749–763. [Google Scholar] [CrossRef]
- Susanto, G.W.A.; Maulana, H.; Putri, P.H.; Purwaningrahayu, R.D.; Wijaya, A.A.; Sekti, B.A.; Karuniawan, A. Stability analysis to select the stable and high yielding of black soybean (Glycine max (L.) Merril ) in Indonesia. Int. J. Agron. 2023, 2023, 7255444. [Google Scholar] [CrossRef]
- Tolorunse, K.D.; Gana, A.S.; Bala, A.; Sangodele, E.A. Yield stability studies of soybean (Glycine max (L.) Merrill) under rhizobia inoculation in the savanna region of Nigeria. Plant Breed. 2018, 137, 262–270. [Google Scholar] [CrossRef]
- Mustamu, Y.A.; Tjintokohadi, K.; Gruneberg, W.J.; Karuniawan, A.; Ruswandi, D. Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability. Chil. J. Agric. Res. 2018, 78, 461–469. [Google Scholar] [CrossRef]
- Zhang, P.P.; Song, H.; Ke, X.W.; Jin, X.J.; Yin, L.H.; Liu, Y.; Qu, Y.; Su, W.; Feng, N.J.; Zheng, D.F.; et al. GGE biplot analysis of yield stability and test location representativeness in proso millet (Panicum miliaceum L.) genotypes. J. Integr. Agric. 2016, 15, 1218–1227. [Google Scholar] [CrossRef] [Green Version]
- Maulana, H.; Dewayani, S.; Solihin, M.A.; Arifin, M.; Amien, S.; Karuniawan, A. Yield stability dataset of new orange fleshed sweet potato (Ipomoea batatas L. (lam)) genotypes in West Java, Indonesia. Data Br. 2020, 32, 106297. [Google Scholar] [CrossRef]
- Verma, S.K.; Tuteja, O.P.; Monga, D. Studies on stability parameters and sustainability index for selecting stable genotypes in Asiatic cotton (Gossypium arboreum). Indian J. Agric. Sci. 2013, 83, 1377–1380. [Google Scholar]
No. | Code | Accessions | Origin | ||
---|---|---|---|---|---|
Island | Province | District | |||
1 | G1 | CT 1.1 | Sumatera | Aceh | Banda Aceh |
2 | G2 | CT 1.2 | Sumatera | Aceh | Banda Aceh |
3 | G3 | CT 1.3 | Sumatera | Aceh | Banda Aceh |
4 | G4 | CT 1.4 | Sumatera | Aceh | Banda Aceh |
5 | G5 | CT 1.5 | Sumatera | Aceh | Banda Aceh |
6 | G6 | CT 2.1 | Sumatera | Aceh | Banda Aceh |
7 | G7 | CT 2.2 | Sumatera | Aceh | Banda Aceh |
8 | G8 | CT 2.3 | Sumatera | Aceh | Banda Aceh |
9 | G9 | CT 2.4 | Sumatera | Aceh | Banda Aceh |
10 | G10 | CT 2.5 | Sumatera | Aceh | Banda Aceh |
11 | G11 | CT 3.1 | Sumatera | Aceh | Banda Aceh |
12 | G12 | CT 3.2 | Sumatera | Aceh | Banda Aceh |
13 | G13 | CT 3.3 | Sumatera | Aceh | Banda Aceh |
14 | G14 | CT 3.4 | Sumatera | Aceh | Banda Aceh |
15 | G15 | CT 3.5 | Sumatera | Aceh | Banda Aceh |
16 | G16 | CT 4.1 | Java | West Java | Bandung |
17 | G17 | CT 4.2 | Java | West Java | Bandung |
18 | G18 | CT 4.3 | Java | West Java | Bandung |
19 | G19 | CT 4.4 | Java | West Java | Bandung |
20 | G20 | CT 4.5 | Java | West Java | Bandung |
21 | G21 | CT 5.4 | Java | West Java | Kuningan |
22 | G22 | CT 6.1 | Java | Jakarta | Jakarta |
23 | G23 | CT 6.2 | Java | Jakarta | Jakarta |
24 | G24 | CT 6.3 | Java | Jakarta | Jakarta |
25 | G25 | CT 6.5 | Java | Jakarta | Jakarta |
26 | G26 | CT 9.1 | Java | West Java | Kuningan |
27 | G27 | CT 10.1 | Java | East Java | Madura |
28 | G28 | CT 10.2 | Java | East Java | Madura |
29 | G29 | CT 10.3 | Java | East Java | Madura |
30 | G30 | CT 10.4 | Java | East Java | Madura |
31 | G31 | CT 10.5 | Java | East Java | Madura |
32 | G32 | CT12.1 | Bali | Bali | Bali |
33 | G33 | CT12.2 | Bali | Bali | Bali |
34 | G34 | CT12.3 | Bali | Bali | Bali |
35 | G35 | CT12.4 | Bali | Bali | Bali |
Seasons | Temperature (°C) | Rainfall (mm Month−1) | Humidity | Soil Conditions | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min–Max | Mean ± SD | Min–Max | Mean ± SD | Min–Max | Mean ± SD | pH | K | P | N | C-O | |
Season-1 (2018) | 18.02–31.83 | 23.60 ± 0.32 | 0.2–313.5 | 169.3 ± 122.1 | 90–97 | 93.50 ± 3.50 | 5.5 | 13.96 | 31.48 | 0.13 | 1.32 |
Season-2 (2019) | 17.71–32.64 | 26.10 ± 0.74 | 30.0–337.0 | 201.6 ± 115.0 | 70–87 | 74.72 ± 7.16 | 5.6 | 16.66 | 31.29 | 0.13 | 1.41 |
Season-3 (2020) | 18.48–31.27 | 31.27 ± 0.70 | 33.2–454.3 | 180.9 ± 114.2 | 67–80 | 73.50 ± 6.50 | 5.5 | 12.43 | 31.20 | 0.22 | 1.11 |
Source | df | Sum of Square | |||||||
---|---|---|---|---|---|---|---|---|---|
Yield (g) | FL (cm) | FW (cm) | CL (cm) | ||||||
Env | 2 | 18,024 | ** | 178.01 | * | 83.49 | ** | 36.12 | * |
Rep (env) | 3 | 36 | ** | 76.11 | ** | 11.26 | ** | 27.39 | ** |
Gen | 34 | 255,120 | ** | 46.52 | ** | 46.56 | ** | 43.54 | ** |
Gen x Env | 62 | 63,745 | ** | 22.47 | * | 10.41 | * | 8.39 | ** |
Error | 102 | 28 | * | 28.01 | * | 23.01 | * | 4.30 | * |
Min | 4.70 | 1.45 | 1.36 | 0.63 | |||||
Max | 151.70 | 7.87 | 5.80 | 4.60 | |||||
Mean | 65.35 | 4.49 | 3.51 | 1.71 | |||||
CV (%) | 0.42 | 24.53 | 25.39 | 15.66 |
Genotypes | Y | IPCA [1] | IPCA [2] | RY | ASV | RASV | GSI | RGSI |
---|---|---|---|---|---|---|---|---|
G1 | 37.24 | 0.18 | 0.72 | 28 | 1.23 | 18 | 46 | 26 |
G2 | 77.89 | −0.07 | −0.46 | 14 | 0.61 | 6 | 20 | 3 |
G3 | 125.16 | −0.37 | −1.84 | 4 | 2.73 | 26 | 30 | 15 |
G4 | 8.58 | 0.36 | 1.56 | 35 | 2.52 | 25 | 60 | 33 |
G5 | 127.41 | −0.38 | −1.90 | 3 | 2.83 | 27 | 30 | 16 |
G6 | 90.37 | −0.15 | −0.82 | 8 | 1.17 | 16 | 24 | 10 |
G7 | 102.09 | −0.22 | −1.16 | 6 | 1.69 | 22 | 28 | 13 |
G8 | 49.57 | 0.10 | 0.36 | 22 | 0.68 | 7 | 29 | 14 |
G9 | 13.69 | 0.33 | 1.41 | 34 | 2.29 | 24 | 58 | 32 |
G10 | 92.83 | −0.17 | −0.90 | 7 | 1.28 | 19 | 26 | 12 |
G11 | 34.28 | 0.20 | 0.81 | 30 | 1.37 | 21 | 51 | 28 |
G12 | 36.24 | 0.19 | 0.75 | 29 | 1.28 | 20 | 49 | 27 |
G13 | 37.35 | 0.18 | 0.72 | 27 | 1.23 | 17 | 44 | 25 |
G14 | 65.75 | 0.00 | −0.11 | 16 | 0.11 | 2 | 18 | 1 |
G15 | 81.69 | −0.10 | −0.57 | 13 | 0.78 | 8 | 21 | 5 |
G16 | 63.41 | 0.02 | −0.04 | 17 | 0.11 | 1 | 18 | 2 |
G17 | 82.67 | −0.10 | −0.60 | 11 | 0.82 | 10 | 21 | 6 |
G18 | 44.16 | 0.14 | 0.52 | 24 | 0.92 | 12 | 36 | 20 |
G19 | 56.11 | 0.06 | 0.17 | 19 | 0.39 | 4 | 23 | 9 |
G20 | 74.97 | −0.05 | −0.38 | 15 | 0.48 | 5 | 20 | 4 |
G21 | 39.9 | 0.17 | 0.64 | 26 | 1.11 | 15 | 41 | 23 |
G22 | 88.42 | −0.14 | −0.77 | 10 | 1.08 | 14 | 24 | 11 |
G23 | 133.99 | −0.42 | −2.09 | 2 | 3.13 | 28 | 30 | 17 |
G24 | 45.36 | 0.13 | 0.49 | 23 | 0.87 | 11 | 34 | 19 |
G25 | 59.03 | 0.05 | 0.09 | 18 | 0.27 | 3 | 21 | 7 |
G26 | 41.19 | 0.16 | 0.61 | 25 | 1.06 | 13 | 38 | 22 |
G27 | 15.13 | 0.32 | 1.37 | 33 | 2.23 | 23 | 56 | 31 |
G28 | 81.84 | −0.10 | −0.58 | 12 | 0.78 | 9 | 21 | 8 |
G29 | 89.28 | 7.63 | −0.04 | 9 | 41.87 | 34 | 43 | 24 |
G30 | 107.54 | 2.70 | −0.51 | 5 | 14.80 | 32 | 37 | 21 |
G31 | 136.68 | 0.67 | −1.18 | 1 | 3.84 | 29 | 30 | 18 |
G32 | 52.46 | −6.32 | 0.54 | 21 | 34.65 | 33 | 54 | 29 |
G33 | 54.18 | −7.98 | 0.47 | 20 | 43.76 | 35 | 55 | 30 |
G34 | 19.35 | 1.02 | 1.37 | 32 | 5.78 | 30 | 62 | 34 |
G35 | 21.5 | 1.95 | 1.34 | 31 | 10.80 | 31 | 62 | 35 |
Genotype | Y | σn | YM | SI | Criteria |
---|---|---|---|---|---|
G1 | 37.24 | 6.760 | 45.693 | 66.71 | High |
G2 | 77.89 | 10.676 | 89.400 | 75.19 | High |
G3 | 125.16 | 15.507 | 140.229 | 78.20 | High |
G4 | 8.58 | 4.479 | 14.876 | 27.60 | Low |
G5 | 127.41 | 15.740 | 142.648 | 78.29 | High |
G6 | 90.37 | 11.934 | 102.815 | 76.29 | High |
G7 | 102.09 | 13.130 | 115.417 | 77.08 | High |
G8 | 49.57 | 7.902 | 58.948 | 70.69 | High |
G9 | 13.69 | 4.824 | 20.365 | 43.53 | Moderate |
G10 | 92.83 | 12.185 | 105.468 | 76.47 | High |
G11 | 34.28 | 6.495 | 42.506 | 65.37 | High |
G12 | 36.24 | 6.669 | 44.608 | 66.28 | High |
G13 | 37.35 | 6.769 | 45.803 | 66.76 | High |
G14 | 65.75 | 9.469 | 76.350 | 73.72 | High |
G15 | 81.69 | 11.058 | 93.489 | 75.56 | High |
G16 | 63.41 | 9.239 | 73.829 | 73.37 | High |
G17 | 82.67 | 11.155 | 94.534 | 75.65 | High |
G18 | 44.16 | 7.394 | 53.133 | 69.20 | High |
G19 | 56.11 | 8.528 | 65.980 | 72.12 | High |
G20 | 74.97 | 10.383 | 86.256 | 74.88 | High |
G21 | 39.9 | 7.001 | 48.544 | 67.76 | High |
G22 | 88.42 | 11.737 | 100.717 | 76.13 | High |
G23 | 133.99 | 16.422 | 149.717 | 78.52 | High |
G24 | 45.36 | 7.506 | 54.422 | 69.56 | High |
G25 | 59.03 | 8.811 | 69.124 | 72.66 | High |
G26 | 41.19 | 7.119 | 49.935 | 68.23 | High |
G27 | 15.13 | 4.928 | 21.919 | 46.56 | Moderate |
G28 | 81.84 | 11.073 | 93.649 | 75.57 | High |
G29 | 89.28 | 51.584 | 136.095 | 27.70 | Low |
G30 | 107.54 | 15.418 | 126.880 | 72.60 | High |
G31 | 136.68 | 9.926 | 146.548 | 86.49 | Very high |
G32 | 52.46 | 53.538 | 131.180 | 1.72 | Very low |
G33 | 54.18 | 58.931 | 150.848 | 5.69 | Very low |
G34 | 19.35 | 1.513 | 21.470 | 83.08 | Very high |
G35 | 21.5 | 7.910 | 29.270 | 46.44 | Moderate |
Stability Measurements | Selected Genotypes | Percentage (%) |
---|---|---|
AMMI | G2, G20, G14, G16, G25, G19, G8, G24, G17, G28, G15 | 31.43 |
GGE biplot | G1, G2, G6, G14, G15, G16. | 17.14 |
ASV | G2, G14, G16, G19, G20, G25 | 17.14 |
GSI | G2, G14, G15, G16, G17, G20 | 17.14 |
SI | G2, G3, G5, G6, G7, G8, G10, G14, G15, G16, G17, G19, G20, G22, G23, G25, G28, G30 | 51.43 |
Slice of all measurements | G2, G14, G16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filio, Y.L.; Maulana, H.; Aulia, R.; Suganda, T.; Ulimaz, T.A.; Aziza, V.; Concibido, V.; Karuniawan, A. Evaluation of Indonesian Butterfly Pea (Clitoria ternatea L.) Using Stability Analysis and Sustainability Index. Sustainability 2023, 15, 2459. https://doi.org/10.3390/su15032459
Filio YL, Maulana H, Aulia R, Suganda T, Ulimaz TA, Aziza V, Concibido V, Karuniawan A. Evaluation of Indonesian Butterfly Pea (Clitoria ternatea L.) Using Stability Analysis and Sustainability Index. Sustainability. 2023; 15(3):2459. https://doi.org/10.3390/su15032459
Chicago/Turabian StyleFilio, Yoshua Liberty, Haris Maulana, Reviana Aulia, Tarkus Suganda, Trixie Almira Ulimaz, Virda Aziza, Vergel Concibido, and Agung Karuniawan. 2023. "Evaluation of Indonesian Butterfly Pea (Clitoria ternatea L.) Using Stability Analysis and Sustainability Index" Sustainability 15, no. 3: 2459. https://doi.org/10.3390/su15032459
APA StyleFilio, Y. L., Maulana, H., Aulia, R., Suganda, T., Ulimaz, T. A., Aziza, V., Concibido, V., & Karuniawan, A. (2023). Evaluation of Indonesian Butterfly Pea (Clitoria ternatea L.) Using Stability Analysis and Sustainability Index. Sustainability, 15(3), 2459. https://doi.org/10.3390/su15032459