Optimization of Paracetamol and Chloramphenicol Removal by Novel Activated Carbon Derived from Sawdust Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Activated Carbon Preparation
2.3. Characterization
2.4. Adsorption Experiments
2.5. Experimental Design
3. Results and Discussion
3.1. Characterization of ACs Adsorbent
3.2. Adsorption Study of Paracetamol and Chloramphenicol
3.2.1. Effects of the Amount of Adsorbent
3.2.2. Contact Time Effect
3.2.3. Effect of pH Solution
3.2.4. Effects of Initial Concentrations of PCT and CPL
3.2.5. Adsorption Kinetics
3.2.6. Adsorption Isotherms
3.2.7. Adsorption Thermodynamics
3.3. Experimental Design Performance
0.000356 X1X3 + 0.060111 X2X3 − 0.000060 X21 − 0.72966 X22 + 0.001078 X23
0.000838 A22
3.4. Comparison of the Performances of Different Activated Carbon Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imanipoor, J.; Mohammadi, M.; Dinari, M. Evaluating the performance of L-methionine modified montmorillonite K10 and 3-aminopropyltriethoxysilane functionalized magnesium phyllosilicate organoclays for adsorptive removal of azithromycin from water. Sep. Purif. Technol. 2021, 275, 119256. [Google Scholar] [CrossRef]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; Van der Ploeg, M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- El Bekkali, C.; Bouyarmane, H.; El Karbane, M.; Masse, S.; Saoiabi, A.; Coradin, T.; Laghzizil, A. Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Dahane, S.; García, M.G.; Bueno, M.M.; Moreno, A.U.; Galera, M.M.; Derdour, A. Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. J. Chromatogr. A. 2013, 1297, 17–28. [Google Scholar] [CrossRef]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Montes-Grajales, D.; Fennix-Agudelo, M.; Miranda-Castro, W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017, 595, 601–614. [Google Scholar] [CrossRef]
- Ghosh, G.; Hanamoto, S.; Yamashita, N.; Huang, X.; Tanaka, H. Antibiotics removal in biological sewage treatment plants. Pollution 2016, 2, 131–139. [Google Scholar]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef]
- Gu, X.; Xu, Z.; Gu, L.; Xu, H.; Han, F.; Chen, B.; Pan, X. Preparation and antibacterial properties of gold nanoparticles: A review. Environ. Chem. Lett. 2021, 19, 167–187. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Li, X.; Jiang, Y.; Fan, X.; Du, P.; Zhou, Z. Adsorption characteristics of chloramphenicol onto powdered activated carbon and its desorption performance by ultrasound. Environ. Technol. 2021, 42, 571–583. [Google Scholar] [CrossRef]
- Nguyen, L.M.; Nguyen, N.T.T.; Nguyen, T.T.T.; Nguyen, T.T.; Nguyen, D.T.C.; Tran, T.V. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: A review. Environ. Chem. Lett. 2022, 20, 1929–1963. [Google Scholar] [CrossRef]
- Tran, H.N.; Tomul, F.; Ha, N.T.H.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Woo, S.H. Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. J. Hazard. Mater. 2020, 394, 122255. [Google Scholar] [CrossRef] [PubMed]
- Damasceno de Oliveira, L.L.; Nunes, B.; Antunes, S.C.; Campitelli-Ramos, R.; Rocha, O. Acute and chronic effects of three pharmaceutical drugs on the tropical freshwater cladoceran Ceriodaphnia silvestrii. Water Air Soil Pollut. 2018, 4, 116. [Google Scholar] [CrossRef]
- Żur, J.; Wojcieszyńska, D.; Hupert-Kocurek, K.; Marchlewicz, A.; Guzik, U. Paracetamol–toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway. Chemosphere 2018, 206, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, A.; Kiełkowska, U.; Atisha, A.; Yanful, E.; Kujawski, W. Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water—A critical review. Sep. Purif. Technol. 2022, 290, 120797. [Google Scholar] [CrossRef]
- Romdhani, M.; Aloulou, W.; Aloulou, H.; Charcosset, C.; Mahouche-Chergui, S.; Carbonnier, B.; Ben Amar, R. Performance studies of indigo dye removal using TiO2 modified clay and zeolite ultrafiltration membrane hybrid system. Desalin. Water Treat. 2021, 243, 262–274. [Google Scholar] [CrossRef]
- Yousefi, M.; Arami, S.M.; Takallo, H.; Hosseini, M.; Radfard, M.; Soleimani, H.; Mohammadi, A.A. Modification of pumice with HCl and NaOH enhancing its fluoride adsorption capacity: Kinetic and isotherm studies. Hum. Ecol. Risk Assess. HERA 2018, 25, 1508–1520. [Google Scholar] [CrossRef]
- Gopinath, A.; Kadirvelu, K. Strategies to design modified activated carbon fibers for the decontamination of water and air. Environ. Chem. Lett. 2018, 16, 1137–1168. [Google Scholar] [CrossRef]
- Lach, J. Adsorption of chloramphenicol on commercial and modified activated carbons. Water 2019, 11, 1141. [Google Scholar] [CrossRef] [Green Version]
- Abdulsalam, K.A.; Giwa, A.R.A.; Adelowo, J.M. Optimization studies for decolourization of textile wastewater using a sawdust-based adsorbent. Chem. Data Collect. 2020, 27, 100400. [Google Scholar] [CrossRef]
- Streit, A.F.; Collazzo, G.C.; Druzian, S.P.; Verdi, R.S.; Foletto, E.L.; Oliveira, L.F.; Dotto, G.L. Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 2021, 262, 128322. [Google Scholar] [CrossRef] [PubMed]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Bouchelta, C.; Medjram, M.S.; Bertrand, O.; Bellat, J.P. Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis 2008, 82, 70–77. [Google Scholar] [CrossRef]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Yorgun, S.; Yıldız, D. Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3POJ. Taiwan Inst. Chem. Eng. 2015, 53, 122–131. [Google Scholar] [CrossRef]
- Abbasi, S.; Mirghorayshi, M.; Zinadini, S.; Zinatizadeh, A.A. A novel single continuous electrocoagulation process for treatment of licorice processing wastewater: Optimization of operating factors using RSM. Process Saf. Environ. Prot. 2020, 134, 323–332. [Google Scholar] [CrossRef]
- Abdullah, N.; Saidur, R.; Zainoodin, A.M.; Aslfattahi, N. Optimization of electrocatalyst performance of platinum–ruthenium induced with MXene by response surface methodology for clean energy application. J. Clean. Prod. 2020, 277, 123395. [Google Scholar] [CrossRef]
- Bheemanapally, K.; Ibrahim, M.M.; Briski, K.P. Optimization of ultra-high-performance liquid chromatography-electrospray ionization-mass spectrometry detection of glutamine-FMOC ad-hoc derivative by central composite design. Sci. Rep. 2020, 10, 7134. [Google Scholar] [CrossRef]
- Sakkas, V.A.; Islam, M.A.; Stalikas, C.; Albanis, T.A. Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation. J. Hazard. Mater. 2010, 175, 33–44. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Odunoye, B.O.; Elehinafe, F.B.; Oyinlola, R.O.; Olayemi, A.O. Production of activated carbon from sawdust and its efficiency in the treatment of sewage water. Heliyon 2021, 7, e05960. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Nguyen, T.T.; Nguyen, H.P.T.; Khuat, H.B.; Nguyen, T.H.; Tran, V.K.; La, D.D. Activated carbon with ultrahigh surface area derived from sawdust biowaste for the removal of rhodamine B in water. Environ. Technol. Innov. 2021, 24, 101811. [Google Scholar] [CrossRef]
- Belgada, A.; Charik, F.Z.; Achiou, B.; Kambuyi, T.N.; Younssi, S.A.; Beniazza, R.; Ouammou, M. Optimization of phosphate/kaolinite microfiltration membrane using Box–Behnken design for treatment of industrial wastewater. J. Environ. Chem. Eng. 2021, 9, 104972. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, H. Activated carbon from sawdust for naphthalene removal from contaminated water. Environ. Technol. Innov. 2020, 20, 101080. [Google Scholar] [CrossRef]
- Gupta, H.; Gupta, B. Adsorption of polycyclic aromatic hydrocarbons on banana peel activated carbon. Desalin. Water Treat. 2016, 57, 9498–9509. [Google Scholar] [CrossRef]
- Puchana-Rosero, M.J.; Adebayo, M.A.; Lima, E.C.; Machado, F.M.; Thue, P.S.; Vaghetti, J.C.; Gutterres, M. Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 105–115. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Lima, D.R.; Hosseini-Bandegharaei, A.; Thue, P.S.; Lima, E.C.; de Albuquerque, Y.R.; dos Reis, G.S.; Tran, H.N. Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from from Brazil nutshells. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123966. [Google Scholar] [CrossRef]
- Hamed, M.M.; Ali, M.M.S.; Holiel, M. Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: Equilibrium, kinetic and thermodynamic studies. J. Environ. Radioact. 2016, 164, 113–124. [Google Scholar] [CrossRef]
- Baccar, R.; Bouzid, J.; Feki, M.; Montiel, A. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J. Hazard. Mater. 2009, 162, 1522–1529. [Google Scholar] [CrossRef]
- Jiang, G.; Qiao, J.; Hong, F. Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int. J. Hydrog. Energy 2012, 37, 9182–9192. [Google Scholar] [CrossRef]
- Jedynak, K.; Szczepanik, B.; Rędzia, N.; Słomkiewicz, P.; Kolbus, A.; Rogala, P. Ordered mesoporous carbons for adsorption of paracetamol and non-steroidal anti-inflammatory drugs: Ibuprofen and naproxen from aqueous solutions. Water 2019, 11, 1099. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Kerkhoff, C.M.; da Boit Martinello, K.; Franco, D.S.; Netto, M.S.; Georgin, J.; Foletto, E.L.; Dotto, G.L. Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp. J. Mol. Liq. 2021, 339, 117184. [Google Scholar] [CrossRef]
- Patania, F.; Gagliano, A.; Nocera, F.; Galesi, A. The pollution of water resources and interventions to mitigate and control environmental impact. Water Soc. 2012, 153, 299. [Google Scholar]
- Nourmoradi, H.; Moghadam, K.F.; Jafari, A.; Kamarehie, B. Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus Brantii (Oak) acorn as a low-cost biosorbent. J. Environ. Chem. Eng. 2018, 6, 6807–6815. [Google Scholar] [CrossRef]
- Cheng, X.; Zheng, C.; Lu, Q.; Liu, J.; Wang, Q.; Fan, Y.; Zhang, J. Adsorption of furazolidone, D-cycloserine, and chloramphenicol on granular activated carbon made from corn stover. J. Environ. Chem. Eng. 2019, 145, 04019038. [Google Scholar] [CrossRef]
- Mashayekh-Salehi, A.; Moussavi, G. Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl. Desalin. Water Treat. 2016, 57, 12861–12873. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Liu, H. Removal of chloramphenicol from aqueous solution using low-cost activated carbon prepared from Typha orientalis. Water 2018, 10, 351. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Gao, Y.; Yue, Q.; Song, Y.; Gao, B.; Xu, X. Facile synthesis of hierarchical porous carbon material by potassium tartrate activation for chloramphenicol removal. J. Taiwan Inst. Chem. Eng. 2018, 85, 141–148. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, Z.; Xie, A.; Dai, J.; Cui, J.; Lang, J.; Yan, Y. Preparation of hierarchical porous carbons from sodium carboxymethyl cellulose via halloysite template strategy coupled with KOH-activation for efficient removal of chloramphenicol. J. Taiwan Inst. Chem. Eng. 2017, 80, 424–433. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Dai, W.; Wei, Y.; Wang, Y.; Zhang, Y.; Gao, Z. A metal-organic framework with large 1-D channels and rich OH sites for high-efficiency chloramphenicol removal from water. J. Colloid Interface Sci. 2018, 526, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Pauletto, P.S.; Lütke, S.F.; Dotto, G.L.; Salau, N.P.G. Forecasting the multicomponent adsorption of nimesulide and paracetamol through artificial neural network. Chem. Eng. J. 2021, 412, 127527. [Google Scholar] [CrossRef]
- Lim, S.; Kim, J.H.; Park, H.; Kwak, C.; Yang, J.; Kim, J.; Lee, J. Role of electrostatic interactions in the adsorption of dye molecules by Ti3C2-MXenes. RSC Adv. 2021, 11, 6201–6211. [Google Scholar] [CrossRef] [PubMed]
- Chitongo, R.; Opeolu, B.O.; Olatunji, O.S. Abatement of amoxicillin, ampicillin, and chloramphenicol from aqueous solutions using activated carbon prepared from grape slurry. CLEAN—Soil Air Water 2019, 47, 1800077. [Google Scholar] [CrossRef]
- Idris, Z.M.; Hameed, B.H.; Ye, L.; Hajizadeh, S.; Mattiasson, B.; Din, A.M. Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption. J. Environ. Chem. Eng. 2020, 8, 103981. [Google Scholar] [CrossRef]
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and personal care products in waters: Occurrence, toxicity, and risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Kuśmierek, K.; Świątkowski, A.; Kotkowski, T.; Cherbański, R.; Molga, E. Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part II. Adsorption from aqueous phase. J. Anal. Appl. Pyrolysis 2021, 158, 105206. [Google Scholar] [CrossRef]
- Noorimotlagh, Z.; Soltani, R.D.C.; Khataee, A.R.; Shahriyar, S.; Nourmoradi, H. Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch. J. Taiwan Inst. Chem. Eng. 2014, 45, 1783–1791. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Balarak, D.; Zafariyan, M.; Igwegbe, C.A.; Onyechi, K.K.; Ighalo, J.O. Adsorption of acid blue 92 dye from aqueous solutions by single-walled carbon nanotubes: Isothermal, kinetic, and thermodynamic studies. Environ. Process. 2021, 8, 869–888. [Google Scholar] [CrossRef]
- Dutta, M.; Das, U.; Mondal, S.; Bhattachriya, S.; Khatun, R.; Bagal, R. Adsorption of acetaminophen by using tea waste derived activated carbon. Int. J. Environ. Sci. 2015, 6, 270. [Google Scholar] [CrossRef]
- Zanella, O.; Klein, É.; Haro, N.K.; Cardoso, M.G.; Tessaro, I.C.; Féris, L.A. Equilibrium studies, kinetics and thermodynamics of anion removal by adsorption. World Rev. Sci. Technol. Sustain. Dev. 2016, 12, 193–218. [Google Scholar] [CrossRef]
- Pei, Y.; Agostini, F.; Skoczylas, F. The effects of high temperature heating on the gas permeability and porosity of a cementitious material. Cem. Concr. Res. 2017, 95, 141–151. [Google Scholar] [CrossRef]
- Addar, F.Z.; El-Ghzizel, S.; Tahaikt, M.; Belfaquir, M.; Taky, M.; Elmidaoui, A. Fluoride removal by nanofiltration: Experimentation, modelling and prediction based on the surface response method. Desalin. Water Treat. 2021, 240, 75–88. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Q.; Jian, H.; Wang, C.; Xing, B.; Sun, H.; Hao, Y. Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. J. Hazard. Mater. 2020, 396, 122598. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Johir, M.A.H.; Belhaj, D. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresour. Technol. 2017, 238, 306–312. [Google Scholar] [CrossRef]
- Ferreira, R.C.; De Lima, H.H.C.; Cândido, A.A.; Junior, O.C.; Arroyo, P.A.; De Carvalho, K.Q.; Barros, M.A.S.D. Adsorption of paracetamol using activated carbon of dende and babassu coconut mesocarp. Int. J. Biotechnol. Bioeng. 2015, 9, 717–722. [Google Scholar]
- Fan, Y.; Wang, B.; Yuan, S.; Wu, X.; Chen, J.; Wang, L. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresour. Technol. 2010, 101, 7661–7664. [Google Scholar] [CrossRef]
- Spaltro, A.; Pila, M.N.; Colasurdo, D.D.; Grau, E.N.; Román, G.; Simonetti, S.; Ruiz, D.L. Removal of paracetamol from aqueous solution by activated carbon and silica. Experimental and computational study. J. Contam. Hydrol. 2021, 236, 103739. [Google Scholar] [CrossRef]
Pharmaceutical Substance | Chemical Formula | Molecular Weight (g/mol) | λmax (nm) | pKa | Water Solubility at 25 °C (g /L) | Structural Formula |
---|---|---|---|---|---|---|
Chloramphenicol (CPL) | C11H12Cl2N2O5 | 323.13 | 279 | 5.52 | 2.5 | |
Paracetamol (PCT) | C8H9NO2 | 151.16 | 245 | 9.38 | 13.85 |
Factor Levels | |||
---|---|---|---|
Low (−1) | Central (0) | High (1) | |
(A1) Adsorbent Dosage (mg/L) | 100 | 450 | 800 |
(A2) CPL Concentration (mg/L) | 10 | 55 | 100 |
Runs | A1 | A2 | Removal (%) |
1 | 800 | 100 | 98 |
2 | 450 | 100 | 63 |
3 | 800 | 10 | 98 |
4 | 450 | 55 | 93 |
5 | 100 | 100 | 2.6 |
6 | 450 | 55 | 89 |
7 | 450 | 10 | 96 |
8 | 100 | 55 | 26 |
9 | 800 | 55 | 99 |
10 | 450 | 55 | 93 |
11 | 100 | 10 | 82.3 |
Factor Levels | ||||
---|---|---|---|---|
Low (−1) | Central (0) | High (1) | ||
(X1) Adsorbent Dosage (mg/L) | 100 | 500 | 900 | |
(X3) pH | 2.5 | 7.5 | 12.5 | |
(X3) PCT Concentration (mg/L) | b 10 | 55 | 100 | |
Runs | X1 | X2 | X3 | Removal (%) |
1 | 900 | 2.5 | 55 | 95 |
2 | 100 | 12.5 | 55 | 6.4 |
3 | 100 | 2.5 | 55 | 17.5 |
4 | 500 | 12.5 | 100 | 38.1 |
5 | 500 | 12.5 | 10 | 21.8 |
6 | 500 | 12.5 | 100 | 49.5 |
7 | 500 | 7.5 | 55 | 65.0 |
8 | 500 | 7.5 | 55 | 63.7 |
9 | 900 | 12.5 | 55 | 30.8 |
10 | 100 | 7.5 | 10 | 55.0 |
11 | 500 | 7.5 | 55 | 67.0 |
12 | 900 | 7.5 | 100 | 73.5 |
13 | 900 | 7.5 | 10 | 95.0 |
14 | 100 | 7.5 | 100 | 7.9 |
15 | 500 | 2.5 | 10 | 87.3 |
Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|
k1 (min−1) | qe (mg/g) | R2 | k2 (g/mg min) | qe (mg/g) | R2 | |
PCT | 0.2 | 49.38 | 0.81 | 0.66 | 50 | 0.99 |
CPL | 0.047 | 111.7 | 0.93 | 0.026 | 85.7 | 0.99 |
Langmuir Isotherm Parameters | Freundlich Isotherm Parameters | ||||||
---|---|---|---|---|---|---|---|
KL (L/mg) | qmax (mg/g) | RL | R2 | KF (mg/g) (L/mg)1/n | 1/n | R2 | |
PCT | 3.53 | 71.42 | 0.007 | 0.98 | 31.14 | 0.48 | 0.90 |
CPL | 1.20 | 166.66 | 0.020 | 0.99 | 143.65 | 0.128 | 0.98 |
ΔG° (KJ/mol) | ΔH° (KJ/mol) | ΔS° (J/mol.K) | |||
---|---|---|---|---|---|
Adsorbate | 298 (K) | 313 (K) | 323 (K) | ||
PCT | −2.3 | −3.5 | −4.32 | 21.3 | 79.3 |
CPL | −5.0 | −7.1 | −8.5 | 34.9 | 138 |
Model | Response | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | R2 | R2adj |
---|---|---|---|---|---|---|---|---|
PCT | Removal percentage | 12,433.91 | 9 | 1381.55 | 24.25 | 0.0013 | 0.97 | 0.93 |
CPL | Removal percentage | 10,361.16 | 5 | 2072.23 | 27.43 | 0.0012 | 0.96 | 0.92 |
Adsorbent | BET (m2/g) | Substrate | Findings | Retention (%) | Maximal Adsorption Capacity (mg/g) | Reference |
---|---|---|---|---|---|---|
Commercial activated carbon: F-300 F-100 WG-12 ROW 08 SUPRA Picabiol | 860 730 1005 796 1344 | Chloramphenicol | pH = 2 C = 161 mg/L T = 20 °C Dose: 4000 mg/L t = 480 min t = 600 min t = 600 min t = 600 min t = 360 min | - | 200 174 195 212 214 | [19] |
Acid-treated beverage sludge-activated carbon (ABSAC) | 642 | Paracetamol | pH = 8 C = 50 mg/L t = 30 min T = 25 °C Dose: 800 mg/L | 86 | 145.4 | [21] |
AC based on sawdust | 1695 | Rhodamine B | pH = 3 C = 10mg/L t = 10 min T = 25 °C Dose: 1000 mg/L | 100 | 300 | [31] |
AC based on sawdust | 1409 | Naphthalene | pH = 2 C = 30 mg/L t = 90 min T = 25 °C Dose: 333 mg/L | 96 | - | [33] |
AC from endocarp of the species Butia capitate | 820 | Paracetamol | pH = 8 C = 50 mg/L t = 180 min T = 25 °C Dose: 1000 mg/L | 81 | 100 | [43] |
AC from oak acorns | 234 | Paracetamol | pH = 3 t = 150 min T = 25 °C Dose: 100 mg/L | - | 45 | [45] |
Activated carbon based on corn stover | 961 | Chloramphenicol | pH = 7 C = 25 mg/L t = 120 min T = 25 °C Dose: 8000 mg/L | 100 | 32.3 | [46] |
Activated carbon based on Typha orientalis | 794.8 | Chloramphenicol | pH = 6.2 C = 65 mg/L t = 360 min T = 25 °C Dose: 600 mg/L | 87 | 137 | [48] |
Bamboo charcoal-based biochar | <1 | Chloramphenicol | C = 20 mg/L t = 15 min T = 25 °C Dose: 8000 mg/L | - | 0.65 | [61] |
Sodium hydroxide-modified bamboo charcoal | <1 | Chloramphenicol | C = 20 mg/L t = 15 min T = 25 °C Dose: 8000 mg/L | - | 2.35 | [69] |
Biochars pyrolyzed at 350 °C | - | Chloramphenicol | pH = 7 C = 40 mg/L t = 1080 min T = 25 °C Dose: 500 mg/L | - | 10 | [66] |
Biochars pyrolyzed at 500 °C | - | Chloramphenicol | pH = 7 C = 40 mg/L t = 1080 min T = 25 °C Dose: 500 mg/L | - | 14.2 | [66] |
Biochars pyrolyzed at 700 °C | - | Chloramphenicol | pH = 7 C = 40 mg/L t = 1080 min T = 25 °C Dose: 500 mg/L | - | 33 | [66] |
H3PO4-activated biochar at 600 °C | - | Chloramphenicol | pH = 4 C = 20 mg/L t = 1800 min T = 25 °C Dose: 80 mg/L | - | 21 | [67] |
AC from babassu coconut | 484 | Paracetamol | pH = 3.9 C = 25 mg/L t > 200 min T = 25 °C Dose: 3.5–3000 mg/L | - | 71 | [68] |
AC from dende coconut | 672 | Paracetamol | pH = 6.5 C = 25 mg/L t > 90 min T = 25 °C Dose: 3.5–3000 mg/L | - | 70 | [68] |
Two activated carbons: CAT CARBOPAL | 983 1588 | Paracetamol | pH = 3 C = 150 mg/L t = 800 min T = 25 °C Dose: 167 mg/L | - | 560 450 | [70] |
AC based on sawdust | 303–1298 | Chloramphenicol | pH = 7.5 C = 40 mg/L t = 90 min T = 25 °C Dose: 450 mg/L | 98 | 176 | This work |
AC from sawdust | 303–1298 | Paracetamol | pH = 7.5 C = 40 mg/L t = 20 min T = 25 °C Dose: 750 mg/L | 85 | 92 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romdhani, M.; Attia, A.; Charcosset, C.; Mahouche-Chergui, S.; Ates, A.; Duplay, J.; Ben Amar, R. Optimization of Paracetamol and Chloramphenicol Removal by Novel Activated Carbon Derived from Sawdust Using Response Surface Methodology. Sustainability 2023, 15, 2516. https://doi.org/10.3390/su15032516
Romdhani M, Attia A, Charcosset C, Mahouche-Chergui S, Ates A, Duplay J, Ben Amar R. Optimization of Paracetamol and Chloramphenicol Removal by Novel Activated Carbon Derived from Sawdust Using Response Surface Methodology. Sustainability. 2023; 15(3):2516. https://doi.org/10.3390/su15032516
Chicago/Turabian StyleRomdhani, Mohamed, Afef Attia, Catherine Charcosset, Samia Mahouche-Chergui, Ayten Ates, Joelle Duplay, and Raja Ben Amar. 2023. "Optimization of Paracetamol and Chloramphenicol Removal by Novel Activated Carbon Derived from Sawdust Using Response Surface Methodology" Sustainability 15, no. 3: 2516. https://doi.org/10.3390/su15032516
APA StyleRomdhani, M., Attia, A., Charcosset, C., Mahouche-Chergui, S., Ates, A., Duplay, J., & Ben Amar, R. (2023). Optimization of Paracetamol and Chloramphenicol Removal by Novel Activated Carbon Derived from Sawdust Using Response Surface Methodology. Sustainability, 15(3), 2516. https://doi.org/10.3390/su15032516