A Dual DIC System for Analysis of Dynamic Mechanical Properties of Large Sandstone under Uniaxial Compression Load
Abstract
:1. Introduction
2. Specimen Preparation and Compression Experimentation
2.1. Speckle Preparation and Assessment
2.2. Compression Experiment
3. Results Analyses
3.1. Analysis on the Images Taken by Low-Speed Camera
3.2. Analysis on the Images Taken by High-Speed Camera
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, M.; Han, L.; Meng, Q.; Ma, C.; Zong, Y.; Mao, P. Physical model experiment of surrounding rock failure mechanism for the roadway under deviatoric pressure form mining disturbance. KSCE J. Civ. Eng. 2020, 24, 1103–1115. [Google Scholar] [CrossRef]
- Jiang, M.; Sima, J.; Cui, Y.; Hu, H.; Zhou, C.; Lei, H. Experimental investigation of the deformation characteristics of natural loess under the stress paths in shield tunnel excavation. Int. J. Geomech. 2017, 17, 04017079. [Google Scholar] [CrossRef]
- Li, T.; Yang, X. Probabilistic stability analysis of subway tunnels combining multiple failure mechanisms and response surface method. Int. J. Geomech. 2018, 18, 04018167. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, F. Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments. Rock Mech. Rock Eng. 2018, 51, 747–764. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Li, X.; Cao, W.; Du, X. Dynamic response and energy evolution of sandstone under coupled static-dynamic compression: Insights from experimental study into deep rock engineering applications. Rock Mech. Rock Eng. 2020, 53, 1305–1331. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Lin, H.; Zhao, Y.; Liu, Y. Fracture behaviour of central-flawed rock plate under uniaxial compression. Theor. Appl. Fract. Mech. 2020, 106, 102503. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, S. Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression. Int. J. Damage Mech. 2019, 28, 590–610. [Google Scholar] [CrossRef]
- Duan, Y.; Li, X.; Zheng, B.; He, J.; Hao, J. Cracking evolution and failure characteristics of Longmaxi shale under uniaxial compression using real-time computed tomography scanning. Rock Mech. Rock Eng. 2019, 52, 3003–3015. [Google Scholar] [CrossRef]
- Dai, S.; Gao, W.; Wang, C.; Xiao, T. Damage evolution of heterogeneous rocks under uniaxial compression based on distinct element method. Rock Mech. Rock Eng. 2019, 52, 2631–2647. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.; Zhang, X.; Zhang, Y.; Zhou, Y. Brittle-ductile transition and failure mechanism of Jinping marble under true triaxial compression. Eng. Geol. 2018, 232, 160–170. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, X.; Zhang, X.; Feng, G.; Jiang, Q.; Qiu, S. Characteristic stress levels and brittle fracturing of hard rocks subjected to true triaxial compression with low minimum principal stress. Rock Mech. Rock Eng. 2018, 51, 3681–3697. [Google Scholar] [CrossRef]
- Yamaguchi, I. A laser-speckle strain gauge. J. Phys. E Sci. Instrum. 1981, 14, 1270–1273. [Google Scholar] [CrossRef]
- Peters, W.H.; Ranson, W.F. Digital Imaging Techniques in Experimental Stress Analysis. Opt. Eng. 1981, 21, 427–431. [Google Scholar] [CrossRef]
- Chen, F.; Zhuang, Q.; Zhang, H. Mechanical analysis and force chain determination in granular materials using digital image correlation. Appl. Opt. 2016, 55, 4776–4783. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, H.; Li, X.; Wu, D.; Zhang, G. Underlying mechanisms of crack initiation for granitic rocks containing a single pre-existing flaw: Insights from digital image correlation (DIC) analysis. Rock Mech. Rock Eng. 2021, 54, 857–873. [Google Scholar] [CrossRef]
- Chen, F.; Zhuang, Q.; Wang, R.; Guo, P. Damage point prediction of a force chain based on digital image correlation method. Appl. Opt. 2017, 56, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Lu, Z.; Xie, H. Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt. Lasers Eng. 2010, 48, 469–477. [Google Scholar] [CrossRef]
- Yu, H.; Guo, R.; Xia, H.; Yan, F.; Zhang, Y.; He, T. Application of the mean intensity of the second derivative in evaluating the speckle patterns in digital image correlation. Opt. Lasers Eng. 2014, 60, 32–37. [Google Scholar] [CrossRef]
- Liu, X.; Li, R.; Zhao, H.; Cheng, T.; Cui, G. Quality assessment of speckle patterns for digital image correlation by Shannon entropy. Opt. Int. J. Light Electron Opt. 2015, 126, 4206–4211. [Google Scholar] [CrossRef]
- Zhang, L.; Cong, Y.; Meng, F.; Wang, Z.; Zhang, P.; Gao, S. Energy evolution analysis and failure criteria for rock under different stress paths. Acta Geotech. 2021, 16, 569–580. [Google Scholar] [CrossRef]
Speckle Pattern | MIG | MISD | SE |
---|---|---|---|
A | 17.2696 | 15.3053 | 9.8501 |
B | 19.9866 | 16.4400 | 7.1012 |
C | 23.2605 | 21.7038 | 11.4230 |
D | 22.1941 | 20.6816 | 11.3406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Chen, F.; Gao, X.; Guo, Z.; Sun, J.; Zhang, L.; Wang, Y.; Liu, Y.; Li, C. A Dual DIC System for Analysis of Dynamic Mechanical Properties of Large Sandstone under Uniaxial Compression Load. Sustainability 2023, 15, 2623. https://doi.org/10.3390/su15032623
Zhong Y, Chen F, Gao X, Guo Z, Sun J, Zhang L, Wang Y, Liu Y, Li C. A Dual DIC System for Analysis of Dynamic Mechanical Properties of Large Sandstone under Uniaxial Compression Load. Sustainability. 2023; 15(3):2623. https://doi.org/10.3390/su15032623
Chicago/Turabian StyleZhong, Yichen, Fanxiu Chen, Xinya Gao, Zhanwei Guo, Jie Sun, Liming Zhang, Yuan Wang, Yuxin Liu, and Changtai Li. 2023. "A Dual DIC System for Analysis of Dynamic Mechanical Properties of Large Sandstone under Uniaxial Compression Load" Sustainability 15, no. 3: 2623. https://doi.org/10.3390/su15032623
APA StyleZhong, Y., Chen, F., Gao, X., Guo, Z., Sun, J., Zhang, L., Wang, Y., Liu, Y., & Li, C. (2023). A Dual DIC System for Analysis of Dynamic Mechanical Properties of Large Sandstone under Uniaxial Compression Load. Sustainability, 15(3), 2623. https://doi.org/10.3390/su15032623