A Multiobjective Optimization Approach for Multiobjective Hybrid Flowshop Green Scheduling with Consistent Sublots
Abstract
:1. Introduction
2. Literature Review
2.1. The Classical Hybrid Flowshop Scheduling Problem
2.2. The Hybrid Flowshop Scheduling Problem with Lot Streaming
2.3. The Hybrid Flowshop Green Scheduling Problem
3. Problem Statement
3.1. Mathematical Model
- All machines and lots are available at time zero;
- Each unit can only be processed on one machine at a time;
- Preemption is not allowed, and buffer size is not limited;
- Each machine cannot process more than one unit at a time;
- The machines are turned on when the first lot assigned to them is going to start and turn off once all lots assigned to them are finished;
- A sublot at a stage can be processed after it has been completed at the previous stage and transported to this stage;
- Machine speed cannot be changed while processing a sublot.
The total number of stages; | |
Index of stages, ; | |
Total number of lots; | |
Index of lots, ; | |
Number of parallel machines at stage ; | |
Index of machines at stage ,; | |
Total number of lots ; | |
The maximum number of sublots of each lot; | |
Index for the sublots, ; | |
Number units of sublot of lot ; | |
The speed level index; | |
The speed level of machines at stage , and ; | |
Unit processing time of sublot of lot by speed ; | |
Beginning processing time of sublot of lot at stage; | |
Ending processing time of sublot of lot at stage ; | |
Set up the time of lot at stage ; | |
Transportation time of lot at stage ; | |
The power of consumption of machine in stage by speed during processing status; | |
The power of consumption of the machine in stage by speed during setup status; | |
The power of consumption of machine in stage during idle status. |
Binary variable that takes the value of 1 when the sublot of lot is larger than 0 and 0 otherwise; | |
Binary variable that takes the value of 1 when a lot is assigned to machine at stage and 0 otherwise; | |
Binary variable that takes the value of 1 when l is scheduled before lot on machine at stage and 0 otherwise; | |
Binary variable that takes the value of 1 when lot is processed on machine at stage by speed and 0 otherwise. |
3.2. Trade-Off Relationship of the Objectives
4. Proposed Algorithm
4.1. Solution Encoding and Population Initialization
4.2. Solution Decoding
4.3. Decomposition Approaches and Objective Normalization
4.4. VND-Based Employed Bee Phase
Algorithm 1. VND-based employed bee phase |
1: For to do 2: Generate by using a neighborhood 3: Update the external population use 4: If < then 5: ; ; 6: Else 7: ; ; 8: End if 9: If then 10: ; 11: End if 12: End for |
4.5. WAS-Based Onlooker Bee Phase
Algorithm 2. WAS-based onlooker bee phase |
1: For to do 2: Select a promising solution based on TOPSIS 3: Finding a partner solution from 4: Generate by conducting PBX and 5: Update the external population use 6: Generate N initial weights 7: If < then 8: ; 9: Else 10: ; 11: End if 12: For = 1 to do 13: If < then 14: ; 15: End if 16:; 17: If and 18: ; 19: End if 20:; 21: End for 22: End for |
4.6. SIS-Based Scout Bee Phase
Algorithm 3.SIS-based scout bee phase |
1: For to do 2: If () > then 3: k; 4: 5: while then 6: If then 7: 8: 9: Else 10: k 11: End if 12: If then 13:; 14: 15: 16: End if 17: End while 18: End if 19: End for |
5. Experiments and Results
5.1. Test Data
5.2. Performance Metrics
5.3. Parameter Setting
5.4. Evaluation of the Proposed Strategies
5.5. Comparison of the Proposed MDABC with Other Algorithms in Small-Scale Instances
5.6. Comparison of the Proposed MDABC with Other Algorithms in Large-Scale Problems
5.7. Experimental Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Low, C.; Hsu, C.-J.; Su, C.-T. A two-stage hybrid flowshop scheduling problem with a function constraint and unrelated alternative machines. Comput. Oper. Res. 2008, 35, 845–853. [Google Scholar] [CrossRef]
- Ruiz, R.; Vázquez-Rodríguez, J.A. The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 2010, 205, 1–18. [Google Scholar] [CrossRef]
- Pan, Q.-K.; Gao, L.; Li, X.-Y.; Gao, K.-Z. Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times. Appl. Math. Comput. 2017, 303, 89–112. [Google Scholar] [CrossRef]
- Ribas, I.; Leisten, R.; Framiñan, J.M. Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput. Oper. Res. 2010, 37, 1439–1454. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, J.; Song, D. An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time. J. Intell. Manuf. 2015, 29, 891–904. [Google Scholar] [CrossRef]
- Reiter, S. A System for Managing Job-Shop Production. J. Bus. 1966, 39, 371. [Google Scholar] [CrossRef]
- Cheng, M.; Mukherjee, N.J.; Sarin, S.C. A review of lot streaming. Int. J. Prod. Res. 2013, 51, 7023–7046. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, Q.-K.; Meng, L.-L.; Zhang, X.-L.; Ren, Y.-P.; Li, J.-Q.; Jiang, X.-C. A collaborative variable neighborhood descent algorithm for the hybrid flowshop scheduling problem with consistent sublots. Appl. Soft Comput. 2021, 106, 107305. [Google Scholar] [CrossRef]
- Fang, K.; Uhan, N.; Zhao, F.; Sutherland, J.W. A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J. Manuf. Syst. 2011, 30, 234–240. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, H.; Lohse, N.; Petrovic, S. Reducing environmental impact of production during a Rolling Blackout policy—A multi-objective schedule optimisation approach. J. Clean. Prod. 2015, 102, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Zhang, C.; Ren, Y.; Zhang, B.; Lv, C. Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 142, 106347. [Google Scholar] [CrossRef]
- Meng, L.; Gao, K.; Ren, Y.; Zhang, B.; Sang, H.; Chaoyong, Z. Novel MILP and CP models for distributed hybrid flowshop scheduling problem with sequence-dependent setup times. Swarm Evol. Comput. 2022, 71, 101058. [Google Scholar] [CrossRef]
- Gupta, J.N. Two-stage, hybrid flowshop scheduling problem. J. Oper. Res. Soc. 1988, 39, 359–364. [Google Scholar] [CrossRef]
- Yang, J. A new complexity proof for the two-stage hybrid flow shop scheduling problem with dedicated machines. Int. J. Prod. Res. 2010, 48, 1531–1538. [Google Scholar] [CrossRef]
- Guirchoun, S.; Martineau, P.; Billaut, J.-C. Total completion time minimization in a computer system with a server and two parallel processors. Comput. Oper. Res. 2005, 32, 599–611. [Google Scholar] [CrossRef]
- Cheng, M.; Sarin, S.C. Two-stage, Multiple-lot, Lot Streaming Problem for a 1 + 2 Hybrid Flow Shop. IFAC Proc. Vol. 2013, 46, 448–453. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Linn, R.J. Model and heuristics for lot streaming of one job in M-1 hybrid flowshops. Int. J. Oper. Quant. Manag. 2003, 9, 49–64. [Google Scholar]
- Kim, J.-S.; Kang, S.-H.; Lee, S.M. Transfer batch scheduling for a two-stage flowshop with identical parallel machines at each stage. Omega 1997, 25, 547–555. [Google Scholar] [CrossRef]
- Nejati, M.; Mahdavi, I.; Hassanzadeh, R.; Mahdavi-Amiri, N.; Mojarad, M. Multi-job lot streaming to minimize the weighted completion time in a hybrid flow shop scheduling problem with work shift constraint. Int. J. Adv. Manuf. Technol. 2013, 70, 501–514. [Google Scholar] [CrossRef]
- Lalitha, J.L.; Mohan, N.; Pillai, V.M. Lot streaming in [N − 1](1) + N (m) hybrid flow shop. J. Manuf. Syst. 2017, 44, 12–21. [Google Scholar] [CrossRef]
- Nejati, M.; Mahdavi, I.; Hassanzadeh, R.; Mahdavi-Amiri, N. Lot streaming in a two-stage assembly hybrid flow shop scheduling problem with a work shift constraint. J. Ind. Prod. Eng. 2016, 33, 459–471. [Google Scholar] [CrossRef]
- Dai, M.; Tang, D.; Giret, A.; Salido, M.A.; Li, W.D. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robot. Comput. Manuf. 2013, 29, 418–429. [Google Scholar] [CrossRef]
- Fernandez-Viagas, V.; Prata, B.; Framinan, J.M. A critical-path based iterated local search for the green permutation flowshop problem. Comput. Ind. Eng. 2022, 169, 108276. [Google Scholar] [CrossRef]
- Gu, W.; Li, Z.; Dai, M.; Yuan, M. An energy-efficient multi-objective permutation flow shop scheduling problem using an improved hybrid cuckoo search algorithm. Adv. Mech. Eng. 2021, 13, 16878140211023603. [Google Scholar] [CrossRef]
- Lu, C.; Huang, Y.; Meng, L.; Gao, L.; Zhang, B.; Zhou, J. A Pareto-based collaborative multi-objective optimization algorithm for energy-efficient scheduling of distributed permutation flow-shop with limited buffers. Robot. Comput. Manuf. 2021, 74, 102277. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, B.; Gao, K.; Duan, P. An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and Sequence-Dependent Setup Times. Sustainability 2023, 15, 776. [Google Scholar] [CrossRef]
- Bai, J.; Liu, H. Multi-objective artificial bee algorithm based on decomposition by PBI method. Appl. Intell. 2016, 45, 976–991. [Google Scholar] [CrossRef]
- Pan, Q.-K.; Gao, L.; Wang, L.; Liang, J.; Li, X.-Y. Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem. Expert Syst. Appl. 2019, 124, 309–324. [Google Scholar] [CrossRef]
- Yan, J.; Li, L.; Zhao, F.; Zhang, F.; Zhao, Q. A multi-level optimization approach for energy-efficient flexible flow shop scheduling. J. Clean. Prod. 2016, 137, 1543–1552. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, Q.-K.; Gao, L.; Meng, L.-L.; Li, X.-Y.; Peng, K.-K. A Three-Stage Multiobjective Approach Based on Decomposition for an Energy-Efficient Hybrid Flow Shop Scheduling Problem. IEEE Trans. Syst. Man Cybern. Syst. 2019, 50, 4984–4999. [Google Scholar] [CrossRef]
- Ding, J.-Y.; Song, S.; Wu, C. Carbon-efficient scheduling of flow shops by multi-objective optimization. Eur. J. Oper. Res. 2016, 248, 758–771. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, Q.-K.; Gao, L.; Li, X.-Y.; Meng, L.-L.; Peng, K.-K. A multiobjective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem. Comput. Ind. Eng. 2019, 136, 325–344. [Google Scholar] [CrossRef]
- Worasan, K.; Sethanan, K.; Pitakaso, R.; Moonsri, K.; Nitisiri, K. Hybrid particle swarm optimization and neighborhood strategy search for scheduling machines and equipment and routing of tractors in sugarcane field preparation. Comput. Electron. Agric. 2020, 178, 105733. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Peng, K.; Pan, Q.-K.; Gao, L.; Li, X.; Das, S.; Zhang, B. A multi-start variable neighbourhood descent algorithm for hybrid flowshop rescheduling. Swarm Evol. Comput. 2019, 45, 92–112. [Google Scholar] [CrossRef]
- Ma, X.; Yu, Y.; Li, X.; Qi, Y.; Zhu, Z. A Survey of Weight Vector Adjustment Methods for Decomposition-Based Multiobjective Evolutionary Algorithms. IEEE Trans. Evol. Comput. 2020, 24, 634–649. [Google Scholar] [CrossRef]
- Zhou, J.; Yao, X.; Chan, F.T.; Gao, L.; Jing, X.; Li, X.; Lin, Y.; Li, Y. A decomposition based evolutionary algorithm with direction vector adaption and selection enhancement. Inf. Sci. 2019, 501, 248–271. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Zhu, N.; Li, K.; Zou, J.; Li, M. A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively. Inf. Sci. 2021, 572, 343–377. [Google Scholar] [CrossRef]
- Gharib, Z.; Yazdani, M.; Bozorgi-Amiri, A.; Tavakkoli-Moghaddam, R.; Taghipourian, M.J. Developing an integrated model for planning the delivery of construction materials to post-disaster reconstruction projects. J. Comput. Des. Eng. 2022, 9, 1135–1156. [Google Scholar] [CrossRef]
- Lu, C.; Gao, L.; Li, X.; Pan, Q.; Wang, Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. J. Clean. Prod. 2017, 144, 228–238. [Google Scholar] [CrossRef]
- Gharib, Z.; Tavakkoli-Moghaddam, R.; Bozorgi-Amiri, A.; Yazdani, M. Post-Disaster Temporary Shelters Distribution after a Large-Scale Disaster: An Integrated Model. Buildings 2022, 12, 414. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, Q.-K.; Gao, L.; Zhang, X.-L.; Peng, K.-K. A multi-objective migrating birds optimization algorithm for the hybrid flowshop rescheduling problem. Soft Comput. 2018, 23, 8101–8129. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, Q.-K.; Meng, L.-L.; Lu, C.; Mou, J.-H.; Li, J.-Q. An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots. Knowl. Based Syst. 2022, 238, 107819. [Google Scholar] [CrossRef]
- Chen, T.-L.; Cheng, C.-Y.; Chou, Y.-H. Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming. Ann. Oper. Res. 2018, 290, 813–836. [Google Scholar] [CrossRef]
- Lu, C.; Gao, L.; Pan, Q.; Li, X.; Zheng, J. A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution. Appl. Soft Comput. 2019, 75, 728–749. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Chang, S. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2019, 509, 1–21. [Google Scholar] [CrossRef]
- Rabbani, M.; Oladzad-Abbasabady, N.; Akbarian-Saravi, N. Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms. J. Ind. Manag. Optim. 2022, 18, 1035. [Google Scholar] [CrossRef]
Studies | Type of HFSP | Objective | Problem Characteristic |
---|---|---|---|
Cheng et al. [16] | Two-stage | Makespan | With equal sublot |
Zhang et al. [17] | K-stage | Production lead time | With equal sublot |
Kim et al. [18] | Two-stage | Makespan | With consistent sublot |
Zhang et al. [8] | K-stage | Makespan | With consistent sublot |
This study | HFSP | Makespan, Total energy consumption | With consistent sublot |
Studies | Type | Objective | Problem Characteristic |
---|---|---|---|
Fernandez-Viagas et al. [23] | FPSP | Makespan, Total energy consumption | With various machine speeds |
Gu et al. [24] | FFSP | Makespan, Total energy consumption | With the relative objectives |
Lu et al. [25] | DPFSP | Total energy consumption | With limited buffers |
Li et al. [28] | DPFSP | Total flowtime | With the relative algorithm |
Zhang et al. [30] | HFSP | Makespan, Total energy consumption | With lot steaming |
This study | HFSP | Makespan, Total energy consumption | With lot steaming and various machine speeds |
Parameters | Parameter Level | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
N | 100 | 150 | 200 | 250 |
T | 10 | 15 | 20 | 25 |
R | 20 | 30 | 50 | 80 |
Test | Parameters | AVG | ||
---|---|---|---|---|
N | T | R | ||
1 | 100 | 10 | 20 | 0.0238 |
2 | 100 | 15 | 30 | 0.0230 |
3 | 100 | 20 | 50 | 0.0295 |
4 | 100 | 25 | 80 | 0.0206 |
5 | 150 | 10 | 30 | 0.0237 |
6 | 150 | 15 | 20 | 0.0294 |
7 | 150 | 20 | 80 | 0.0254 |
8 | 150 | 25 | 50 | 0.0260 |
9 | 200 | 10 | 50 | 0.0193 |
10 | 200 | 15 | 80 | 0.0199 |
11 | 200 | 20 | 20 | 0.0201 |
12 | 200 | 25 | 30 | 0.0156 |
13 | 250 | 10 | 80 | 0.0230 |
14 | 250 | 15 | 50 | 0.0215 |
15 | 250 | 20 | 30 | 0.0213 |
16 | 250 | 25 | 20 | 0.0216 |
Problem | MDABC | MDABC1 | MDABC2 |
---|---|---|---|
20 × 3 | 0.0474(0.0256) | 0.1853(0.0199) | 0.2496(0.0267) |
20 × 5 | 0.0509(0.0261) | 0.1959(0.0204) | 0.2450(0.0270) |
20 × 8 | 0.0536(0.0229) | 0.2085(0.0247) | 0.2470(0.0299) |
20 × 10 | 0.0541(0.0233) | 0.2259(0.0317) | 0.2515(0.0231) |
40 × 3 | 0.0405(0.0210) | 0.1840(0.0223) | 0.2481(0.0207) |
40 × 5 | 0.0563(0.0256) | 0.2092(0.0268) | 0.2637(0.0289) |
40 × 8 | 0.0553(0.0229) | 0.2399(0.0250) | 0.3175(0.0283) |
40 × 10 | 0.0611(0.0223) | 0.2149(0.0226) | 0.2731(0.0277) |
60 × 3 | 0.0462(0.0236) | 0.1942(0.0286) | 0.2587(0.0226) |
60 × 5 | 0.0500(0.0215) | 0.2353(0.0240) | 0.2945(0.0231) |
60 × 8 | 0.0620(0.0262) | 0.2466(0.0273) | 0.3083(0.0272) |
60 × 10 | 0.0586(0.0244) | 0.2321(0.0221) | 0.2897(0.0295) |
80 × 3 | 0.0468(0.0225) | 0.1921(0.0292) | 0.2706(0.0292) |
80 × 5 | 0.0552(0.0248) | 0.2591(0.0272) | 0.3299(0.0203) |
80 × 8 | 0.0536(0.0231) | 0.2487(0.0167) | 0.3164(0.0299) |
80 × 10 | 0.0725(0.0261) | 0.2834(0.0219) | 0.3609(0.0284) |
100 × 3 | 0.0507(0.0227) | 0.2259(0.0287) | 0.2983(0.0211) |
100 × 5 | 0.0557(0.0189) | 0.2536(0.0230) | 0.3336(0.0296) |
100 × 8 | 0.0699(0.0236) | 0.2736(0.0306) | 0.3360(0.0245) |
100 × 10 | 0.0680(0.0235) | 0.2768(0.0289) | 0.3569(0.0216) |
Mean | 0.0054(0.0243) | 0.2292(0.0245) | 0.2925(0.0250) |
Problem | Gurobi | MDABC | MOEA/D | MOCGWO | TMOA | NSGA-II |
---|---|---|---|---|---|---|
2 × 2 | 0.0006(0.0143) | 0.0180(0.0120) | 0.0573(0.0080) | 0.0765(0.0116) | 0.0668(0.0092) | 0.1306(0.0143) |
2 × 3 | 0.0028(0.0140) | 0.0089(0.0052) | 0.0468(0.0061) | 0.0617(0.0114) | 0.0524(0.0082) | 0.1078(0.0140) |
2 × 4 | 0.0084(0.0168) | 0.0092(0.0051) | 0.0529(0.0068) | 0.0645(0.0077) | 0.0594(0.0080) | 0.1184(0.01680 |
4 × 2 | 0.0009(0.0272) | 0.0137(0.0085) | 0.0779(0.0096) | 0.0826(0.0122) | 0.0828(0.0085) | 0.1809(0.0272) |
4 × 3 | 0.1871(0.0310) | 0.0106(0.0065) | 0.0823(0.0160) | 0.0126(0.0126) | 0.0862(0.0128) | 0.1871(0.0310) |
4 × 4 | 0.1720(0.0270) | 0.0074(0.0043) | 0.0771(0.0097) | 0.0104(0.0104) | 0.0816(0.0099) | 0.1720(0.0270) |
6 × 2 | 0.1933(0.0237) | 0.0103(0.0068) | 0.0884(0.0103) | 0.0122(0.0122) | 0.0934(0.0113) | 0.1933(0.0237) |
6 × 3 | 0.0249(0.0331) | 0.0101(0.0062) | 0.0922(0.0103) | 0.0942(0.0131) | 0.0985(0.0107) | 0.2049(0.0331) |
6 × 4 | 0.0107(0.0353) | 0.0078(0.0042) | 0.0908(0.0112) | 0.0903(0.0121) | 0.0982(0.0127) | 0.2027(0.0353) |
8 × 2 | 0.2307(0.0291) | 0.0097(0.0061) | 0.0899(0.0102) | 0.0933(0.0108) | 0.0964(0.0109) | 0.2037(0.0291) |
8 × 3 | 0.2067(0.0355) | 0.0085(0.0052) | 0.1019(0.0117) | 0.1012(0.0132) | 0.1106(0.0137) | 0.2218(0.0355) |
8 × 4 | 0.2044(0.0323) | 0.0083(0.0056) | 0.1084(0.0142) | 0.1058(0.0144) | 0.1167(0.0131) | 0.2244(0.0291) |
10 × 2 | 0.3060(0.0343) | 0.0086(0.0053) | 0.0970(0.0120) | 0.1014(0.0169) | 0.1067(0.0134) | 0.2136(0.0355) |
10 × 3 | 0.3086(0.0342) | 0.0071(0.0044) | 0.1018(0.0131) | 0.0972(0.0162) | 0.1064(0.0148) | 0.2079(0.0323) |
10 × 4 | 0.2062(0.0350) | 0.0064(0.0037) | 0.1072(0.0116) | 0.1029(0.0187) | 0.1142(0.0131) | 0.2291(0.0342) |
Mean | 0.1978(0.0282) | 0.0096(0.0059) | 0.0848(0.0104) | 0.0738(0.0129) | 0.0914(0.0113) | 0.1866(0.0528) |
Problem | Gurobi | MDABC | MOEA/D | MOCGWO | TMOA | NSGA-II |
---|---|---|---|---|---|---|
2 × 2 | 0.2230(0.0291) | 0.1819(0.1037) | 0.4281(0.0125) | 0.4572(0.0115) | 0.4454(0.0119) | 0.4747(0.0149) |
2 × 3 | 0.1444(0.0332) | 0.0873(0.0478) | 0.2908(0.0103) | 0.3188(0.0121) | 0.3036(0.0088) | 0.3444(0.0132) |
2 × 4 | 0.1630(0.0407) | 0.0905(0.0494) | 0.3195(0.0103) | 0.3383(0.0108) | 0.3275(0.0107) | 0.3630(0.0107) |
4 × 2 | 0.0408(0.0321) | 0.0975(0.0526) | 0.3916(0.0110) | 0.3928(0.0161) | 0.3987(0.0133) | 0.4806(0.0167) |
4 × 3 | 0.0426(0.0233) | 0.0881(0.0448) | 0.3920(0.0110) | 0.3764(0.0145) | 0.3928(0.0131) | 0.4826(0.0211) |
4 × 4 | 0.0718(0.0356) | 0.0708(0.0373) | 0.3920(0.0113) | 0.3745(0.0151) | 0.3953(0.0113) | 0.4718(0.0165) |
6 × 2 | 0.0998(0.0513) | 0.0793(0.0452) | 0.4036(0.0138) | 0.3867(0.0209) | 0.4044(0.0127) | 0.4998(0.0185) |
6 × 3 | 0.1318(0.0410) | 0.0802(0.0445) | 0.4339(0.0137) | 0.4133(0.0203) | 0.4387(0.0124) | 0.5318(0.0207) |
6 × 4 | 0.1328(0.0411) | 0.0692(0.0393) | 0.4347(0.0137) | 0.4215(0.0180) | 0.4409(0.0122) | 0.5328(0.0203) |
8 × 2 | 0.0446(0.0310) | 0.0708(0.0423) | 0.4414(0.0142) | 0.4374(0.0178) | 0.4499(0.0124) | 0.5446(0.0181) |
8 × 3 | 0.1801(0.0131) | 0.0689(0.0415) | 0.4711(0.0135) | 0.4502(0.0201) | 0.4790(0.0126) | 0.5801(0.0228) |
8 × 4 | 0.0056(0.0342) | 0.0704(0.0384) | 0.4973(0.0125) | 0.4751(0.0197) | 0.5021(0.0133) | 0.6056(0.0231) |
10 × 2 | 0.0603(0.0323) | 0.0715(0.0414) | 0.4578(0.0135) | 0.4349(0.0213) | 0.4633(0.0117) | 0.5603(0.0170) |
10 × 3 | 0.0845(0.0141) | 0.0655(0.0376) | 0.4834(0.0148) | 0.4544(0.0194) | 0.4858(0.0137) | 0.5845(0.0219) |
10 × 4 | 0.0979(0.0310) | 0.0531(0.0309) | 0.4933(0.0133) | 0.4515(0.0182) | 0.4988(0.0122) | 0.5979(0.0200) |
Mean | 0.0513(0.0346) | 0.0830(0.0464) | 0.4220(0.0126) | 0.4122(0.0170) | 0.4284(0.0122) | 0.5103(0.0184) |
Problem | A:MDABC | B:MOEA/D | A:MDABC | B:MOCGWO | ||
---|---|---|---|---|---|---|
C (A, B) | C (B, A) | C (A, C) | C (C, A) | |||
2 × 2 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
2 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.001) | 0.000(0.000) | ||
2 × 4 | 0.998(0.004) | 0.000(0.000) | 1.000(0.000) | 0.000(0.001) | ||
4 × 2 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
4 × 3 | 0.999(0.001) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
4 × 4 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
6 × 2 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
6 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
6 × 4 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
8 × 2 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
8 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
8 × 4 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
10 × 2 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
10 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
10 × 4 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
Mean | 0.999(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | ||
Problem | A: MDABC | B: TMOA | A: MDABC | B:N B:NSGA-II | A: MDABC | B:NB:Gurobi |
C(A, D) | C(D, A) | C(A, E) | C(E, A) | C(A, F) | C(F, A) | |
2 × 2 | 0.998(0.004) | 0.001(0.007) | 1.000(0.000) | 0.000(0.000) | 0.970(0.036) | 0.017(0.001) |
2 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 0.984(0.019) | 0.005(0.008) |
2 × 4 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 0.981(0.020) | 0.005(0.007) |
4 × 2 | 0.999(0.002) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
4 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
4 × 4 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 0.994(0.014) | 0.001(0.003) |
6 × 2 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
6 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.016) | 0.000(0.000) |
6 × 4 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
8 × 2 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
8 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
8 × 4 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
10 × 2 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
10 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
10 × 4 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
Mean | 0.999(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 0.995(0.006) | 0.001(0.002) |
Problem | Gurobi | MDABC | MOEA/D | MOCGWO | TMOA | NSGA-II |
---|---|---|---|---|---|---|
2 × 2 | 5.9(1.5) | 92.3(32.1) | 39.4(7.9) | 24.8(5.0) | 31.5(6.5) | 16.5(1.8) |
2 × 3 | 6.1(1.6) | 117.8(31.5) | 36.7(6.0) | 24.8(5.4) | 29.9(5.9) | 11.2(2.9) |
2 × 4 | 6.5(1.3) | 112.4(23.7) | 31.7(5.3) | 24.6(4.9) | 26.5(5.7) | 11.5(1.9) |
4 × 2 | 5.9(1.6) | 87.2(23.1) | 27.0(4.9) | 23.2(4.5) | 23.6(3.5) | 13.7(3.7) |
4 × 3 | 5.8(0.8) | 86.3(31.9) | 22.0(4.0) | 19.1(4.1) | 19.9(3.7) | 19.7(2.8) |
4 × 4 | 6.1(1.5) | 96.4(20.9) | 21.3(3.8) | 18.6(4.0) | 20.1(3.9) | 17.2(1.3) |
6 × 2 | 6.4(1.5) | 90.2(23.5) | 22.3(4.2) | 20.5(4.3) | 19.8(3.8) | 12.3(2.2) |
6 × 3 | 6.1(1.3) | 80.8(20.8) | 19.8(3.6) | 16.1(3.7) | 17.9(2.9) | 25.2(2.0) |
6 × 4 | 6.2(1.4) | 99.4(29.4) | 20.3(4.3) | 16.8(3.5) | 17.8(3.4) | 14.7(3.3) |
8 × 2 | 6.3(1.0) | 100.5(23.5) | 22.9(3.9) | 19.1(3.2) | 20.5(3.2) | 35.7(2.2) |
8 × 3 | 6.4(1.5) | 89.2(23.0) | 18.4(3.3) | 16.3(3.2) | 16.6(3.0) | 13.2(3.4) |
8 × 4 | 6.1(1.3) | 99.4(19.5) | 18.0(3.6) | 14.8(3.3) | 15.8(3.0) | 11.8(2.3) |
10 × 2 | 8.1(1.2) | 86.2(17.6) | 20.5(3.9) | 16.8(3.9) | 17.5(3.6) | 19.3(3.2) |
10 × 3 | 8.1(1.3) | 111.6(24.9) | 18.1(3.6) | 16.2(3.7) | 17.1(3.6) | 36.5(3.9) |
10 × 4 | 7.5(1.4) | 109.2(20.5) | 17.5(3.0) | 14.3(3.2) | 15.6(3.1) | 18.0(2.9) |
Mean | 6.4(1.3) | 97.2(24.3) | 23.7(4.3) | 19.0(4.0) | 20.7(3.9) | 18.4(2.6) |
Problem | MDABC | MOEA/D | MOCGWO | TMOA | NSGA-II |
---|---|---|---|---|---|
20 × 3 | 0.0059(0.0033) | 0.0889(0.0011) | 0.0716(0.0137) | 0.0874(0.0105) | 0.1829(0.0275) |
20 × 5 | 0.0066(0.0037) | 0.0901(0.0131) | 0.0691(0.0112) | 0.0863(0.0131) | 0.1718(0.0229) |
20 × 8 | 0.0073(0.0032) | 0.0954(0.0133) | 0.0741(0.0162) | 0.0963(0.0144) | 0.1883(0.0279) |
20 × 10 | 0.0079(0.0040) | 0.0968(0.0116) | 0.0766(0.0185) | 0.0978(0.0129) | 0.2039(0.0329) |
40 × 3 | 0.0047(0.0024) | 0.0985(0.0109) | 0.0837(0.0151) | 0.0960(0.0116) | 0.1812(0.0225) |
40 × 5 | 0.0074(0.0040) | 0.1088(0.0156) | 0.0999(0.0179) | 0.1104(0.0141) | 0.2113(0.0294) |
40 × 8 | 0.0080(0.0041) | 0.1262(0.0194) | 0.1187(0.0260) | 0.1238(0.0185) | 0.2357(0.0357) |
40 × 10 | 0.0111(0.0047) | 0.1118(0.0188) | 0.1031(0.0190) | 0.1078(0.0156) | 0.2203(0.0364) |
60 × 3 | 0.0065(0.0033) | 0.1074(0.0122) | 0.0978(0.0159) | 0.1069(0.0131) | 0.2045(0.0357) |
60 × 5 | 0.0079(0.0038) | 0.1098(0.0131) | 0.1010(0.0150) | 0.1112(0.0119) | 0.2070(0.0315) |
60 × 8 | 0.0108(0.0053) | 0.1142(0.0156) | 0.1093(0.0201) | 0.1145(0.0179) | 0.2127(0.0295) |
60 × 10 | 0.0114(0.0051) | 0.1074(0.0152) | 0.1093(0.0211) | 0.1122(0.0156) | 0.2059(0.0333) |
80 × 3 | 0.0067(0.0032) | 0.1081(0.0134) | 0.1018(0.0167) | 0.1069(0.0121) | 0.2062(0.0328) |
80 × 5 | 0.0086(0.0044) | 0.1159(0.0177) | 0.1132(0.0224) | 0.1140(0.0158) | 0.2042(0.0272) |
80 × 8 | 0.0095(0.0049) | 0.1078(0.0157) | 0.1112(0.0197) | 0.1085(0.0130) | 0.1989(0.0304) |
80 × 10 | 0.0173(0.0079) | 0.1409(0.0200) | 0.1489(0.0307) | 0.1355(0.0166) | 0.2479(0.0425) |
100 × 3 | 0.0068(0.0032) | 0.1093(0.0148) | 0.1044(0.0161) | 0.1076(0.0136) | 0.1993(0.0291) |
100 × 5 | 0.0100(0.0045) | 0.1165(0.0151) | 0.1144(0.0187) | 0.1142(0.0141) | 0.2092(0.0269) |
100 × 8 | 0.0141(0.0069) | 0.1153(0.0178) | 0.1249(0.0231) | 0.1200(0.0187) | 0.2189(0.0349) |
100 × 10 | 0.0161(0.0078) | 0.1307(0.0185) | 0.1401(0.0241) | 0.1281(0.0174) | 0.2309(0.0410) |
Mean | 0.0092(0.0045) | 0.1100(0.0151) | 0.1037(0.0191) | 0.1093(0.0145) | 0.2071(0.0315) |
Problem | MDABC | MOEA/D | MOCGWO | TMOA | NSGA-II |
---|---|---|---|---|---|
20 × 3 | 0.0451(0.0244) | 0.4209(0.0139) | 0.3880(0.0169) | 0.4192(0.0137) | 0.5150(0.0153) |
20 × 5 | 0.0484(0.0247) | 0.4215(0.0127) | 0.4025(0.0174) | 0.4221(0.0112) | 0.5202(0.0169) |
20 × 8 | 0.0485(0.0215) | 0.4100(0.0163) | 0.3941(0.0200) | 0.4144(0.0162) | 0.5189(0.0202) |
20 × 10 | 0.0502(0.0224) | 0.4228(0.0165) | 0.4066(0.0253) | 0.4212(0.0185) | 0.5376(0.0125) |
40 × 3 | 0.0396(0.0206) | 0.4549(0.0156) | 0.4241(0.0183) | 0.4498(0.0151) | 0.5426(0.0167) |
40 × 5 | 0.0519(0.0246) | 0.4607(0.0173) | 0.4429(0.0251) | 0.4618(0.0179) | 0.5641(0.0214) |
40 × 8 | 0.0506(0.0227) | 0.4964(0.0200) | 0.4610(0.0243) | 0.4933(0.0259) | 0.6068(0.0229) |
40 × 10 | 0.0563(0.0228) | 0.4299(0.0173) | 0.4174(0.0229) | 0.4329(0.0189) | 0.5434(0.0206) |
60 × 3 | 0.0449(0.0231) | 0.4750(0.0164) | 0.4492(0.0221) | 0.4715(0.0158) | 0.5698(0.0208) |
60 × 5 | 0.0472(0.0210) | 0.4769(0.0179) | 0.4640(0.0179) | 0.4799(0.0150) | 0.5770(0.0194) |
60 × 8 | 0.0578(0.0253) | 0.4791(0.0243) | 0.4538(0.0274) | 0.4714(0.0201) | 0.5726(0.0183) |
60 × 10 | 0.0556(0.0235) | 0.4478(0.0169) | 0.4321(0.0246) | 0.4460(0.0211) | 0.5489(0.0183) |
80 × 3 | 0.0455(0.0227) | 0.4705(0.0172) | 0.4471(0.0193) | 0.4652(0.0166) | 0.5592(0.0171) |
80 × 5 | 0.0540(0.0245) | 0.4919(0.0202) | 0.4825(0.0219) | 0.4893(0.0223) | 0.5874(0.0186) |
80 × 8 | 0.0524(0.0228) | 0.4578(0.0145) | 0.4523(0.0214) | 0.4533(0.0196) | 0.5522(0.0203) |
80 × 10 | 0.0692(0.0251) | 0.5014(0.0188) | 0.4858(0.0305) | 0.4978(0.0307) | 0.6025(0.0256) |
100 × 3 | 0.0488(0.0222) | 0.4778(0.0168) | 0.4678(0.0221) | 0.4793(0.0160) | 0.5673(0.0176) |
100 × 5 | 0.0544(0.0226) | 0.4776(0.0168) | 0.4680(0.0214) | 0.4740(0.0186) | 0.5677(0.0169) |
100 × 8 | 0.0682(0.0309) | 0.4647(0.0165) | 0.4633(0.0253) | 0.4619(0.0231) | 0.5587(0.0198) |
100 × 10 | 0.0641(0.0290) | 0.4716(0.0168) | 0.4630(0.0269) | 0.4675(0.0241) | 0.5686(0.0239) |
Mean | 0.0527(0.0239) | 0.4605(0.0172) | 0.4433(0.0226) | 0.4586(0.0191) | 0.5590(0.0196) |
Problem | A: MDABC | B: MOEA/D | A: MDABC | B: MOCGWO | A: MDABC | B: TMOA | A: MDABC | B:N B:NSGA-II |
---|---|---|---|---|---|---|---|---|
C(A, B) | C(B, A) | C(A, C) | C(C, A) | C(A, D) | C(D, A) | C(A, E) | C(E, A) | |
20 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
20 × 5 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
20 × 8 | 1.000(0.000) | 0.000(0.000) | 0.997(0.007) | 0.001(0.002) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
20 × 10 | 1.000(0.000) | 0.000(0.000) | 0.998(0.005) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
40 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
40 × 5 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 0.999(0.003) | 0.000(0.003) | 1.000(0.000) | 0.000(0.000) |
40 × 8 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
40 × 10 | 1.000(0.000) | 0.000(0.000) | 0.996(0.010) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
60 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
60 × 5 | 1.000(0.000) | 0.000(0.000) | 0.999(0.002) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
60 × 8 | 1.000(0.000) | 0.000(0.000) | 0.993(0.010) | 0.001(0.003) | 0.999(0.003) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
60 × 10 | 0.996(0.008) | 0.000(0.000) | 0.986(0.031) | 0.000(0.001) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
80 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
80 × 5 | 1.000(0.000) | 0.000(0.000) | 0.997(0.007) | 0.000(0.001) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
80 × 8 | 1.000(0.000) | 0.000(0.000) | 0.997(0.006) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
80 × 10 | 0.999(0.002) | 0.000(0.000) | 0.998(0.006) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
100 × 3 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
100 × 5 | 1.000(0.000) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 0.999(0.002) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
100 × 8 | 0.999(0.003) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) | 0.999(0.002) | 0.000(0.000) | 1.000(0.000) | 0.000(0.000) |
100 × 10 | 0.998(0.004) | 0.000(0.001) | 0.995(0.007) | 0.003(0.007) | 0.994(0.014) | 0.002(0.019) | 1.000(0.000) | 0.000(0.000) |
Mean | 0.996(0.001) | 0.000(0.000) | 0.997(0.005) | 0.007(0.001) | 0.999(0.001) | 0.001(0.001) | 1.000(0.000) | 0.000(0.000) |
Problem | MDABC | MOEA/D | MOCGWO | TMOA | NSGA-II |
---|---|---|---|---|---|
20 × 3 | 114.0(12.2) | 14.7(3.1) | 12.8(2.6) | 15.3(2.8) | 5.8(1.4) |
20 × 5 | 83.2(13.0) | 13.1(3.1) | 11.9(2.5) | 14.0(3.3) | 5.7(1.2) |
20 × 8 | 62.7(9.9) | 11.5(2.6) | 9.8(2.2) | 11.6(2.7) | 5.2(1.2) |
20 × 10 | 58.1(8.9) | 11.7(2.3) | 9.2(2.2) | 11.4(2.3) | 4.8(1.3) |
40 × 3 | 90.2(12.6) | 14.3(2.5) | 11.2(2.2) | 15.0(2.8) | 6.0(1.1) |
40 × 5 | 64.3(9.8) | 12.4(2.9) | 9.5(2.3) | 12.1(2.7) | 5.0(1.0) |
40 × 8 | 47.0(7.8) | 11.1(2.8) | 7.9(2.2) | 11.1(2.8) | 4.8(1.2) |
40 × 10 | 41.4(6.6) | 10.9(2.6) | 8.1(1.6) | 11.3(2.5) | 4.8(1.1) |
60 × 3 | 78.7(13.7) | 13.8(2.5) | 9.9(2.4) | 14.1(2.9) | 5.6(1.6) |
60 × 5 | 54.1(8.1) | 12.6(2.4) | 9.7(2.3) | 12.4(2.3) | 5.3(1.1) |
60 × 8 | 40.3(6.2) | 11.2(2.7) | 8.4(2.0) | 11.3(2.9) | 5.2(0.8) |
60 × 10 | 35.8(5.0) | 11.4(2.2) | 7.9(1.9) | 10.0(2.2) | 5.0(1.2) |
80 × 3 | 65.2(9.0) | 13.2(2.6) | 10.3(2.7) | 13.2(2.6) | 5.3(1.4) |
80 × 5 | 47.5(7.8) | 12.5(3.0) | 9.1(2.1) | 12.7(2.5) | 5.8(1.1) |
80 × 8 | 37.8(6.3) | 11.4(2.4) | 7.9(2.0) | 10.8(1.9) | 5.1(1.4) |
80 × 10 | 28.1(4.2) | 9.6(1.9) | 7.4(2.4) | 10.2(1.9) | 4.9(1.7) |
100 × 3 | 60.0(8.9) | 13.8(2.6) | 9.8(2.1) | 13.7(2.8) | 5.8(1.4) |
100 × 5 | 40.2(6.3) | 11.6(2.5) | 9.0(2.0) | 11.8(2.3) | 5.1(1.1) |
100 × 8 | 31.4(4.6) | 11.2(2.5) | 7.8(1.7) | 10.4(2.7) | 5.0(1.4) |
100 × 10 | 26.8(4.6) | 10.1(2.7) | 7.3(1.9) | 9.8(2.2) | 5.2(1.7) |
Mean | 55.3(7.8) | 12.1(2.6) | 9.2(2.2) | 12.1(2.6) | 5.3(1.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhang, B.; Jia, B. A Multiobjective Optimization Approach for Multiobjective Hybrid Flowshop Green Scheduling with Consistent Sublots. Sustainability 2023, 15, 2622. https://doi.org/10.3390/su15032622
Wang W, Zhang B, Jia B. A Multiobjective Optimization Approach for Multiobjective Hybrid Flowshop Green Scheduling with Consistent Sublots. Sustainability. 2023; 15(3):2622. https://doi.org/10.3390/su15032622
Chicago/Turabian StyleWang, Weiwei, Biao Zhang, and Baoxian Jia. 2023. "A Multiobjective Optimization Approach for Multiobjective Hybrid Flowshop Green Scheduling with Consistent Sublots" Sustainability 15, no. 3: 2622. https://doi.org/10.3390/su15032622
APA StyleWang, W., Zhang, B., & Jia, B. (2023). A Multiobjective Optimization Approach for Multiobjective Hybrid Flowshop Green Scheduling with Consistent Sublots. Sustainability, 15(3), 2622. https://doi.org/10.3390/su15032622