Behaviour and Design of Innovative Connections of Prefabricated CFST Columns under Tension
Abstract
:1. Introduction
2. Design Concept of PCFST Columns with BCC Connections
3. Development of Numerical Models
3.1. Element, Mesh and Contact Modelling
3.2. Stress–Strain Material Models Used in FE Modelling
3.3. Load and Boundary Conditions
3.4. FE Model Validation
3.4.1. CFST Columns under Tension
3.4.2. Bolted T-Stub Connections under Tension
3.5. Parametric Study
4. Results and Discussion
4.1. Effect of Bolts Arrangements
4.2. Effect of the Thickness of Base Plate
4.3. Effect of Bolt Diameter
4.4. Effect of Vertical Stiffener
4.5. Effect of Horizontal Stiffener
4.6. Effect of Yield Strength of Steel Tube
4.7. Comparison with Conventional Base Plate Connections
5. Design Calculations for Axial Tension
5.1. Design Requirement According to AS1170 and AS5100
5.2. Evaluation of PCFST Columns Design Equations
5.3. Design Recommendations for BCC Connections
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, M.K.; Tao, Z.; Liao, L. Numerical study of column-column connections for prefabricated concrete-filled steel columns. In Proceedings of the 25th Australasian Conference on Mechanics of Structures and Materials (ACMSM25), Brisbane, Australia, 4–7 December 2018. [Google Scholar]
- Hassan, M.K.; Sheikh, N.; Saha, S. Behaviour and design of prefabricated CFST stub columns with PCC connections under compression. Thin-Walled Struct. 2021, 166, 108041. [Google Scholar] [CrossRef]
- Tomii, M.; Yoshimura, K.; Morishita, Y. Experimental studies on concrete filled steel tubular stub columns under concentric loading. In Proceedings of the International Colloquium on Stability of Structures under Static and Dynamic Loads, Washington, DC, USA, 17–19 May 1977. [Google Scholar]
- Yamamoto, T.; Kawaguchi, J.; Shosuke, M. Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns. In Proceedings of the United Engineering Foundation Conference on Composite Construction in Steel and Concrete IV (AICE), Banff, AL, Canada, 28 May–2 June 2000; Volume 4, pp. 879–891. [Google Scholar]
- Uy, B. Strength of short concrete filled high strength steel box columns. J. Constr. Steel Res. 2001, 57, 113–134. [Google Scholar] [CrossRef]
- Huang, C.S.; Yeh, Y.K.; Liu, G.Y.; Hu, H.T.; Tsai, K.C.; Weng, Y.T.; Wang, S.H.; Wu, M.-H. Axial load behavior of stiffened concrete-filled steel columns. J. Struct. Eng. 2002, 128, 1222–1230. [Google Scholar] [CrossRef]
- Han, L.H. Tests on stub columns of concrete-filled RHS sections. J. Constr. Steelwork 2002, 58, 353–372. [Google Scholar] [CrossRef]
- Kitoh, H.; Koyabu, T.; Sahara, K.; Sonoda, K. Concrete filled circular steel tubular studs with a large ratio of diameter to thickness under compression. Doboku Gakkai Ronbunshu 2004, 2004, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Sakino, K.; Nakahara, H.; Morino, S.; Nishiyama, I. Behavior of centrally loaded concrete-filled steel-tube short columns. J. Struct. Eng. 2004, 30, 180–188. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.H.; Wang, D.Y. Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete. Thin-Walled Struct. 2008, 46, 1113–1128. [Google Scholar] [CrossRef]
- Tao, Z.; Uy, B.; Han, L.H.; Wang, Z.B. Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression. Thin-Walled Struct. 2009, 47, 1544–1556. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.H.; Wang, Z.B. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. J. Constr. Steel Res. 2005, 61, 962–983. [Google Scholar] [CrossRef]
- Liew, J.Y.R.; Xiong, D.X. Experimental investigation on tubular columns infilled with ultra-high strength concrete. In Proceedings of the 13th International Symposium on Tubular Structures, Hong Kong, UK, 15–17 December 2010; pp. 637–645. [Google Scholar]
- Li, D.; Jin, L.; Du, X.; Fu, J.; Lu, A. Size effect tests of normal-strength and high-strength RC columns subjected to axial compressive loading. Eng. Struct. 2016, 109, 43–60. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, L.; Bai, Y.; Li, S.; Song, Q.; Wei, Y.; Zhang, L.Y.; Zhang, Z.Y.; Sha, X.C. Large diameter concrete-filled high strength steel tubular stub columns under compression. Thin-Walled Struct. 2016, 108, 12–19. [Google Scholar] [CrossRef]
- Liew, J.Y.R.; Xiong, M.; Xiong, D. Design of Concrete filled tubular beam-columns with high strength steel and concrete. Structures 2016, 8, 213–226. [Google Scholar] [CrossRef]
- Ekmekyapar, T.; Alwan, O.H.; Hasan, H.G.; Shehab, B.A.; Al-Eliwi, B.J.M. Comparison of classical, double skin and double section CFST stub columns: Experiments and design formulations. J. Constr. Steel Res. 2019, 155, 192–204. [Google Scholar] [CrossRef]
- Uy, B. Strength of concrete filled steel box columns incorporating local buckling. J. Struct. Eng. 2000, 126, 341–352. [Google Scholar] [CrossRef]
- Elchalakani, M.; Karrech, A.; Hassanein, M.F.; Yang, B. Plastic and yield slenderness limits for circular concrete filled tubes subjected to static pure bending. Thin-Walled Struct. 2019, 109, 50–64. [Google Scholar]
- Han, L.H.; Lu, H.; Yao, G.H.; Liao, F.Y. Further study on the flexural behaviour of concrete-filled steel tubes. J. Constr. Steel Res. 2006, 62, 554–565. [Google Scholar] [CrossRef]
- Thody, R. Experimental Investigation of the Flexural Properties of High-Strength Concrete-Filled Steel Tubes. Master’s Thesis, University of Washington, Seattle, WA, USA, 2006. [Google Scholar]
- Moon, J.; Roeder, C.W.; Lehman, D.E.; Lee, H.E. Analytical modelling of bending of circular concrete-filled steel tubes. Eng. Struct. 2012, 42, 349–361. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Z.Z.; Li, W.J. Behavior of steel fibers reinforced self-stressing and self-compacting concrete-filled steel tube subjected to bending. Constr. Build. Mater. 2017, 156, 639–651. [Google Scholar] [CrossRef]
- Xiong, M.X.; Xiong, D.X.; Liew, J.Y.R. Flexural performance of concrete filled tubes with high tensile steel and ultra-high strength concrete. J. Constr. Steel Res. 2017, 132, 191–202. [Google Scholar] [CrossRef]
- Li, G.; Liu, D.; Yang, Z.; Zhang, C. Flexural behavior of high strength concrete filled high strength square steel tube. J. Constr. Steel Res. 2017, 128, 732–744. [Google Scholar] [CrossRef]
- Abed, F.H.; Abdelmageed, Y.I.; Kerim Ilgun, A. Flexural response of concrete-filled seamless steel tubes. J. Constr. Steel Res. 2018, 149, 53–63. [Google Scholar] [CrossRef]
- Al Zand, A.W.; Badaruzzaman, W.H.W.; Al-Shaikhli, M.S.; Ali, M.M. Flexural performance of square concrete-filled steel tube beams stiffened with V-shaped grooves. J. Constr. Steel Res. 2020, 166, 105930. [Google Scholar] [CrossRef]
- Han, L.H.; He, S.H.; Liao, F.Y. Performance and calculations of concrete filled steel tubes (CFST) under axial tension. J. Constr. Steel Res. 2011, 67, 1699–1709. [Google Scholar] [CrossRef]
- Li, W.; Han, L.H.; Chan, T.M. Numerical investigation on the performance of concrete-filled double-skin steel tubular members under tension. Thin-Walled Struct. 2014, 79, 108–118. [Google Scholar] [CrossRef]
- Li, W.; Han, L.H.; Chan, T.M. Performance of Concrete-Filled Steel Tubes subjected to Eccentric Tension. J. Struct. Eng. 2015, 141, 04015049. [Google Scholar] [CrossRef]
- Zhou, M.; Fan, J.S.; Tao, M.X.; Nie, M.G. Experimental study on the tensile behavior of square concrete-filled steel tubes. J. Constr. Steel Res. 2016, 121, 202–215. [Google Scholar] [CrossRef]
- Xu, L.Y.; Tao, M.X.; Zhou, M. Analytical model and design formulae of circular CFSTs under axial tension. J. Constr. Steel Res. 2017, 133, 214–230. [Google Scholar] [CrossRef]
- AIJ. Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures; Architectural Institute of Japan (AIJ): Tokyo, Japan, 2008. [Google Scholar]
- AISC 360-05; Specification for Structural Steel Buildings. American Institute of Steel Construction (AISC): Chicago, IL, USA, 2005.
- EN 1994-1-2:2005; Eurocode 4. Design of Composite Steel and Concrete Structures-Part1-1: General Rules-Structural Fire Design. European Committee for Standardisation: Brussels, Belgium, 2005.
- Zheng, Y.; Guo, Z.; Cao, J. Confinement mechanism and confining stress distribution of new grouting coupler for rebars splicing. J. Harbin Inst. Technol. 2015, 47, 106–111. [Google Scholar]
- Zheng, Y.; Guo, Z.; Zhang, X. Effect of sleeve inner cavity structure on bond performance of grouted pipe splice. J. Build. Struct. 2018, 39, 158–166. [Google Scholar]
- Sui, L.L.; Fan, S.Y.; Huang, Z.Y.; Zhang, W.; Zhou, Y.; Ye, J.Q. Load transfer mechanism of an unwelded, unbolted, grouted connection for prefabricated square tubular columns under axial loads. Eng. Struct. 2020, 222, 111088. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Zhang, W.; Fan, S.Y.; Sui, L.L.; Ye, J.Q. Axial load resistance of a novel UHPFRC grouted SHS tube sleeve connection: Experimental, numerical and theoretical approaches. J. Struct. Eng. 2021, 147, 04021184. [Google Scholar] [CrossRef]
- Liu, X.C.; Xu, A.X.; Zhang, A.L.; Ni, Z.; Wang, H.X.; Wu, L. Static and seismic experiment for welded joints in modularised prefabricated steel structure. J. Constr. Steel Res. 2015, 19, 183–195. [Google Scholar] [CrossRef]
- Liu, X.; Cui, X.; Yang, Z.; Zhan, X. Analysis of the seismic performance of site-bolted beam to column connections in modularised prefabricated steel structures. Adv. Mater. Sci. Eng. 2017, 2017, 1932730. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.C.; Yang, Z.W.; Wang, H.X.; Zhang, A.L.; Pu, S.H.; Chai, S.T.; Wu, L. Seismic performance of H-section beam to HSS column connection in prefabricated structures. J. Constr. Steel Res. 2017, 138, 1–16. [Google Scholar] [CrossRef]
- Willibald, S.; Packer, J.A.; Puthli, R.S. Experimental study of bolted HSS flange-plate connections in axial tension. J. Struct. Eng. 2002, 128, 328–336. [Google Scholar] [CrossRef]
- Uy, B.; Patel, V.; Li, D.; Aslani, F. Behaviour and design of connections for demountable steel and composite structures. Structures 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Li, D.X.; Uy, B.; Aslani, F.; Patel, V. Behaviour and design of demountable CFST column-column connections under tension. J. Constr. Steel Res. 2017, 138, 761–773. [Google Scholar] [CrossRef]
- AS5100.6; Bridge Design, Part 6: Steel and Composite Construction. Standards Australia: Sydney, Australia, 2004.
- AS1170.4-2007; Earthquake Actions in Australia. Standards Australia: Sydney, Australia, 2007.
- ABAQUS. ABAQUS Analysis User’s Guide, Version 2019; Dassault Systèmes Corp.: Providence, RI, USA, 2020. [Google Scholar]
- Al-Ani, Y.R. Finite element study to address the axial capacity of the circular concrete-filled steel tubular stub columns. Thin-Walled Struct. 2018, 26, 2–15. [Google Scholar] [CrossRef]
- Ellobody, E.; Young, B. Nonlinear analysis of concrete-filled steel SHS and RHS columns. Thin-Walled Struct. 2006, 44, 919–930. [Google Scholar] [CrossRef]
- Han, L.H.; Yao, G.H.; Tao, Z. Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Struct. 2007, 45, 24–36. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, Y.G. Numerical study of the behaviours of axially loaded large-diameter CFT stub columns. J. Constr. Steel Res. 2019, 160, 54–66. [Google Scholar] [CrossRef]
- Schneider, S.P. Axially loaded concrete-filled steel tubes. J. Struct. Eng. 1998, 124, 1125–1138. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, Z.B.; Yu, Q. Finite element modelling of concrete-filled steel stub columns under axial compression. J. Constr. Steel Res. 2013, 89, 121–131. [Google Scholar] [CrossRef]
- Liang, Q.Q. Nonlinear analysis of short concrete-filled steel tubular beam–columns under axial load and biaxial bending. J. Constr. Steel Res. 2008, 64, 295–304, 313–337. [Google Scholar] [CrossRef]
- Al-Dujele, R.; Cashell, K.A.; Afshan, S. Flexural behaviour of concrete filled tubular flange girders. J. Constr. Steel Res. 2018, 151, 263–279. [Google Scholar] [CrossRef]
- Han, L.H. Flexural behaviour of concrete-filled steel tubes. J. Constr. Steel Res. 2004, 60, 313–337. [Google Scholar] [CrossRef]
- Wang, R.; Han, L.H.; Nie, J.G.; Zhao, X.L. Flexural performance of rectangular CFST members. Thin-Walled Struct. 2014, 79, 154–165. [Google Scholar] [CrossRef]
- Hassan, M.K.; Tao, Z.; Mirza, O.; Song, T.Y.; Han, L.H. Finite element analysis of steel beam-CFST column joints with blind bolts. In Proceedings of the Australian Structural Engineering Conference (ASEC 2014), Auckland, New Zealand, 9–11 July 2014. [Google Scholar]
- Hassan, M.K.; Tao, Z.; Song, T.Y.; Han, L.H. Effects of floor slabs on the structural performance of blind-bolted composite joints. In Proceedings of the 24th Australasian Conference on the Mechanics of Structures and Materials (ACMSM24), Perth, Australia, 6–9 December 2016. [Google Scholar]
- Hassan, M.K. Behaviour of Hybrid Stainless-Carbon Steel Composite Beam-Column Joints. Ph.D. Thesis, Western Sydney University, Sydney, Australia, 2016. [Google Scholar]
- ACI 318; Building Code Requirements for Structural Concrete and Commentary 2014, ACI 318-14. American Concrete Institute: Farmington Hills, MI, USA, 2014.
- Dong, C.X.; Kwan, A.K.H.; Ho, J.C.M. A constitutive model for predicting the lateral strain of confined concrete. Eng. Struct. 2015, 91, 155–166. [Google Scholar] [CrossRef]
- Dong, C.X.; Kwan, A.K.H.; Ho, J.C.M. Effects of confining stiffness and rupture strain on performance of FRP confined concrete. Eng. Struct. 2015, 97, 1–14. [Google Scholar] [CrossRef]
- Kwan, A.K.H.; Dong, C.X.; Ho, J.C.M. Axial and lateral stress–strain model for FRP confined concrete. Eng. Struct. 2015, 99, 285–295. [Google Scholar] [CrossRef]
- Lai, M.H.; Liang, Y.W.; Wang, Q.; Ren, F.M.; Chen, M.T.; Ho, J.C.M. A stress-path dependent stress-strain model for FRP-confined concrete. Eng. Struct. 2020, 203, 109824. [Google Scholar] [CrossRef]
- Ho, J.C.M.; Ou, X.L.; Chen, M.T.; Wang, Q.; Lai, M.H. A path dependent constitutive model for CFFT column. Eng. Struct. 2020, 210, 110367. [Google Scholar] [CrossRef]
- Lai, M.H.; Song, W.; Ou, X.L.; Chen, M.T.; Wang, Q.; Ho, J.C.M. A path dependent stress-strain model for concrete-filled-steel-tube column. Eng. Struct. 2020, 211, 110312. [Google Scholar] [CrossRef]
- Hassan, M.K.; Tao, Z.; Katwal, U. Behaviour of through plate connections to concrete-filled stainless steel columns. J. Constr. Steel Res. 2020, 171, 106142. [Google Scholar] [CrossRef]
- Li, D.S.; Tao, Z.; Wang, Z.B. Experimental investigation of blind-bolted joints to concrete-filled steel columns. J. Hunan Univ. (Nat. Sci.) 2015, 42, 43–49. [Google Scholar]
- Fisher, J.M.; Kloiber, L.A. Steel Design Guide 1: Base Plate and Anchor Rod Design, 2nd ed.; American Institute of Steel Construction: Chicago, IL, USA, 2006. [Google Scholar]
Material Properties | Yield Stress, fy (MPa) | Ultimate Stress, fu (MPa) | Elastic Modulus, Es (GPa) |
---|---|---|---|
Steel tube | 379 | 473 | 206 |
Stiffeners | 388 | 506 | 206 |
Baseplate | 388 | 506 | 206 |
Normal bolts | 640 | 800 | 200 |
Specimens | Cross-Sectional Dimension (B × H × t) (mm) | Length (mm) | Cubic Compressive Strength of Concrete (MPa) | Yield Stress, (MPa) | Ultimate Tensile Load (kN) at 0.01 Strain | Test/FE Ratio | ||
---|---|---|---|---|---|---|---|---|
Test | FE | |||||||
1. | SCFT ST200-6 [31] | 200 × 200 × 6 | 2000 | 43.3 | 389.3 | 2003.53 | 2064.45 | 0.971 |
2. | SCFT ST200-3 [31] | 200 × 200 × 3 | 2000 | 43.3 | 389.3 | 1035.30 | 1080.350 | 0.958 |
3. | SCFT ST100-3 [31] | 100 × 100 × 3 | 20,000 | 43.3 | 389.3 | 504.50 | 508.68 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.K.; Saha, S.; Rahnamayiezekavat, P. Behaviour and Design of Innovative Connections of Prefabricated CFST Columns under Tension. Sustainability 2023, 15, 2846. https://doi.org/10.3390/su15032846
Hassan MK, Saha S, Rahnamayiezekavat P. Behaviour and Design of Innovative Connections of Prefabricated CFST Columns under Tension. Sustainability. 2023; 15(3):2846. https://doi.org/10.3390/su15032846
Chicago/Turabian StyleHassan, Md Kamrul, Swapan Saha, and Payam Rahnamayiezekavat. 2023. "Behaviour and Design of Innovative Connections of Prefabricated CFST Columns under Tension" Sustainability 15, no. 3: 2846. https://doi.org/10.3390/su15032846
APA StyleHassan, M. K., Saha, S., & Rahnamayiezekavat, P. (2023). Behaviour and Design of Innovative Connections of Prefabricated CFST Columns under Tension. Sustainability, 15(3), 2846. https://doi.org/10.3390/su15032846